
UTCS 352, Lecture 14          1 

Lecture 14: Instruction Level Parallelism 

•  Last time 
–  Pipelining in the real world 

–  Control hazards 
–  Other pipelines 

•  Today 
–  Take QUIZ 10 over P&H 4.10-15, before 11:59pm today 
–  Homework 5 due Thursday March 11, 2010 
–  Instruction level parallelism 

–  Multi-issue (Superscalar) and  out-of-order execution 



UTCS 352, Lecture 14          2 

Where Are We? 

Pipelined in-order processor 
Simple branch prediction 
 Instruction/data caches (on –chip) 

DEC Alpha 21064 
Introduced in 1992 

Out-of-order instruction execution 
“Superscalar” 
Sophisticated branch prediction 

DEC Alpha 21264 
Introduced 1998 



UTCS 352, Lecture 14          3 

Dynamic Multiple Issue (Superscalar)  
No instruction reordering, Choose 0, 1 … N 

Register File 

Instruction Memory 

Instruction Buffer Hazard 
Detect 



MIPS with Static Dual Issue 

•  Two-issue packets 
–  One ALU/branch instruction 
–  One load/store instruction 
–  64-bit aligned 

•  ALU/branch, then load/store 
•  Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 

UTCS 352, Lecture 14          4 



Hazards in Dual-Issue MIPS 
•  More instructions executing in parallel 
•  EX data hazard 

–  Forwarding avoided stalls with single-issue 
–  Now can’t use ALU result in load/store in same 

packet 
• add  $t0, $s0, $s1 
load $s2, 0($t0) 

•  Split into two packets, effectively a stall 

•  Load-use hazard 
–  Still one cycle use latency, but now two 

instructions 
•  More aggressive scheduling required 
UTCS 352, Lecture 14          5 



What Hardware Do We Need? 

UTCS 352, Lecture 14          6 



What Hardware Do We Need? 

•  Wider fetch i-cache bandwidth 
•  Multiported register file 
•  More ALUs 
•  Restrictions on issue of load/stores

 because N ports to the data cache
 slows it down too much 

UTCS 352, Lecture 14          7 



UTCS 352, Lecture 14          8 

Multiple Issue (Details) 

•  Dependencies and structural hazards
 checked at run-time 

•  Can run existing binaries 
–  Recompile for performance, not correctness 
–  Example - Pentium 

•  More complex issue logic 
–  Swizzle next N instructions into position 
–  Check dependencies and resource needs 
–  Issue M <= N instructions that can execute in

 parallel 



UTCS 352, Lecture 14          9 

Example Multiple Issue 

LOOP:  LD  F0, 0(R1)        // a[i]         1 
 LD  F2, 0(R2)  // b[i]    2 
 MULTD  F8, F0, F2              // a[i] * b[i]       4 (stall)

  ADDD  F12, F8, F16          // + c               5 
 SD  F12, 0(R3)              // d[i]    6  
 ADDI  R1, R1, 4       
 ADDI  R2, R2, 4                                    7 
 ADDI  R3, R3, 4       
 ADDI  R4, R4, 1  // increment I   8 
 SLT  R5, R4, R6  // i<n-1    9 
 BNEQ  R5, R0, LOOP      10   

Issue rules: at most 1 load/store, at most 1 floating op 

Latency:  load=1, int=1, float-mult = 2, float-add = 1 

cycle

Old CPI = 12/11 = 1.09
New CPI = 10/11 = 0.91



UTCS 352, Lecture 14          10 

Rescheduled for Multiple Issue 

LOOP:  LD    F0, 0(R1)       // a[i]         1 
 ADDI  R1, R1, 4       
 LD  F2, 0(R2)  // b[i]    2 
 ADDI  R2, R2, 4  
 MULTD  F8, F0, F2  // a[i] * b[i]   4

  ADDI   R4, R4, 1        // increment I    
 ADDD  F12, F8, F16  // + c    5 
 SLT  R5, R4, R6  // i<n-1     
 SD  F12, 0(R3)  // d[i]    6

  ADDI   R3, R3, 4       
 BNEQ  R5, R0, LOOP      7   

Issue rules: at most 1 LD/ST, at most 1 floating op 

Latency:  LD - 1, int-1, F*-2, F+-1 

cycle

Old CPI = 0.91
New CPI = 7/11 = 0.64

Given a two way issue processor, what’s the best possible  CPI?    IPC? 



UTCS 352, Lecture 14          11 

The Problem with Static Scheduling 

•  In-order execution 
–  an unexpected long latency

 blocks ready instructions
 from executing 

–  binaries need to be
 rescheduled for each new
 implementation 

–  small number of named
 registers becomes a
 bottleneck 

LW  R1, C    //miss 50 cycles 
LW  R2, D   
MUL  R3, R1, R2 
SW  R3, C 
LW  R4, B    //ready 
ADD  R5, R4, R9 
SW  R5, A 
LW  R6, F 
LW  R7, G 
ADD  R8, R6, R7 
SW  R8, E 



UTCS 352, Lecture 14          12 

Dynamic Scheduling 

•  Determine execution order of instructions at run
 time 

•  Schedule with knowledge of run-time variable
 latency 
–  cache misses 

•  Compatibility advantages 
–  avoid need to recompile old binaries 
–  avoid bottleneck of small named register sets 

•  but still need to deal with spills 
•  Significant hardware complexity 



UTCS 352, Lecture 14          13 

Example 

•  10 cycle data memory (cache) miss
•  3 cycle MUL latency
•  2 cycle add latency

