
1

UTCS 352, Lecture 23
 1

Lecture 23: Parallelism

•  Administration
–  Take QUIZ 17 over P&H 7.1-5, before 11:59pm today
–  Project: Cache Simulator, Due April 29, 2010

•  Last Time
–  On chip communication
–  How I/O works

•  Today
–  Where do architectures exploit parallelism?
–  What are the implications for programming models?
–  What are the implications for communication?
–  … for caching?

Parallelism

•  What type of parallelism do applications have?

•  How can computer architectures exploit this
 parallelism?

UTCS 352, Lecture 23
 2

2

Granularity of Parallelism

•  Fine grain instruction level parallelism
•  Fine grain data parallelism
•  Coarse grain (data center) parallelism
•  Multicore parallelism

UTCS 352, Lecture 23
 3

Fine grain instruction level parallelism

•  Fine grain instruction level parallelism
–  Pipelining
–  Multi-issue (dynamic scheduling & issue)
–  VLIW (static issue) – Very Long Instruction Word

•  Each VLIW instruction includes up to N RISC-like
 operations

•  Compiler groups up to N independent operations
•  Architecture issues fixed size VLIW instructions

UTCS 352, Lecture 23
 4

3

VLIW Example

Let N = 4

Theoretically 4 ops/cycle
•  8 VLIW = 32 operations

In practice,
•  Compiler cannot fill slots
•  Memory stalls

UTCS 352, Lecture 23
 5

Theory

in practice

- load stall -

Multithreading

•  Performing multiple threads together
–  Replicate registers, PC, etc.
–  Fast switching between threads

•  Fine-grain multithreading
–  Switch threads after each cycle
–  Interleave instruction execution
–  If one thread stalls, others are executed

•  Medium-grain multithreading
–  Only switch on long stall (e.g., L2-cache miss)
–  Simplifies hardware, but doesn’t hide short stalls

 such as data hazards

UTCS 352, Lecture 23
 6

4

Simultaneous Multithreading

•  In multiple-issue dynamically scheduled processor
–  Schedule instructions from multiple threads
–  Instructions from independent threads execute when

 function units are available
–  Within threads, dependencies handled by scheduling and

 register renaming
•  Example: Intel Pentium-4 HT

–  Two threads: duplicated registers, shared function units
 and caches

UTCS 352, Lecture 23
 7

Multithreading Examples

UTCS 352, Lecture 23
 8

5

Future of Multithreading

•  Will it survive? In what form?
•  Power considerations ⇒ simplified

 microarchitectures
–  Simpler forms of multithreading

•  Tolerating cache-miss latency
–  Thread switch may be most effective

•  Multiple simple cores might share resources more
 effectively

UTCS 352, Lecture 23
 9

Granularity of parallelism

•  Fine grain instruction level parallelism
–  Pipelining
–  Multi-issue (dynamic scheduling & issue)
–  VLIW (static issue)
–  Multithreading

•  Fine grain data parallelism
–  Vector machines (CRAY)
–  SIMD (Single instruction multiple data)
–  Graphics cards

UTCS 352, Lecture 23
 10

6

Example of Fine Grain Data Parallelism
Vectorization

Exploits parallelism in the data (not instructions!)
Fetch groups of data
Operate on them in parallel

for (i = 0; i < N; i++) // original
 a(i) = a(i) + b(i) / 2

 // vectorized
for (i = 0; i < N; i+ vectorSize)

 VR1 = VectorLoad(a, i)
 VR2 = VectorLoad(b, i)
 VR! = VR1 + VR2 / 2
 VectorStore (a, vectorSize, VR1)

UTCS 352, Lecture 23

a(0) a(3) a(2) a(1)

b(0) b(3) b(2) b(1)

VR1

VR2

 11

Granularity of Parallelism

•  Fine grain instruction level parallelism
•  Fine grain data parallelism
•  Coarse grain (data center) parallelism
•  Multicore medium grain parallelism

UTCS 352, Lecture 23
 12

7

google-data-center-chillers-cooling-system-belgium-saint-ghisla... http://ninalytton.files.wordpress.com/2009/11/google-data-cente...

