
1 

UTCS 352, Lecture 11          1 

Lecture 11: A Simple Datapath & Pipelining 

•  Last time 
–  Exam discussion (average 73 before regrade) 
–  Broke down execution & state (IF,ID,EX,MEM,WB) 

•  PC state 
•  By instruction type: Control, Register, Memory   

•  Today 
–  Take QUIZ 7 over P&H 4.5-6, before 11:59pm today 
–  Homework 4 due Thursday March 4 
–  Putting the parts together 
–  Logic & control 
–  How can we execute instructions faster? 

•  multicycle execution 
•  pipelining 

5 Stages for Multicycle Execution  

5 logical and distinct steps 
IF: fetch instruction 
ID/R: decode instruction 

and read registers 
EX: execute (add, sub, …) 
MEM: access memory 
WB: store result (write back) 

I-Fetch 

Decode 

Execute 

Memory 

Write 
Result 

UTCS 352, Lecture 11          2 



2 

What do we need to execute instructions? 

Which instruction?  
•  instruction memory, PC:  beq, j 

Which registers?  
•  register storage file 

Which Math? 
•  combinational logic:  
    add,sub, 
  and,or,slt 

Which data? 
•  memory:  
     lw, sw 

UTCS 352, Lecture 11          3 

UTCS 352, Lecture 11          4 

Creating a Datapath from the Parts 

•  Assemble the datapath segments, add control lines, and
 multiplexors 

•  Single cycle design – fetch, decode and execute each
 instructions in one clock cycle 
–  no datapath resource can be used more than once per

 instruction, so some must be duplicated (e.g., separate
 Instruction Memory and Data Memory, several adders) 

–  multiplexors (mux) needed at the input of shared elements with
 control lines to do the selection 

–  write signals to control writing to the Register File and Data
 Memory 

•  Cycle time is determined by length of the longest path 



3 

UTCS 352, Lecture 11          5 

Simplified Datapath  
Fetch, R, and Memory Access Portions 

MemtoReg 

Read 
Address 

Instruction 

Instruction 
Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

File 

Read 
 Data 1 

Read 
 Data 2 

ALU 

ovf 
zero 

ALU control RegWrite 

Data 
Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 
Sign 

Extend 16 32 

ALUSrc 

More Datapath with Multiplexors 

UTCS 352, Lecture 11          6 



4 

What Do We Control and How? 

UTCS 352, Lecture 11          7 

The Main Control Unit 

•  Control signals derived from instruction 

0 rs rt rd shamt funct 
31:26 5:0 25:21 20:16 15:11 10:6 

35 or 43 rs rt address 
31:26 25:21 20:16 15:0 

4 rs rt address 
31:26 25:21 20:16 15:0 

R-type 

Load/ 
Store 

Branch 

opcode always 
read 

read, 
except 

for load 

write for 
R-type and 

load 

sign-extend 
and add 

         8 UTCS 352, Lecture 11 



5 

How do we convert instruction bits to  
ALU control bits? 

Example:  add $8, $17, $18 

ALU 
Control 

 0000  AND 
 0001  OR 
 0010  add 

 0110  subtract 
 0111  set-on-less-than 

 1100  NOR 

Control 
ALU Op 0 

ALU Op 1 

MemRead 
Etc. 

    000000  10001  10010   01000   00000  100000 

  op       rs     rt     rd    shamt   funct 

UTCS 352, Lecture 11          9 

ALU Active on All Instructions 

ALU Control 
 Load/Store: F = add 
 Branch: F = subtract 
 R-type: F depends on funct field          10 



6 

ALU Control 

2-bit ALUOp derived from opcode 
–  Combinational logic derives ALU control 

4-bit ALU control derived from opcode 

opcode ALUOp Operation funct ALU function ALU control 
lw 00 load word XXXXXX add 0010 

sw 00 store word XXXXXX add 0010 
beq 01 branch equal XXXXXX subtract 0110 
R-type 10 add 100000 add 0010 

subtract 100010 subtract 0110 
AND 100100 AND 0000 
OR 100101 OR 0001 

set-on-less-than 101010 set-on-less-than 0111 

         11 UTCS 352, Lecture 11 

Datapath With Control 

UTCS 352, Lecture 11          12 



7 

R-Type Instruction 

         13 UTCS 352, Lecture 11 

Datapath With Jumps Added 

         14 UTCS 352, Lecture 11 



8 

Performance Issues 

•  Longest delay determines clock period 
–  Critical path: load instruction 
–  Instruction memory → register file → ALU → data

 memory → register file 
•  Not feasible to vary period based on instruction 
•  Violates design principle 

–  Making the common case fast 
•  Motivates multiple (5) steps 

UTCS 352, Lecture 11          15 

UTCS 352, Lecture 11          16 

Single Cycle vs. Multiple Cycle Timing 

Clk Cycle 1 

Multiple Cycle Implementation: 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 
lw sw 

IFetch 
R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 

multicycle clock
 slower than 1/5th of
 single cycle clock
 due to state register 
 overhead 



9 

UTCS 352, Lecture 11          17 

MIPS Multicycle Datapath  
logical division of states 

Read 
Address 

Instruction 
Memory 

Add 

PC
 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

File 

Read 
 Data 1 

Read 
 Data 2 

16 32 

ALU 

Shift 
left 2 

Add 

Data 
Memory 

Address 

Write Data 

Read 
Data IF

et
ch

/D
ec

 

D
ec

/E
xe

c 

Ex
ec

/M
em

 

M
em

/W
B

 

IF:IFetch ID:Dec EX:Execute MEM: 
MemAccess 

WB: 
WriteBack 

System Clock 

Sign 
Extend 

UTCS 352, Lecture 11          18 

How Can We Make it Faster? 

