Lecture 23: Parallelism

*+ Administration
- Take QUIZ 17 over P&H 7.1-5, before 11:59pm today
- Project: Cache Simulator, Due April 29, 2010
* Last Time
- On chip communication
- How I/O works
+ Today
- Where do architectures exploit parallelism?
- What are the implications for programming models?
- What are the implications for communication?
- ... for caching?
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Parallelism

+ What type of parallelism do applications have?

* How can computer architectures exploit this
parallelism?
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Granularity of Parallelism

* Fine grain instruction level parallelism
+ Fine grain data parallelism

+ Coarse grain (data center) parallelism
Multicore parallelism
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Fine grain instruction level parallelism

+ Fine grain instruction level parallelism
- Pipelining
- Multi-issue (dynamic scheduling & issue)
- VLIW (static issue) - Very Long Instruction Word

+ Each VLIW instruction includes up to N RISC-like
operations

+ Compiler groups up to N independent operations
* Architecture issues fixed size VLIW instructions
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VLIW Example

Theory
LetN=4
Theoretically 4 ops/cycle
+ 8 VLIW = 32 operations
in practice

In practice,
+ Compiler cannot fill slots
* Memory stalls

- load stall -
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Multithreading

* Performing multiple threads together
- Replicate registers, PC, efc.
- Fast switching between threads
* Fine-grain multithreading
- Switch threads after each cycle
- Interleave instruction execution
- If one thread stalls, others are executed
* Medium-grain multithreading
- Only switch on long stall (e.g., L2-cache miss)

- Simplifies hardware, but doesn't hide short stalls
such as data hazards
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Simultaneous Multithreading

* In multiple-issue dynamically scheduled processor
- Schedule instructions from multiple threads

- Instructions from independent threads execute when
function units are available

- Within threads, dependencies handled by scheduling and
register renaming
+ Example: Intel Pentium-4 HT

- Two threads: duplicated registers, shared function units
and caches

UTCS 352, Lecture 23

Multithreading Examples

Issue slots —
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Future of Multithreading

+ Will it survive? In what form?

- Power considerations = simplified
microarchitectures
- Simpler forms of multithreading

+ Tolerating cache-miss latency
- Thread switch may be most effective

*+ Multiple simple cores might share resources more
effectively
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Granularity of parallelism

+ Fine grain data parallelism
- Vector machines (CRAY)
- SIMD (Single instruction multiple data)
- Graphics cards
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Example of Fine Grain Data Parallelism
Vectorization

Exploits parallelism in the data (not instructions!)
Fetch groups of data
Operate on them in parallel

for (i=0;i<N; i++) // original
a(i)=a(i) +b(i)/ 2
// vectorized
for (i=0; i< N; i+ vectorSize)

VR1 = VectorLoad(a, i) VR1
VR2 = VectorLoad(b, i) VR2 i Lo Lo 1o
VRI=VR1+VR2 /2 b0 T b [ b@2) [ b3

VectorStore (a, vectorSize, VR1)
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Granularity of Parallelism

Fine grain instruction level parallelism
Fine grain data parallelism

Coarse grain (data center) parallelism
Multicore medium grain parallelism
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Coarse Grain Parallel Hardware
Data Centers & the Internet

Data Center in a box
truck transport

Microsoft

L
~)

low power data center OO
processors Q ‘

Google: Cooling
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Coarse Grain
Embarrassingly Parallel Software

* Lots and lots and lots of independent data & work
* Threads/tasks rarely or never communicate

* Map-Reduce model with Search example

Idea: divide the Internet Search index into 1000 parts, &
search each of the 1000 parts independently

Process
1. Type inaquery
2. coordinator sends a message to search many

independent data sources (e.g., 1000 different
servers)

3. A process searches, and sends a response message
back to the coordinator

4. Coordinator merges the results & returns answer
+ Works great!
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Granularity of Parallelism
Too Hot, Too Cold, or Just Right?

* Fine grain parallel architectures
- Lots of instruction & data communication
+ Instructions/data all on the same chip
+ Communication latency is very low, order of cycles
* Coarse grain parallel architectures
- Lots and lots of independent data & work
- Rarely or never communicate, because communication is
very, very expensive
* Multicore is betting there are applications with
- Medium grain parallelism (i.e., threads, processes, tasks)
- Not foo much data, so it wont swamp the memory system
- Not too much communication (100 to 1000s of cycles
across chip through the memory hierarchy)
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Multicore Hardware
Intel Nehalem 4-core Processor

Per éore:
32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache
Shared across cores: 32MB L3
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Shared Memory Multicore
Programming Model

Example: Two threads running on
two CPUs

Communicate implicitly by
accessing shared global state

Example: both threads access
shared variable X

Must synchronize accesses to X

L1 Data Cache L1 Data Cache
X X
L11Cache L1 1 Cache
[ [
CPU 1 CPU 2

Shared Memory

thread 1 thread 2
withdrawal(wdr) {  deposit(dep) {
lock(l) lock(l)
if X>wdr X =X +dep
X=X-wdr bal = X
bal = X unlock(l)
unlock(l)
return bal
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Shared Memory Cache Coherence Problem

« Two threads share variable X

*+ Hardware
- Two CPUs, write-through caches

Time | Event CPU 1’s CPU 2’s Memory
step cache cache

0 10

1 CPU 1 reads X 10 10

2 |CPU2reads X 10 10 10

3 | CPU 1 writes 1to X 5 10 5
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Coherence Defined

Sequential Coherence
Reads return most recently written value

Formally

+ P writes X; P reads X (no intervening writes)
= read returns written value

+ Py writes X; P, reads X
= read returns written value

- c.f. CPU 2 reads X = 5 after step 3 in example

+ P, writes X, P, writes X
= all processors see writes in the same order

- End up with the same final value for X
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Remember Amdahl's Law
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Summary

* Parallelism
- Granularities
- Implications for programming models
- Implications for communication
- Implications for caches
+ Next Time
- More on multicore caches

* Reading: P&H P&H 7.6-13
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