
1

UTCS 352, Lecture 15 1

Lecture 15: Cache Memories

•  Last Time
–  Exploiting Instruction Level Parallelism
–  Multiple issue processors
–  Out-of-order execution

•  Today
–  Take QUIZ 11 over P&H 5.1-3, 5.5, before 11:59pm today
–  Read 5.7-10 for 3/23
–  Homework 6 due Thursday March 25, 2010
–  The Memory Hierarchy
–  Why and how caches work

UTCS 352, Lecture 15 2

Cache Memory Theory

•  Small fast memory + big
 slow memory

•  Looks like a big fast
 memory

MC

Small
Fast

MM

Big
Slow

Big
Fast

2

UTCS 352, Lecture 15 3

Bookshelf analogy

•  Lots of books on shelves
•  A few books on my desk
•  One book I’m reading at this moment

•  Shelves = main memory
•  Desk = cache

•  Book = block
•  Page in book = memory location

UTCS 352, Lecture 15 4

The Memory Hierarchy

Registers

Level 1 Cache

1 cyc 3-10 words/cycle compiler managed
 < 1KB

1-3cy 1-2 words/cycle hardware managed
 32KB -1MB

5-10cy 1 word/cycle hardware managed
 1MB - 4MB

30-100cy 0.5 words/cycle OS managed
 64MB - 4GB

106-107cy 0.01 words/cycle OS managed
 4GB+

Level 2 Cache

CPU
Chip

DRAM

Chips

Mechanical

Disk

Tape

Latency Bandwidth

3

UTCS 352, Lecture 15 5

Where Does the Memory Hierarchy Fit In?

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 PC PC

UTCS 352, Lecture 15 6

Typical Cache Organization

Alpha 21264: 64KB I-Cache
 64KB D-Cache
 > 1MB L2 Cache

Processor
Core

D
-C

ac
he

I-Cache

L2 Bus Interface

L2 Cache

MAIN MEMORY

4

UTCS 352, Lecture 15 7

Memory System Overview

•  Memory Hierarchies
–  Latency/Bandwidth/Locality
–  Caches

•  Principles - why does it
 work

•  Cache organization
•  Cache performance
•  Types of misses (the 3 Cs)

–  Main memory organization
•  DRAM vs. SRAM
•  Bank organization
•  Tracking multiple

 references
–  Trends in memory system

 design

•  Logical Organization
–  Name spaces
–  Protection and sharing
–  Resource management

•  virtual memory, paging,
 and swapping

–  Segmentation

UTCS 352, Lecture 15 8

Why does it work?
Program Locality of Reference

•  Spatial Locality
–  likely to reference data

 near recent references

•  Temporal Locality
–  likely to reference the

 same data that was
 referenced recently

P

Location

Code

Stack

Array P

t

5

UTCS 352, Lecture 15 9

Program Behavior

•  Locality depends on type of program
•  Many programs ‘behave’ well

–  small loop operating on data on stack
•  Some programs don’t

–  frequent calls to nearly random subroutines
–  traversal of large, sparse data set

•  essentially random data references with no reuse
•  Most programs exhibit some degree of locality

UTCS 352, Lecture 15 10

Example

MC

Small
Fast

MM

Big
Slow

MM

Big
Slow

What is the average memory access time?

•  70% of references hit in cache
•  Cache hits take one cycle
•  Main memory references take 25 cycles

AMAT = LatencyHit + P(miss)*LatencyMiss

6

UTCS 352, Lecture 15 11

Impact of Hit Rate

Average Access Time

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Hit Rate

UTCS 352, Lecture 15 12

Two kinds of “fast & small” memory

•  Programmer manages it manually
–  Sometimes called a “scratchpad” memory
–  CELL processor uses this approach

•  Hardware manages it automatically
–  Invisible to programmer
–  Referred to as a “cache”
–  Most CPUs use this approach
–  Easy for programmers; Hard for hardware

7

UTCS 352, Lecture 15 13

How does hardware keep track of what’s in
the fast memory (cache)?

•  How does it know what’s in the cache ‘now’?
•  How does it decide what to add to the cache?
•  How does it decide what to remove from the

cache?
•  How does it keep the cache consistent with the

off-chip memory?

UTCS 352, Lecture 15 14

Cache Definitions

•  Cache block (= cache line)
•  Miss rate

–  Fraction of references not
 in cache

•  Miss penalty
–  cycles to service a miss

•  Index
–  Where to look, i.e., which

 lines could it be in?
•  Tag

–  Is this cache line this
 address?

•  Offset
–  Which word in the line?

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0

8

UTCS 352, Lecture 15 15

Cache Organization

27

Address

15
42
86

95
11
75
33

Data

Valid
bits

90
12
74
35

99
13
73
31

96
14
72
37

•  Where does a block get placed?
•  How do we find it?
•  Which one do we replace when we bring in a new one?
•  What happens on a write?

UTCS 352, Lecture 15 16

Cache Organization

27

Address

15
42
86

95
11
75
33

Data

Valid
bits

90
12
74
35

99
13
73
31

96
14
72
37

•  What is the purpose of a valid bit?

9

UTCS 352, Lecture 15 17

Where Does a Block Go in the Cache?

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Where do we put block 12?

Cache

Main Memory

•  Word = 4 bytes
•  Block = 1 word

UTCS 352, Lecture 15 18

Direct Mapped

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)

10

UTCS 352, Lecture 15 19

Fully Associative

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to any cache location

Cache location = any

UTCS 352, Lecture 15 20

Set Associative

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3
2-way set associative = 2 blocks in set
This example: 4 sets

11

UTCS 352, Lecture 15 21

More Cache Definitions

Miss type
Compulsory: first reference
Capacity: between two

 accesses to a single
 location, the program
 accesses more than a cache
 full of data

Conflict: two accesses to same
 location, but an intervening
 access caused it to be
 replaced, and the program
 has not accessed a cache
 full of data

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0

UTCS 352, Lecture 15 22

Taking advantage of Spatial Locality

•  Instead of each block in cache being just 1 word,
what if we made it 4 words?

•  When we get our 1 word instruction or 1 word of
data from memory to put in the cache, get the
next 3 as well, because they are likely to be used
soon!

•  Need to add a way to choose which of the 4 words
in the block we want when we go to cache… called
block offset.

12

UTCS 352, Lecture 15 23

How do we use memory address
to find block in the cache?

UTCS 352, Lecture 15 24

How Do We Find a Block in The Cache?

•  Our Example:
–  Main memory address space = 32 bits (= 4GBytes)
–  Block size = 4 words = 16 bytes
–  Cache capacity = 8 blocks = 128 bytes

• 

•  index ⇒ which set
•  tag ⇒ which data/instruction in block
•  block offset ⇒ which word in block
•  # tag/index bits determine the associativity
•  tag/index bits can come from anywhere in block address

32 bit Address

block offset

4 bits

tag index

block address

28 bits

13

UTCS 352, Lecture 15 25

Finding a Block: Direct-Mapped

S
Entries

Tag Index
Address

=

Hit Data

With cache capacity = 8 blocks

3

25

UTCS 352, Lecture 15 26

Cache Organization

27

Address

15
42
86

95
11
75
33

Data

Valid
bits

90
12
74
35

99
13
73
31

96
14
72
37

•  Where does a block get placed? Answered!
•  How do we find it? Answered for Direct Map!
•  Which one do we replace when we bring in a new one?
•  What happens on a write?

14

UTCS 352, Lecture 15 27

Do something fun

•  Next Time
–  Homework 6 is due March 25,

2010
–  Reading: P&H 5.7-10

Have a wonderful and relaxing
Spring Break!

