
Program Representations

Last Time

• Why compilers are fun

Announcements

• Lab 1 due Friday 9/11 5 pm

• Lab 1 Q&A 1-2 Wednesday 9/1, Painter 5.38N

Today

• Control flow graphs

• Spanning trees

• Strongly connected components

• Identifying Loops

• Reducible Control Flow Graphs

CS 380C Lecture 2 1 Control Flow

Sequence of Instructions

1 A = 4
2 t1 = A ∗ B

3 L1: t2 = t1 / C
4 if t2 < W goto L2

5 M = t1 ∗ k
6 t3 = M + I

7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3

10 goto L1

11 L3: halt

CS 380C Lecture 2 2 Control Flow

Control Flow Graph

• Divides instructions into basic blocks

• Two instructions are in the same basic block iff
the execution of an instruction in the block
guarantees execution can only proceed to the next
instruction.

• Edges between basic blocks represent potential
flow of control.

More formally, CFG = 〈V,E,Entry〉, where

V = vertices or nodes, representing an instruction or
basic block (group of instructions).

E = edges, potential flow of control
E ⊆V ×V

Entry ∈V , unique program entry

For convenience, assume all V are reachable from Entry,

(∀v ∈V)[Entry
∗
→ v]

CS 380C Lecture 2 3 Control Flow

Control Flow Graph Construction

Constructing CFGs with basic blocks (sets of
instructions)

• Identify Leaders - first instruction of a basic block

• In lexicographic order, construct a block by
appending subsequent instructions up to, but not
including, the next leader.

Leader identification

1. First instruction in the program, or

2. target instruction of any conditional or
unconditional branch, or

3. the instruction immediately following a conditional
or unconditional branch (this instruction is an
implicit target).

CS 380C Lecture 2 4 Control Flow

Basic Block Partition Algorithm

Input: set of instructions,
instr(i) = ith instruction in sequence

Output: set of leaders, set of basic blocks where block(x)
is the set of instructions in the block with leader x.

Algorithm:

leaders = 1 // Leaders, first instruction
for i = 1 to |n| // n = number of instructions

if instr(i) is a branch then
leaders = leaders ∪ all potential targets of instr(i)

endfor
worklist = leaders // Basic blocks
while worklist not empty do

x = smallest numbered instr in worklist
worklist = worklist - {x}
block(x) = {x}
if instr(x) is a branch then

last = x
else {

for (i = x + 1; i ≤ |n| and i 6∈ leaders; i++)
block(x) = block(x) ∪ {i}

endfor
last = i - 1

}
endwhile

CS 380C Lecture 2 5 Control Flow

Basic Block Example

1 A = 4
2 t1 = A ∗ B

3 L1: t2 = t1 / C
4 if t2 < W goto L2

5 M = t1 ∗ k
6 t3 = M + I

7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3

10 goto L1

11 L3: halt

Leaders =

Blocks =

CS 380C Lecture 2 6 Control Flow

Determining the Edges in a Control Flow Graph

∃ directed edge from B1 to B2 if:

1. ∃ a branch from the last instruction of B1 to the
first instruction B2 (B2 is a leader).

2. B2 immediately follows B1 in program order and B1
does not end with an unconditional branch.

Input: block(), a sequence of basic blocks
Output: CFG where nodes are basic blocks
Algorithm:

for i = 1 to the number of blocks do
x = last instruction of block(i)
if instr(x) is a branch then

for each target y of instr(x)
create edge from block i to block y

endfor
if instr(x) is not an unconditional branch then

create edge from block i to block i + 1
endfor

CS 380C Lecture 2 7 Control Flow

Basic Block Example

1 A = 4
2 t1 = A ∗ B

3 L1: t2 = t1 / C
4 if t2 < W goto L2

5 M = t1 ∗ k
6 t3 = M + I

7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3

10 goto L1

11 L3: halt

Edges =

Path =

Simple Path =

Cycle =
Data Structures?

CS 380C Lecture 2 8 Control Flow

Spanning Trees

CFG = (VG,EG,EntryG,ExitG), then we can construct a
spanning tree, ST = 〈VT ,ET ,RootT ,ExitT 〉 with

VT = VG

ET ⊆ EG

RootT = EntryG

ExitT = ExitG

Given a spanning tree, the edges in the CFG may be
partitioned as follows:

1. Spanning tree edges are in the CFG and the ST

2. Advancing edges (v,w) in CFGare not spanning
tree edges, but w is a descendant of v in ST.

3. Back edges (v,w) in CFGsuch that v = w or w is an
ancestor of v in ST.

4. Cross edges (v,w) in CFGsuch that w in neither an
ancestor nor a descendant of v in the spanning
tree.

CS 380C Lecture 2 9 Control Flow

Spanning Tree Algorithm

procedure Span(v)
for w in Succ(v) do

if not InTree(w) then

add w,v
∗
→ w to ST

InTree(w) = true
Span(w)

endfor
end Span

main ()
for v ∈V do InTree = false
InTree(Root) = true
Span(Root)