Top = without dynamic scheduling, Bottom = with dynamic scheduling 



UTCS 352, Lecture 14          14 

Dynamic Scheduling 
Basic Concept 

LW  R1,A 
LW  R2,B 
ADD  R3,R1,R2 
SW  R3,C 
LW  R4,8(A) 
LW  R5,8(B) 
ADD  R6,R4,R5 
SW  R6,8(C) 
LW  R7,16(A) 
LW  R8,16(B) 
ADD  R9,R7,R8 
SW  R9,16(C) 
LW  R10,24(A) 
LW  R11,24(B) 

Sequential 
Instruction Stream 

ADD  R3,R1,R2 
SW  R3,C 
ADD  R6,R4,R5 
SW  R6,8(C) 
LW  R7,16(A) 
LW  R8,16(B) 
ADD  R9,R7,R8 
SW  R9,16(C) 

Window of 
Waiting Instructions 

on operands & resources 

Issue Logic 

Register File 

Execution 
Resources 

LW  R4,8(A) 
LW  R5,8(B) 

Instructions waiting 
to commit 

PC 



UTCS 352, Lecture 14          15 

Implementation I - Register Scoreboard 

•  Tracks register writes 
–  busy = pending write 

•  Detect hazards for
 scheduler 

Register File 

R0 1 
R1 0 
R2 1 
R3 0 
R4 0 
R5 0 
R6 0 

valid bit 
(= 0 if write “pending”) 

R7 0 

ADD R3,R1,R2 
•  Wait until R1 is valid 
•  Mark R3 valid when complete�

SUB R4,R0,R3 
•  Wait for R3

What about:
LD  R3,(0)R7 
ADD R4,R3,R5 
LD  R3,(4)R7 



UTCS 352, Lecture 14          16 

Implementing A Simple Instruction Window 

ADD R3 
dst 

R1 0 

src1 

reg rdy 
R2 1 

src2 

reg rdy 

SW R3 0 R8 1 

ADD R6 R4 0 R5 0 

SW R6 0 R8 1 

LW R7 R9 1 1 

result 
reg 

R0 1 
R1 0 
R2 1 
R3 0 
R4 0 
R5 0 
R6 0 
R7 0 

Result sequence: R4, R7, R5, R1, R6, R3 Often called reservation stations 
reg = name, value 

ADD  R3,R1,R2 
SW  R3,0(R8) 
ADD  R6,R4,R5 
SW  R6,8(R8) 
LW  R7,16(R9) 

4

3

1

2

5



UTCS 352, Lecture 14          17 

Instruction Window Policies 

•  Add an instruction to the
 window 
–  only when dest register is

 not busy 
–  mark destination register

 busy 
–  check status of source

 registers and set ready
 bits 

•  When each result is generated 
–  compare dest register

 field to all waiting
 instruction source
 register fields 

–  update ready bits 
–  mark dest register not

 busy 

•  Issue an instruction when 
–  execution resource is

 available 
–  all source operands are

 ready 
•  Result 

–  issues instructions out of
 order as soon as source
 registers are available 

–  allows only one operation in
 the window per
 destination register 



UTCS 352, Lecture 14          18 

Register Renaming (1) 

LW  R1, 0(R4) 
ADD  R2, R1, R3 
LW  R1, 4(R4) 
ADD  R5, R1, R3 

Can’t add 3 to the window since R1 is already busy 

Need 2 R1s! 

What about this sequence? 



UTCS 352, Lecture 14          19 

Register Renaming (2) 

R1 0 P5 
R2 0 P2 
R3 1 P1 
R4 1 P7 
R5 1 P6 

Add a tag field to each register 
 - translates from virtual to  
   physical register name 

P1 A0 
P2 51 
P3 C1 
P4 01 
P5 E0 
P6 F1 
P7 31 
P8 20 

Rename Table

Virtual Registers

Physical Registers

LW  R1, 0(R4) 
ADD  R2, R1, R3 

value

In window

LW  R1, 4(R4) 
Next instruction



UTCS 352, Lecture 14          20 

Register Renaming (3) 

LW P5 P7 1 1 S1 

ADD P2 P5 0 P1 1 S2 

LW P4 P7 1 1 S3 

ADD P6 P4 0 P1 1 S4 

Add instruction to window even if dest register is busy 

When adding instruction to window 
 read data of non-busy source registers and retain 
 read tags of busy source registers and retain 
 write tag of destination register with slot number 

When result is generated: 
compare tag of result to not
-ready source fields 
grab data if match 

R1 0 P5 
R2 0 P2 
R3 1 P1 
R4 1 P7 
R5 1 P6 

Before

R1 0 P4 
R2 0 P2 
R3 1 P1 
R4 1 P7 
R5 0 P6 

After

LW  R1,0(R4) 
ADD  R2,R1,R3 
LW  R1,4(R4) 
ADD  R5,R1,R3 



Power Efficiency 

•  Complexity of dynamic scheduling and speculations 
requires power 

•  Multiple simpler cores may be better 

Microprocessor Year Clock Rate Pipeline 
Stages 

Issue 
width 

Out-of-order/ 
Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

UltraSparc III 2003 1950MHz 14 4 No 1 90W 

UltraSparc T1 2005 1200MHz 6 1 No 8 70W 

UTCS 352, Lecture 14          21 



UTCS 352, Lecture 14          22 

Summary 

•  Summary 
–  Pipelining is simple, but a correct high performance

 implementation is complex 
–  Dynamic multiple issue 
–  Static multiple issue (VLIW) 
–  Out-of-order execution – dependencies, renaming, etc. 

•  Next Time 
–  Caches  (new topic!) 
–  Homework 5 due Thursday March 11, 2010 
–  Read: P&H 5.1–5 


