Lecture 23: Parallelism

*+ Administration
- Take QUIZ 17 over P&H 7.1-5, before 11:59pm today
- Project: Cache Simulator, Due April 29, 2010
* Last Time
- On chip communication
- How I/O works
+ Today
- Where do architectures exploit parallelism?
- What are the implications for programming models?
- What are the implications for communication?
- ... for caching?

UTCS 352, Lecture 23

Parallelism

+ What type of parallelism do applications have?

* How can computer architectures exploit this
parallelism?

UTCS 352, Lecture 23

Granularity of Parallelism

* Fine grain instruction level parallelism
+ Fine grain data parallelism

+ Coarse grain (data center) parallelism
Multicore parallelism

UTCS 352, Lecture 23

Fine grain instruction level parallelism

+ Fine grain instruction level parallelism
- Pipelining
- Multi-issue (dynamic scheduling & issue)
- VLIW (static issue) - Very Long Instruction Word

+ Each VLIW instruction includes up to N RISC-like
operations

+ Compiler groups up to N independent operations
* Architecture issues fixed size VLIW instructions

UTCS 352, Lecture 23

VLIW Example

Theory
LetN=4
Theoretically 4 ops/cycle
+ 8 VLIW = 32 operations
in practice

In practice,
+ Compiler cannot fill slots
* Memory stalls

- load stall -
UTCS 352, Lecture 23

Multithreading

* Performing multiple threads together
- Replicate registers, PC, efc.
- Fast switching between threads
* Fine-grain multithreading
- Switch threads after each cycle
- Interleave instruction execution
- If one thread stalls, others are executed
* Medium-grain multithreading
- Only switch on long stall (e.g., L2-cache miss)

- Simplifies hardware, but doesn't hide short stalls
such as data hazards

UTCS 352, Lecture 23 6

Simultaneous Multithreading

* In multiple-issue dynamically scheduled processor
- Schedule instructions from multiple threads

- Instructions from independent threads execute when
function units are available

- Within threads, dependencies handled by scheduling and
register renaming
+ Example: Intel Pentium-4 HT

- Two threads: duplicated registers, shared function units
and caches

UTCS 352, Lecture 23

Multithreading Examples

Issue slots —

Thread A Thread B Thread C Thread D
[| [[] L]
|| [[

Tme N]
[| | [| [| |
EEEE B =
EEEE EEm
[[|
|| L[
L]]]
Issue slots —
Coarse MT Fine MT SMT
Time N | 1 | 1 1 [|
u [1] | L T 1 1]
HEN [L] | [1 |
[1| 11] |
EEEE = ||
| || 1 b
==- | m.
HEEN
[] HEN]
] [

UTCS 352, Lecture 23

Future of Multithreading

+ Will it survive? In what form?

- Power considerations = simplified
microarchitectures
- Simpler forms of multithreading

+ Tolerating cache-miss latency
- Thread switch may be most effective

*+ Multiple simple cores might share resources more
effectively

UTCS 352, Lecture 23

Granularity of parallelism

+ Fine grain data parallelism
- Vector machines (CRAY)
- SIMD (Single instruction multiple data)
- Graphics cards

UTCS 352, Lecture 23

10

Example of Fine Grain Data Parallelism
Vectorization

Exploits parallelism in the data (not instructions!)
Fetch groups of data
Operate on them in parallel

for (i=0;i<N; i++) // original
a(i)=a(i) +b(i)/ 2
// vectorized
for (i=0; i< N; i+ vectorSize)

VR1 = VectorLoad(a, i) VR1
VR2 = VectorLoad(b, i) VR2 i Lo Lo 1o
VRI=VR1+VR2 /2 b0 T b [b@2) [b3

VectorStore (a, vectorSize, VR1)

UTCS 352, Lecture 23 "

Granularity of Parallelism

Fine grain instruction level parallelism
Fine grain data parallelism

Coarse grain (data center) parallelism
Multicore medium grain parallelism

UTCS 352, Lecture 23 12

Coarse Grain Parallel Hardware
Data Centers & the Internet

Data Center in a box
truck transport

Microsoft

L
~)

low power data center OO
processors Q ‘

Google: Cooling

UTCS 352, Lecture 23

Coarse Grain
Embarrassingly Parallel Software

* Lots and lots and lots of independent data & work
* Threads/tasks rarely or never communicate

* Map-Reduce model with Search example

Idea: divide the Internet Search index into 1000 parts, &
search each of the 1000 parts independently

Process
1. Type inaquery
2. coordinator sends a message to search many

independent data sources (e.g., 1000 different
servers)

3. A process searches, and sends a response message
back to the coordinator

4. Coordinator merges the results & returns answer
+ Works great!

14

UTCS 352, Lecture 23

Granularity of Parallelism
Too Hot, Too Cold, or Just Right?

* Fine grain parallel architectures
- Lots of instruction & data communication
+ Instructions/data all on the same chip
+ Communication latency is very low, order of cycles
* Coarse grain parallel architectures
- Lots and lots of independent data & work
- Rarely or never communicate, because communication is
very, very expensive
* Multicore is betting there are applications with
- Medium grain parallelism (i.e., threads, processes, tasks)
- Not foo much data, so it wont swamp the memory system
- Not too much communication (100 to 1000s of cycles
across chip through the memory hierarchy)

UTCS 352, Lecture 23 15

Multicore Hardware
Intel Nehalem 4-core Processor

Per éore:
32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache
Shared across cores: 32MB L3

UTCS 352, Lecture 23 16

Shared Memory Multicore
Programming Model

Example: Two threads running on
two CPUs

Communicate implicitly by
accessing shared global state

Example: both threads access
shared variable X

Must synchronize accesses to X

L1 Data Cache L1 Data Cache
X X
L11Cache L1 1 Cache
[[
CPU 1 CPU 2

Shared Memory

thread 1 thread 2
withdrawal(wdr) { deposit(dep) {
lock(l) lock(l)
if X>wdr X =X +dep
X=X-wdr bal = X
bal = X unlock(l)
unlock(l)
return bal

17

Shared Memory Cache Coherence Problem

« Two threads share variable X

*+ Hardware
- Two CPUs, write-through caches

Time | Event CPU 1’s CPU 2’s Memory
step cache cache

0 10

1 CPU 1 reads X 10 10

2 |CPU2reads X 10 10 10

3 | CPU 1 writes 1to X 5 10 5

UTCS 352, Lecture 23

Coherence Defined

Sequential Coherence
Reads return most recently written value

Formally

+ P writes X; P reads X (no intervening writes)
= read returns written value

+ Py writes X; P, reads X
= read returns written value

- c.f. CPU 2 reads X = 5 after step 3 in example

+ P, writes X, P, writes X
= all processors see writes in the same order

- End up with the same final value for X

UTCS 352, Lecture 23 19

Remember Amdahl's Law

16
14
12
o 10
=]
2 8
&
6
4
2
0
0 01 02 03 04 05 06 07 08 09 1
Fraction of Program that is Parallel
UTCS CS352 Lecture 3 20

10

Summary

* Parallelism
- Granularities
- Implications for programming models
- Implications for communication
- Implications for caches
+ Next Time
- More on multicore caches

* Reading: P&H P&H 7.6-13

UTCS 352, Lecture 23 21

11

