Data Flow Analysis and Optimizations

Last Time

• Control Flow Graphs

Today

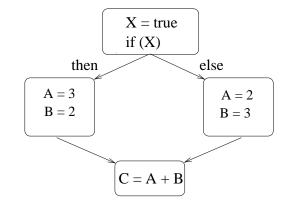
- Data Flow Analysis
- Data Flow Frameworks
- Constant Propagation
- Reaching Definitions

Data Flow Analysis

Data flow analysis tells us things we want to know about programs, for example:

- Is this computation loop invariant?
- Which definition reaches this use?
- Is this value a constant?

Example:



CS 380C Lecture 3

Data Flow Analysis

1

CS 380C Lecture 3

2

Data Flow Analysis

Systems of equations that compute information (e.g., uses, definitions, values) about variables at program points.

A Monotone Data Flow Framework

- *point* start and/or end of a basic block
- Information for a forward problem $INFO_{in}(v) = merge (INFO_{out}predecessors(v))$ $INFO_{out}(v) = transfer (INFO_{in}(v))$
- Transfer functions:

 T_v is the transfer function for v, how information is changed by v.

 T_q is the transfer function for a path and describes how information is carried on path q. All paths start at the entry *entry*.

Given Q: *entry* $\xrightarrow{+}$ *x*, where *x* is a node in the CFG, such that $Q = q_o \rightarrow q_1 \rightarrow \dots q_n$, the **transfer function** is:

$$t_{q_n-1}(t_{q_n-2}(\dots(t_2(t_1(t_0(\top)))\dots))))$$

Meet Over All Paths Solution

$$mop(x) = \sqcap_{Q \in Paths(x)} t_Q(\top)$$

3

CS 380C Lecture 3

Data Flow Analysis

Data Flow Framework

- 1. A *semilattice* \mathcal{L} with a binary meet operation \sqcap , such that $a, b, c \in \mathcal{L}$:
 - $a \sqcap a = a$ (idempotent)
 - $a \sqcap b = b \sqcap a$ (commutative)
 - $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$ (associative)
- 2. \sqcap imposes an order on *L*, \forall *a*,*b* ∈ *L*
 - $a \succeq b \Leftrightarrow a \sqcap b = b$
 - $a \succ b \Leftrightarrow a \succeq b$ and $a \neq b$
- 3. A semilattice has a *bottom* element \perp , *iff*
 - $a \sqcap \bot = \bot$ for every $a \in \bot$.
 - $\forall a \in \mathcal{L}, a \succeq \bot$
- 4. It has a top or identity element, iff
 - $a \sqcap \top = a$ for every $a \in \bot$
 - $\forall a \in \mathcal{L}, \top \succeq a$

CS 380C Lecture 3

4

Problem Representation

			Constant Propagation	Exa	ample Framework	
 choose a semilat attach to each a each a ∈ L is a dis 	$k \in L$ a meaning	7	Constant propagation latt	ice:	Т	
 with each node n f_n models behavi 				-2 -1	0 1 2	
• let $\mathcal F$ be the set	of all function	s the code generates			\perp	
			1. meet rules • $a \sqcap \top = a$ • $a \sqcap \bot = \bot$ • constant \sqcap constant = constant (if equal) • constant \sqcap constant = \bot (if not equal) 2. meet properties impose a partial order on L • $3 \sqcap 3 = 3$ • $3 \sqcap 2 = 2 \sqcap 3$ • $3 \sqcap (2 \sqcap 4) = (3 \sqcap 2) \sqcap 4$			
			3. bottom • $a \sqcap \bot = \bot$ for every $a \in \bot$. • $\forall a \in \bot, a \succeq \bot$			
			4. top • $a \sqcap \top = a$ • $\forall a \in \mathcal{L}, \top \geq a$		$\in \mathcal{L}$	
CS 380C Lecture 3	5	Data Flow Analysis	CS 380C Lecture 3	6	Data Flow Analysis	

Data Flow Framework

A descending chain in *L* is a sequence x_1, x_2, \dots, x_n ,

- a) $1 \le i \le n, x_i \in L$, and
- b) $1 \le i < n, x_i \le x_{i+1}$

If $\forall a \in L$, \exists constant b_a such that any chain beginning with *a* has length $\leq b_a$, we say that *L* is bounded.

Any bounded semilattice has finite descending chains.

7

Admissible Function Spaces [Kam & Ullman]

For a bounded semilattice $L, \mathcal{F}: L \rightarrow L$ is an *admissible function space iff*:

1. Monotonic:

$$\forall f \in \mathcal{F}, \forall x, y \in L, x \preceq y \Longrightarrow f(x) \preceq f(y)$$

2. Identity operation:

 $\exists f_i \in \mathcal{F}$, such that $\forall x \in L, f_i(x) = x$

3. Closed under composition:

 $f,g \in \mathcal{F} \Rightarrow f \circ g \in \mathcal{F}$, where $\forall x \in L, [f \circ g](x) = f(g(x))$

4. \perp exists to any $x \in \bot$

 $\forall x \in L, \exists a \text{ finite subset } H \subseteq \mathcal{F} \ni x = \sqcap_{f \in H} f(0)$

