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Lecture 15: Cache Memories 

•  Last Time 
–  Exploiting Instruction Level Parallelism 
–  Multiple issue processors 
–  Out-of-order execution 

•  Today 
–  Take QUIZ 11 over P&H 5.1-3, 5.5, before 11:59pm today 
–  Read 5.7-10 for 3/23 
–  Homework 6 due Thursday March 25, 2010 
–  The Memory Hierarchy 
–  Why and how caches work 
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Cache Memory Theory 

•  Small fast memory + big
 slow memory 

•  Looks like a big fast
 memory 

MC 

Small 
Fast 

MM 

Big 
Slow 

Big 
Fast 



2 

UTCS 352, Lecture 15          3 

Bookshelf analogy 

•  Lots of books on shelves 
•  A few books on my desk 
•  One book I’m reading at this moment 

•  Shelves = main memory 
•  Desk = cache 

•  Book = block 
•  Page in book = memory location 
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The Memory Hierarchy 

Registers 

Level 1 Cache 

1 cyc  3-10 words/cycle  compiler managed 
 < 1KB 

1-3cy  1-2 words/cycle  hardware managed 
 32KB -1MB 

5-10cy  1 word/cycle  hardware managed 
 1MB - 4MB 

30-100cy  0.5 words/cycle  OS managed 
 64MB - 4GB 

106-107cy  0.01 words/cycle  OS managed 
 4GB+   
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Where Does the Memory Hierarchy Fit In? 
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Typical Cache Organization 

Alpha 21264: 64KB I-Cache
      64KB D-Cache
      > 1MB L2 Cache

Processor
Core

D
-C

ac
he


I-Cache

L2 Bus Interface

L2 Cache

MAIN MEMORY



4 

UTCS 352, Lecture 15          7 

Memory System Overview 

•  Memory Hierarchies 
–  Latency/Bandwidth/Locality 
–  Caches 

•  Principles - why does it
 work 

•  Cache organization 
•  Cache performance 
•  Types of misses (the 3 Cs) 

–  Main memory organization 
•  DRAM vs. SRAM 
•  Bank organization 
•  Tracking multiple

 references 
–  Trends in memory system

 design 

•  Logical Organization 
–  Name spaces 
–  Protection and sharing 
–  Resource management 

•  virtual memory, paging,
 and swapping 

–  Segmentation 
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Why does it work? 
Program Locality of Reference 

•  Spatial Locality 
–  likely to reference data

 near recent references 

•  Temporal Locality 
–  likely to reference the

 same data that was
 referenced recently 
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Program Behavior 

•  Locality depends on type of program 
•  Many programs ‘behave’ well 

–  small loop operating on data on stack 
•  Some programs don’t 

–  frequent calls to nearly random subroutines 
–  traversal of large, sparse data set 

•  essentially random data references with no reuse 
•  Most programs exhibit some degree of locality 
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Example 
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What is the average memory access time? 

•  70% of references hit in cache 
•  Cache hits take one cycle 
•  Main memory references take 25 cycles 

AMAT = LatencyHit + P(miss)*LatencyMiss 
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Impact of Hit Rate 

Average Access Time
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Two kinds of “fast & small” memory 

•  Programmer manages it manually 
–  Sometimes called a “scratchpad” memory 
–  CELL processor uses this approach 

•  Hardware manages it automatically 
–  Invisible to programmer 
–  Referred to as a “cache” 
–  Most CPUs use this approach 
–  Easy for programmers; Hard for hardware 
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How does hardware keep track of what’s in 
the fast memory (cache)? 

•  How does it know what’s in the cache ‘now’? 
•  How does it decide what to add to the cache? 
•  How does it decide what to remove from the 

cache? 
•  How does it keep the cache consistent with the 

off-chip memory? 
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Cache Definitions 

•  Cache block (= cache line) 
•  Miss rate 

–  Fraction of references not
 in cache 

•  Miss penalty 
–  cycles to service a miss 

•  Index 
–  Where to look, i.e., which

 lines could it be in? 
•  Tag  

–  Is this cache line this
 address?  

•  Offset  
–  Which word in the line? 

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0
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Cache Organization 
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•  Where does a block get placed? 
•  How do we find it? 
•  Which one do we replace when we bring in a new one? 
•  What happens on a write? 
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Cache Organization 
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•  What is the purpose of a valid bit? 
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Where Does a Block Go in the Cache? 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Where do we put block 12? 

Cache

Main Memory

•  Word = 4 bytes
•  Block = 1 word
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Direct Mapped 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)
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Fully Associative 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to any cache location

Cache location = any
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Set Associative 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3
2-way set associative = 2 blocks in set
This example: 4 sets
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More Cache Definitions 

Miss type 
Compulsory: first reference 
Capacity: between two

 accesses to a single
 location, the program
 accesses more than a cache
 full of data 

Conflict: two accesses to same
 location, but an intervening
 access caused it to be
 replaced, and the program
 has not accessed a cache
 full of data  

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0
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Taking advantage of Spatial Locality 

•  Instead of each block in cache being just 1 word, 
what if we made it 4 words?   

•  When we get our 1 word instruction or 1 word of 
data from memory to put in the cache, get the 
next 3 as well, because they are likely to be used 
soon!   

•  Need to add a way to choose which of the 4 words 
in the block we want when we go to cache…  called 
block offset. 
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How do we use memory address 
to find block in the cache? 
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How Do We Find a Block in The Cache? 

•  Our Example: 
–  Main memory address space = 32 bits (= 4GBytes) 
–  Block size = 4 words = 16 bytes 
–  Cache capacity = 8 blocks = 128 bytes 

•   

•  index ⇒ which set 
•  tag ⇒ which data/instruction in block 
•  block offset ⇒ which word in block 
•  # tag/index bits determine the associativity 
•  tag/index bits can come from anywhere in block address 

32 bit Address

block offset

4 bits

tag index

block address

28 bits
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Finding a Block: Direct-Mapped 

S  
Entries 
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Hit Data 

With cache capacity = 8 blocks 

3

25

UTCS 352, Lecture 15          26 

Cache Organization 

27 
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•  Where does a block get placed? Answered! 
•  How do we find it? Answered for Direct Map! 
•  Which one do we replace when we bring in a new one? 
•  What happens on a write? 
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Do something fun 

•  Next Time 
–  Homework 6 is due March 25, 

2010 
–  Reading: P&H 5.7-10 

Have a wonderful and relaxing 
Spring Break! 