CS 380C Lecture 2 10 Control Flow

Spanning Tree Example

 B

C D

E

F

A − entry

G − exit

 B

C D

E

F

A − entry

G − exit

CS 380C Lecture 2 11 Control Flow

Spanning Edge Identification

procedure DFST(v)
num(v) = vnum++
InStack(v) = true
for w ∈ Succ(v) do

if not InTree(w) then

add w,v
∗
→ w to ST

InTree(w) = true
DFST(w)

else if

else if

else

endfor
InStack(v) = false

end DFST

vnum = 0
DFST(root)

CS 380C Lecture 2 12 Control Flow

Spanning Edge Identification - Example

 B

C D

E

F

A − entry

G − exit

 B

C D

E

F

A − entry

G − exit

CS 380C Lecture 2 13 Control Flow

Cycles - Strongly Connected Regions (SCR)

∀ s1,s2 ∈ S, if S is a cycle, then s1
∗
→ s2 and s2

∗
→ s1

Compute maximal SCR on a direct graph.

Robert Tarjan, “Depth-First Search and Linear Graph
Algorithms,” SIAM J. Computing, 1:2, pp. 146-160,
June 1972.

• uses a depth-first spanning tree
left-to-right pre-order number in Number

• tracks the lowest numbered v to which each vertex
has a path in Lowlink

• determines a number for SCR to which v belongs.

CS 380C Lecture 2 14 Control Flow

Tarjan’s maximal SCR algorithm

i = 0
Lowlink(∗) = 0
Number(∗) = 0
SCRnum = 0
InStack(∗) = false
Stack = empty
for v ∈V do

if Number(v) == 0 then
Tarjan(v)

endfor

CS 380C Lecture 2 15 Control Flow

Tarjan’s maximal SCR algorithm (continued)

procedure Tarjan(v)
Number(v) = Lowlink(v) = ++i
InStack(v) = true
push v on Stack
for w in SUCC(v) do

if Number(w) = 0 then
Tarjan(w)
Lowlink(v) = min (Lowlink(v), Lowlink(w))

else if InStack(w) then
Lowlink(v) = min (Lowlink(v), Lowlink(w))

endfor
if Lowlink(v) = Number(v) then

SCRnum++
repeat

w = pop(Stack)
InStack(w) = false
SCR(w) = SCRnum;

until w == v
end Tarjan

CS 380C Lecture 2 16 Control Flow

Tarjan’s maximal SCR algorithm - Example

num
lowlink
scr

A

 B

C D

E

G
F

H

J

I

STACK

num

scr

num

scr

num

scr

num

scr

num

scr

num

scr

num

scr

num

scr

num

scr

ll ll

ll

ll

ll

llll

llll

CS 380C Lecture 2 17 Control Flow

Identifying Loops and Loop Headers

• DFST does not find a unique header in irreducible
graphs

• SCR do not differentiate inner loops

 IRREDUCIBLE

A
A

B

D

C

B C

D

CS 380C Lecture 2 18 Control Flow

Natural Loop

• Single entry, header dominates all vertices in loop.
dominates: v dom w iff v

∗
→ w, and

6 ∃ P such that P = entry → x
∗
→ w where v not on P.

• There is at least one path from the header to
itself.

• All vertices and edges on a path from the header
to any back edges to the header are in the loop.

• Two natural loops are either entirely disjoint, or
one is a proper subset of the other.

CS 380C Lecture 2 19 Control Flow

Natural Loop Example

1

2

3

4 5

6

7

8

CS 380C Lecture 2 20 Control Flow

Natural Loop Algorithm

Given a back edge, (t → h)
addvertex (h)
addedge (t → h)
insert (t)

procedure insert (v)
if v not in loop then

addvertex(v)
for p ∈ PRED(v) do

addedge (p → v)
insert (p)

endfor
end insert

CS 380C Lecture 2 21 Control Flow

Improperly Nested Loops

1

2

3

4

5

6

1

2

3 4

5

One loop or two?

Inner loop?

Outer loop?

CS 380C Lecture 2 22 Control Flow

Reducible Control Flow Graphs

Intuitively, if all loops are single entry, the CFG is
reducible. More formally,

• Given a spanning tree, for every back edge in the
CFG, the head dominates the tail (i.e., you cannot
execute the tail without executing the head first).

A
A

B

D

C

B C

D

CS 380C Lecture 2 23 Control Flow

Next Time

Dataflow Analysis: how do values flow around the
control graph to variables?

Read: T.J. Marlowe and B.G. Ryder, Properties of
Data Flow Frameworks, pp. 121-163, ACTA
Informatica, 28, 1990.

CS 380C Lecture 2 24 Control Flow