•  Split the multiple instruction cycle into smaller and 
smaller steps 
–  Point of diminishing returns where as much time is spent 

loading the state registers as doing the work 
•  Start fetching and executing the next instruction 

before the current one has completed 
–  Pipelining – (all?) modern processors are pipelined for 

performance 
–  Remember the performance equation:                                              

     CPU time = IC * CPI * CCT 

•  Fetch & execute more than one instruction at a time! 
–  Superscalar processing – stay tuned 



10 

UTCS 352, Lecture 11          19 

Pipelining is Natural! 

Laundry Example 
• Ann, Brian, Cathy, Dave  

each have one load of clothes  
to wash, dry, and fold 

• Washer takes 30 minutes 

• Dryer takes 30 minutes 

•  “Folder” takes 30 minutes 

•  “Stasher” takes 30 minutes 
to put clothes into drawers 

A B C D 

UTCS 352, Lecture 11          20 

Sequential Laundry 

•  Sequential laundry takes 8 hours for 4 loads 
•  If they learned pipelining, how long would  laundry take?  

30 T 
a 
s 
k 

O 
r 
d 
e 
r 

B 

C 
D 

A Time 
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

6 PM 7 8 9 10 11 12 1 2 AM 



11 

UTCS 352, Lecture 11          21 

Pipelined Laundry: Start work ASAP 

• Pipelined laundry takes 3.5 hours for 4 loads!  

T 
a 
s 
k 

O 
r 
d 
e 
r 

12 2 AM 6 PM 7 8 9 10 11 1 

Time 

B 
C 
D 

A 
30 30 30 30 30 30 30 

UTCS 352, Lecture 11          22 

Pipelining Lessons 

•  Pipelining doesn’t help latency
 of single task, it helps
 throughput of entire
 workload 

•  Multiple tasks operating
 simultaneously using
 different resources 

•  Potential speedup = Number
 pipe stages 

•  Pipeline rate limited by
 slowest pipeline stage 

•  Unbalanced lengths of pipe
 stages reduces speedup 

•  Time to “fill” pipeline and time
 to “drain” it reduces speedup 

•  Stall for Dependences 

6 PM 7 8 9 
Time 

B 
C 
D 

A 
30 30 30 30 30 30 30 

T 
a 
s 
k 

O 
r 
d 
e 
r 



12 

UTCS 352, Lecture 11          23 

A Pipelined MIPS Processor 

•  Start the next instruction before the current one has completed 
–  improves throughput - total amount of work done in a given time 
–  instruction latency (execution time, delay time, response time - time

 from the start of an instruction to its completion) is not reduced 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

IFetch Dec Exec Mem WB lw 

Cycle 7 Cycle 6 Cycle 8 

sw IFetch Dec Exec Mem WB 

R-type IFetch Dec Exec Mem WB 

•  clock cycle (pipeline stage time) is limited by the slowest 
stage 

•  for some instructions, some stages are wasted cycles 

UTCS 352, Lecture 11          24 

Single Cycle, Multiple Cycle, vs. Pipeline 

Multiple Cycle Implementation: 

Clk 

Cycle 1 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 
lw sw 

IFetch 
R-type 

lw IFetch Dec Exec Mem WB 

Pipeline Implementation: 

IFetch Dec Exec Mem WB sw 

IFetch Dec Exec Mem WB R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 



13 

Read 
Address 

Instruction 
Memory 

Add 

PC
 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

File 

Read 
 Data 1 

Read 
 Data 2 

16 32 

ALU 

Shift 
left 2 

Add 

Data 
Memory 

Address 

Write Data 

Read 
Data IF

et
ch

/D
ec

 

D
ec

/E
xe

c 

Ex
ec

/M
em

 

M
em

/W
B

 

IF:IFetch ID:Dec EX:Execute MEM: 
MemAccess 

WB: 
WriteBack 

System Clock 

Sign 
Extend 

         25 

MIPS Pipeline Datapath Modifications 
State registers between each pipeline stage to isolate them 

UTCS 352, Lecture 11          26 

Pipelining the MIPS ISA 

•  What makes it easy 
–  all instructions are the same length (32 bits) 

•  can fetch in the 1st stage and decode in the 2nd stage 
–  few instruction formats (three) with symmetry across formats 

•  can begin reading register file in 2nd stage 
–  memory operations can occur only in loads and stores 

•  can use the execute stage to calculate memory addresses 
–  each MIPS instruction writes at most one result (i.e., changes

 the machine state) and does so near the end of the pipeline
 (MEM and WB) 

•  What makes it hard 
–  structural hazards:   what if we had only one memory? 
–  control hazards:  what about branches? 
–  data hazards:  what if an instruction’s input operands depend on

 the output of a previous instruction? 



14 

How Much Performance? 

•  If all stages are balanced (all take the same time) 
•  Ideal Speedup = Instructions/Number of Stages 
•  Why it is never ideal: 

–  Stages are never perfectly balanced 
–  Pipeline fill and drain 
–  Breaking down of instructions into stages adds time to

 each stage: 
•  Time between stagespipelined > Time between

 instructionsnonpipelined 
•  Speedup due to increased throughput 

–  Latency (time for each instruction) does not decrease 

UTCS 352, Lecture 11          27 

UTCS 352, Lecture 11          28 

Summary 

•  Simplistic version of pipelining 
–  Pipelining improves instruction throughput 
–  Longest stage determines latency 

•  Next Time 
–  Realistic version of Pipelining 

•  Hazards & forwarding 
–  Homework 4 is due Thursday March 4, 2010 

•  Reading: P&H 4.7-10 


