
1

UTCS 352, Lecture 13 1

Lecture 13: Pipelined Processor

•  Last time
–  Pipelining in the real world
–  Data hazards

•  Today
–  Take QUIZ 9 over P&H 4.8-9, before 11:59pm today
–  Homework 4 due today
–  Homework 5 due Thursday March 11, 2010
–  Control hazards
–  Pipelining in other worlds

UTCS 352, Lecture 13 2

One Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LU

IM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

Can fix data
 hazard by

 waiting – stall
 – but impacts

 CPI

2

UTCS 352, Lecture 13 3

Another Way to “Fix” a Data Hazard

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

Fix data hazards
 by forwarding
 results as soon

 as they are
 available to

 where they are
 needed

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

UTCS 352, Lecture 13 4

Control Hazards

3

UTCS 352, Lecture 13 5

Control Hazards

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

UTCS 352, Lecture 13 6

stall

stall

stall

One Way to “Fix” a Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

A
LU

IM Reg DM Reg

lw

A
LU

IM Reg DM Reg

A
LU

 Inst 3
IM Reg DM

Fix branch
 hazard by

 waiting – stall 3
 stages! –

 degrades CPI

4

UTCS 352, Lecture 13 7

Branch Delay Slots

•  Since we need to have a dead
 cycle anyway, let’s put a
 useful instruction there

•  Advantage:
–  Do more useful work
–  Potentially get rid of all stalls

•  Disadvantage:
–  Exposes microarchitecture to

 ISA
–  Deeper pipelines require more

 delay slots

ADD R2,R3,R4
BNEZ R5,_loop
NOP

BNEZ R5,_loop
ADD R2,R3,R4

UTCS 352, Lecture 13 8

Speculate
Correctly: do nothing (not quite)

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

DM beq

A
LU

IM Reg Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

5

beq

A
LU

IM Reg DM Reg

UTCS 352, Lecture 13 9

Speculate
Incorrectly: squash speculative instructions

I
n
s
t
r.

O
r
d
e
r

lw

Correct Target

Inst 3

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

A
LU

IM Reg DM Reg

Delay speculative instruction write back
& flush on mispredict

UTCS 352, Lecture 13 10

6

UTCS 352, Lecture 13 11

Branching Structures

•  Predict not taken works well for “top of the loop”
 branching structures Loop: beq $1,$2,Out

 1nd loop instr
 .
 .
 .
 last loop instr
 j Loop
Out: fall out instr

–  But such loops have jumps at the
bottom of the loop to return to
the top of the loop – and incur
the jump stall overhead

•  Predict not taken doesn’t work well for “bottom of
the loop” branching structures Loop: 1st loop instr

 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

UTCS 352, Lecture 13 12

Static Branch Prediction, con’t

•  Resolve branch hazards by assuming a given outcome
 and proceeding

  Predict not-taken - easiest
  We have already fetched the fall-through instruction
  We don’t need to compute a target address

  Predict taken – predict branches will always be taken
  Predict taken always incurs one stall cycle (if branch

destination hardware has been moved to the ID stage)
  Is there a way to “cache” the address of the branch target

instruction ??
  As the branch penalty increases (for deeper

pipelines), a simple static prediction scheme will hurt
performance.

7

 13

Dynamic Branch Prediction

•  History: use the past branch behavior to predict
 the future
–  Last time
–  Last two times (why is this useful?)

•  Past history of last several branches
–  Why is this useful?

for (i=0; i<1000; i++) { 
for (j=0; j<1000; j++) { 
 if (j == 0) { 
 foo; 
 } 

 bar;
 } 
}

UTCS 352, Lecture 13

Example : 2-Bit Predictor

•  Only change prediction on two successive
 mispredictions

UTCS 352, Lecture 13 14

8

UTCS 352, Lecture 13 15

Branch Target Buffer

•  The predictor predicts when a branch is taken, but
 does not tell where its taken to!

•  A branch target buffer (BTB) in the IF stage can
 cache the branch target address
–  The branch predictor controls whether the BTB address or

 PC+4 is loaded back into the PC

•  If the prediction is correct, stalls can be avoided no
matter which direction they go

Read
Address

Instruction
Memory

PC
 0

BTB

+4

UTCS 352, Lecture 13 16

Summary of Basic Prediction

•  Conventional architectures use branch prediction to solve the “fetch”
 problem
•  Direction Prediction – branch taken/not taken?
•  Target Prediction – address of next instruction?

•  Branch predictors use the past history of branches to predict future
 branches
•  Current branch’s direction can depend on the past history of this

 branch’s behavior (local)

•  Current branch’s direction can depend on the direction of the last n
 branches that were encountered before this branch (global)
•  Suppose pattern is TNNTNNTNN.... how to predict this?