1 of 1 4/19/10 2:08 PM

k3_project_blackbox_1.jpg (JPEG Image, 535x428 pixels) http://www.sun.com/images/k3/k3_project_blackbox_1.jpg

1 of 1 4/19/10 2:06 PM

LowPowerProcessors_print.jpg (JPEG Image, 2100x1500 pixels)... http://www.microsoft.com/presspass/events/msrtechfest/images...

1 of 1 4/19/10 2:12 PM

Coarse Grain Parallel Hardware
Data Centers & the Internet

UTCS 352, Lecture 23
 13

Microsoft
low power data center

processors

Google: Cooling

Data Center in a box
truck transport

Coarse Grain
Embarrassingly Parallel Software

•  Lots and lots and lots of independent data & work
•  Threads/tasks rarely or never communicate
•  Map-Reduce model with Search example

Idea: divide the Internet Search index into 1000 parts, &
 search each of the 1000 parts independently

Process
1.  Type in a query
2.  coordinator sends a message to search many

 independent data sources (e.g., 1000 different
 servers)

3.  A process searches, and sends a response message
 back to the coordinator

4.  Coordinator merges the results & returns answer
•  Works great!
UTCS 352, Lecture 23

 14

8

Granularity of Parallelism
Too Hot, Too Cold, or Just Right?

•  Fine grain parallel architectures
–  Lots of instruction & data communication

•  Instructions/data all on the same chip
•  Communication latency is very low, order of cycles

•  Coarse grain parallel architectures
–  Lots and lots of independent data & work
–  Rarely or never communicate, because communication is

 very, very expensive
•  Multicore is betting there are applications with

–  Medium grain parallelism (i.e., threads, processes, tasks)
–  Not too much data, so it wont swamp the memory system
–  Not too much communication (100 to 1000s of cycles

 across chip through the memory hierarchy)
UTCS 352, Lecture 23
 15

Multicore Hardware
Intel Nehalem 4-core Processor

Per core:
32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Shared across cores: 32MB L3 UTCS 352, Lecture 23
 16

9

Shared Memory Multicore
Programming Model

 17

CPU 1

L1 Data Cache

PC

L1 I Cache

CPU 2

L1 Data Cache

PC

L1 I Cache

Shared Memory

Example: Two threads running on
 two CPUs

Communicate implicitly by
 accessing shared global state

Example: both threads access
 shared variable X

Must synchronize accesses to X
 thread 1 thread 2
 withdrawal(wdr) { deposit(dep) {
 lock(l) lock(l)
 if X > wdr X = X + dep
 X = X – wdr bal = X
 bal = X unlock(l)
 unlock(l)
 return bal

X

X X

Shared Memory Cache Coherence Problem

•  Two threads share variable X
•  Hardware

–  Two CPUs, write-through caches

Time
step

Event CPU 1’s
cache

CPU 2’s
cache

Memory

0 10

1 CPU 1 reads X 10 10

2 CPU 2 reads X 10 10 10

3 CPU 1 writes 1 to X 5 10 5

UTCS 352, Lecture 23
 18

10

Coherence Defined

Sequential Coherence
Reads return most recently written value

Formally
•  P writes X; P reads X (no intervening writes)
⇒ read returns written value

•  P1 writes X; P2 reads X
⇒ read returns written value
–  c.f. CPU 2 reads X = 5 after step 3 in example

•  P1 writes X, P2 writes X
⇒ all processors see writes in the same order
–  End up with the same final value for X

UTCS 352, Lecture 23
 19

UTCS CS352 Lecture 3
 20

Remember Amdahl’s Law

11

UTCS 352, Lecture 23
 21

Summary

•  Parallelism
–  Granularities
–  Implications for programming models
–  Implications for communication
–  Implications for caches

•  Next Time
–  More on multicore caches

•  Reading: P&H P&H 7.6-13