CS 380C Lecture 3

Data Flow Analysis

(

CS 380C Lecture 3

8

Monotone Data Flow Framework

is a triple $\langle \mathcal{L}, \Box, \mathcal{F} \rangle$ where

- \sqcap is the meet operation, or *confluence* operator.
- $\langle {\it L}, \sqcap, \rangle$ is a semilattice of finite length with bottom $\perp.$
- \mathcal{F} is a monotone operation space on \mathcal{L}

A monotone operation space on a semilattice $\langle \bot, \sqcap, \rangle$ is a set of unary functions such that for each operation $f \in \mathcal{F}$ is monotonic:

 $(\forall f \in \mathcal{F})(\forall x, y \in \mathcal{L})[f(x \sqcap y) \preceq f(x) \sqcap f(y)]$

A **Distributive** framework

 $(\forall f \in \mathcal{F})(\forall x, y \in \mathcal{L})f(x \sqcap y) = f(x) \sqcap f(y)$

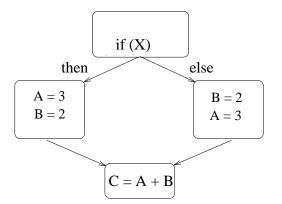
Meet Over All Paths Solution

$$mop(x) = \sqcap_{Q \in Paths(x)} t_Q(\top)$$

9

Constant Propagation Example Framework

- 1. Is CP monotonic?
- 2. Is CP distributive?
- 3. Is every solution a meet overall paths solution?



CS 380C Lecture 3

Data Flow Analysis

CS 380C Lecture 3

10

Reaching Definitions

For each vertex, find the set of variable definitions that might reach that vertex.

GEN(v) - variable v may be defined or assigned to KILL(v) - variable v is defined, overwriting other definitions

			GEN	KILL	PRED	SUCC
1:	read N	1:	N_1	N		2
2:	call check (N)	2:	N_2		1	3
3:	I = 1	3:	I_3	Ι	2	4
4:	while $(I < N)$ do	4:			3,7	5,8
5:	A(I) = A(I) + I	5:	A_5		4	6
6:	I = I + 1	6:	I_6	Ι	5	7
7:	endwhile	7:			6	4
8:	print A(N)	8:			4	

Reaching Definitions - Transfer Function

IN(v) - the set of definitions that reach statement v

$$IN(v) = \bigcup_{p \in \mathsf{PRED}(v)} \mathsf{OUT}(p)$$

OUT(v) - the set of reaching definitions just after statement v

 $OUT(v) = GEN(v) \cup (IN(v) - KILL(v))$

- IN is an *inherited* attribute;
- OUT is a *synthesized* attribute;
- GEN and KILL are *basic* attributes.
- *Forward* data flow problems propagate information from predecessors of a vertex *v* to *v*.

Backward data flow problems propagate from successors of v to v.

CS 380C Lecture 3

11

Data Flow Analysis

CS 380C Lecture 3

12

Reaching Definitions

Monotone Data Flow Framework

- A = set of *generations*, generation = (statement, variable)
- Lattice: ⊥ = (powerset(A), ∪ set union) powerset(A) is the set of all subsets of A What does it look like?
- initial value = \emptyset
- transfer function T_v : $T_v(x) = (x \text{KILL}(v)) \cup \text{GEN}(v)$
- monotone: $x \le y \Rightarrow T_v(x) \le T_v(y)$
- distributive: $T_v(x \cup y) = T_v(x) \cup T_v(y)$

Work List Iterative Algorithm

initialize ReachingDefinitions(n) worklist \leftarrow the set of all nodes while (worklist $\neq \emptyset$) pick and remove a node n from worklist recompute ReachingDefinitions(n) if ReachingDefinitions(n) changed then worklist \leftarrow worklist \cup SUCC(n)

initialization IN(v) = OUT(v) =computation IN(v) =

OUT(v) =

CS 380C Lecture 3

13

Reaching Definitions Algorithm

for $v \in V$ $IN(v) = \emptyset$ OUT(v) = GEN(v)endfor worklist $\leftarrow v \in V$ while (worklist $\neq \emptyset$) pick and remove a node v from worklist $IN(v) = \bigcup (OUT(p)), p \in PRED(v)$ $OUT(v) = GEN(v) \bigcup (IN(v) - KILL(v))$ if OUT(v) changed then worklist \leftarrow worklist \cup SUCC(v) endwhile

Reaching Definitions

For each vertex, find the set of variable definitions that might reach that vertex.

GEN(v) - variable v may be defined or assigned to KILL(v) - variable v is defined, overwriting other definitions

			GEN	KILL	PRED	SUCC
1:	read N	1:	N_1	Ν		2
2:	call check (N)	2:	N_2		1	3
3:	I = 1	3:	I_3	Ι	2	4
4:	while $(I < N)$ do	4:			3,7	5,8
5:	A(I) = A(I) + I	5:	A_5		4	6
6:	I = I + 1	6:	I_6	Ι	5	7
7:	endwhile	7:			6	4
8:	print A(N)	8:			4	

15

CS 380C Lecture 3

16

	Initial value		iteration 1		iteration 2		iteration 3	
	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1								
2								
3								
4								
5								
6								
7								
8								

Reaching Definitions Example

Next Time

Questions for the Reaching Definitions Algorithm

- Does this always terminate?
- What answer does it compute?
- How fast (or slow) is it?

CS 380C Lecture 3

17

Data Flow Analysis

CS 380C Lecture 3

18