9

Branch Prediction Performance Analysis

•  How important is branch prediction?
–  For IA32, about 8-16% of instructions are branches in

 SPECcpu2000 (C/C++), Java DaCapo, SPECjvm, but Java
 has more indirect branches

–  or in other words: every ~8th instruction is a branch!
•  Assume balanced pipeline depth of 5, 1 cycle/stage

–  Perfect branch prediction, I & D cache, forwarding, etc.
•  CPI = 1

–  No branch prediction: stall of 3,
•  CPI = 1.375 = 11/8
 8 instructions take 11 cycles to execute on average

–  4 cycles to fill pipeline
–  4 cycles when 1 instruction completes per cycle
–  3 stall cycles at branch

UTCS 352, Lecture 13 17

Branch Prediction Performance Analysis

•  How important is branch prediction?
–  For IA32, about 8-16% of instructions are branches in

 SPECcpu2000 (C/C++), Java DaCapo, SPECjvm, but Java
 has more indirect branches

–  or in other words: every ~8th instruction is a branch!
•  Assume balanced pipeline depth of 5, 1 cycle/stage

–  Perfect branch prediction, I & D cache, forwarding, etc.
•  CPI = 1

–  No branch prediction: stall of 3,
•  CPI =

UTCS 352, Lecture 13 18

10

Branch Prediction Performance Analysis

•  Assume 5 stage pipeline
–  Perfect branch prediction, I & D cache, forwarding, etc.

•  CPI = 1
–  No branch prediction: stall of 3

•  CPI = 1.375 = 11/8
–  Branch prediction with 80% accuracy

•  a miss prediction every ?? instructions
•  CPI =

UTCS 352, Lecture 13 19

Branch Prediction Performance Analysis

•  Assume 5 stage pipeline
–  Perfect branch prediction, I & D cache, forwarding, etc.

•  CPI = 1
–  No branch prediction: stall of 3

•  CPI = 1.375 = 11/8
–  Branch prediction with 80% accuracy

•  a miss prediction every ~42 instructions 1/(.12 * .8)
•  CPI = 1.11 = 47/42

–  4 cycles to ramp up
–  38 cycles executing one instruction per cycle
–  ~5 cycles to flush miss predicted instructions

»  Notice miss prediction penalty higher than stalling

UTCS 352, Lecture 13 20

11

Branch Prediction Performance Analysis

•  Branch Prediction crucial to modern processors!
•  Flush cost is a function of

–  Pipeline depth
–  Stages between prediction & resolution
–  time to clear pipeline (number of squashed instructions)
–  time to fetch correct instruction (may miss in I-cache)
–  time to ramp up pipeline

UTCS 352, Lecture 13 21

UTCS 352, Lecture 13 22

Control Hazards Summary

•  Three approaches
–  Stall until new PC is known
–  Speculate that branch goes a particular way

•  If guess is right, great!
•  If guess is wrong, kill off speculated work

–  Delay slot

•  Delay slot is only approach visible to programmer!
–  Unfortunately, MIPS picked this approach!

12

UTCS 352, Lecture 13 23

Other Ways to Speed up the Pipeline?

•  Pipeline too long ⇒ more ALUs (exploit ILP)
•  WAR/WAW hazards ⇒ register renaming

•  Undetermined dependencies at compile time ⇒
 dynamic scheduling
–  Object code compatibility
–  Simplify compiler

•  Too many branches ⇒ better branch prediction
–  Or use predication to eliminate branches

•  Unknown dependencies (control/data) ⇒ speculate
•  Explicitly parallel architectures

ADD R1,R2,R3
SUB R1,R4,R5

ADD R1,R2,R3
SUB R1’,R4,R5

⇒

UTCS 352, Lecture 13 24

Other Pipeline Structures Are Possible

•  What about the (slow) multiply operation?
–  Make the clock twice as slow or …
–  let it take two cycles (since it doesn’t use the DM stage)

A
LU

IM Reg DM Reg

MUL

A
LU

IM Reg DM1 Reg DM2

•  What if the data memory access is twice as slow as
the instruction memory?
–  make the clock twice as slow or …
–  let data memory access take two cycles (and keep the

same clock rate)

13

UTCS 352, Lecture 13

 25

Sample Pipeline Alternatives

•  ARM7

•  StrongARM-1

•  XScale A
LU

IM1 IM2 DM1 Reg
DM2

IM Reg EX

PC update
IM access

decode
reg
 access

ALU op
DM access
shift/rotate
commit result
 (write back)

A
LU

IM Reg DM Reg

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write

UTCS 352, Lecture 13 26

Pipelining

•  All modern day processors use pipelining
•  Pipelining doesn’t help latency of single instruction,

 it helps throughput of all instructions
•  Potential speedup: a CPI of 1 and fast a CC
•  Pipeline rate limited by slowest pipeline stage

–  Unbalanced pipe stages makes for inefficiencies
–  The time to “fill” pipeline and time to “drain” it can impact

 speedup for deep pipelines and short code runs

•  Must detect and resolve hazards
–  Stalling negatively affects CPI (makes CPI less than the

 ideal of 1)

14

UTCS 352, Lecture 13 27

Where Are We?

Pipelined in-order processor
Simple branch prediction
 Instruction/data caches (on –chip)

DEC Alpha 21064
Introduced in 1992

Out-of-order instruction execution
“Superscalar”
Sophisticated branch prediction

DEC Alpha 21264
Introduced 1998

UTCS 352, Lecture 13 28

Summary

•  The real world of pipelining
–  Just stall
–  Forwarding for register and memory hazards
–  Dynamic branch prediction for control hazards

•  Next Time
–  Multi-issue, Superscalar,
–  Homework 5 due Thursday March 11, 2010

•  Reading: P&H 4.10-14

