Data Flow Analysis and Optimizations Data Flow Analysis

Last Time Data flow analysis tells us things we want to know
about programs, for example:

e Control Flow Graphs
e Is this computation loop invariant?

e Which definition reaches this use?

Today .
e Is this value a constant?

Data Flow Analysis Example:

Data Flow Frameworks

Constant Propagation

Reaching Definitions

CS 380C Lecture 3 1 Data Flow Analysis CS 380C Lecture 3 2 Data Flow Analysis

Data Flow Analysis

Systems of equations that compute information (e.g.,
uses, definitions, values) about variables at program
points.

A Monotone Data Flow Framework
e point - start and/or end of a basic block

e Information for a forward problem
INFOjn(v) = merge (INFOgypredecessors(v))
INFOuu(v) = transfer (INFOin(V))

e Transfer functions:
Ty is the transfer function for v, how information is
changed by v.
Tq is the transfer function for a path and describes
how information is carried on path g. All paths
start at the entry entry.

Given Q: entry = X, where x is a node in the CFG,
such that Q=9o— g1 — ...0n, the transfer function is:

tg,—1(tg,—2(. . - (t2(ta(to(T))) -)

Meet Over All Paths Solution
mMop(X) = Maepathsix)to(T)

CS 380C Lecture 3 3 Data Flow Analysis

Data Flow Framework

1. A semilattice L with a binary meet operation M,
such that a,b,ce = :

e alla=a (idempotent)
e alb=bra (commutative)
e ar(brc)=(anb)rc (associative)

2. M imposes an order on L, Vabel
e a-bsalb=>b

e a-bsax>b and a#b

3. A semilattice has a bottom element 1, iff
e all =1 for every ac L.
e YVacr,ar |

4. It has a top or identity element, iff
e alrT =a for every ac L
e YVac ., T xa

CS 380C Lecture 3 4 Data Flow Analysis

Problem Representation

e choose a semilattice L to represent facts

e attach to each aelL a meaning
each ael is a distinct a set of known facts

e with each node n, associate a function f,:L—L
fn, models behavior of code corresponding to n

e let ¥ be the set of all functions the code generates

CS 380C Lecture 3 5 Data Flow Analysis

Constant Propagation Example Framework

Constant propagation lattice: T

1
1. meet rules
e all T =a
e all 1L =_1
e constant M constant = constant (if equal)
e constant M constant = L (if not equal)

2. meet properties impose a partial order on L
e 3M3=3
e 3M2=2MN3
e3N(2N4)=@BMN2)nNn4

3. bottom e all =1 for every ac ..
e Vacr,ax L

4. top e al T =a for every ac
e Yac ., T>a
CS 380C Lecture 3 6 Data Flow Analysis

Data Flow Framework

A descending chain in L is a sequence Xi,Xo, - ,Xn,
a) 1<i<nxel, and
b) 1<i<nx <Xy1

If vae L, 3 constant b, such that any chain beginning
with a has length <bg,, we say that L is bounded.

Any bounded semilattice has finite descending chains.

CS 380C Lecture 3 7 Data Flow Analysis

Admissible Function Spaces [Kam & Uliman]

For a bounded semilattice L, # :L — L is an admissible
function space iff:

1. Monotonic:
VieF,Vxyel, x2y= f(x) = f(y)

2. Identity operation:
3fi e 7, such that V xeL, fi(x)=x

3. Closed under composition:

f.gey = foge #,where V xelL, [fog](x)= f(g(x))

4. | exists to any xe

V xel, 3 a finite subset HC # > x=Tltenf(0)

CS 380C Lecture 3 8 Data Flow Analysis

Monotone Data Flow Framework

is a triple (£,M,¥) where
e 1 is the meet operation, or confluence operator.

e (£,MN,) is a semilattice of finite length with bottom
1.

F IS a monotone operation space on L

A monotone operation space on a semilattice (£,Mn,) is
a set of unary functions such that for each operation
f € # is monotonic:

(VEe7)(vxye L)[f(xmy) 2 fO)nf(y)]

A Distributive framework

(Ve F)(vxye £)f(xmy)=f(x)nf(y)

Meet Over All Paths Solution

mMop(X) = Maepathsix)to(T)

CS 380C Lecture 3 9 Data Flow Analysis

Constant Propagation Example Framework

1. Is CP monotonic?

2. Is CP distributive?

3. Is every solution a meet overall paths solution?

CS 380C Lecture 3 10 Data Flow Analysis

Reaching Definitions

For each vertex, find the set of variable definitions that

might reach that vertex.

GEN(v) - variable v may be defined or assigned to
KILL(v) - variable v is defined, overwriting other

Reaching Definitions - Transfer Function

definitions

GEN | KILL | PRED | SUCC
1: read N 1: Ny N 2
2: call check (N) 21 N 1 3
3 I=1 3: I3 I 2 4
4: while (I < N) do 4: 3.7 5,8
5: A(D) = A0 +1 5: As 4 6
6: I=1+4+1 6. Ig I 5 7
7. endwhile T 6 4
8: print A(N) 8: 4
CS 380C Lecture 3 11 Data Flow Analysis

IN(v) - the set of definitions that reach

statement v

IN(v) =

U

OUT (p)

pePRED (v

OUT(v) - the set of reaching definitions just after

statement v

OUT(v) = GEN(v)U

e IN is an inherited attribute;

(IN(V) — KILL(V))

e OUT s a synthesized attribute;

e GEN and KILL are basic attributes.

e Forward data flow problems propagate information
from predecessors of a vertex v to v.

Backward data flow problems propagate from

successors of v to v.

CS 380C Lecture 3

12

Data Flow Analysis

Reaching Definitions

Work List Iterative Algorithm

Monotone Data Flow Framework

e A = set of generations,

generation = (statement, variable)

Lattice: £ = (powerset(A), U - set union)
powerset(A) is the set of all subsets of A

What does it look like?

initial value = 0

transfer function T, Ty(X) = (x— KILL(v)) U GEN(v)
monotone: x<y = Ty,(x) < Ty (y)

distributive: T,(XUy) = Ty(X) UTu(y)

CS 380C Lecture 3 13 Data Flow Analysis

initialize ReachingDefinitions(n)
worklist «+— the set of all nodes
while (worklist #0)
pick and remove a node n from worklist
recompute ReachingDefinitions(n)
if ReachingDefinitions(n) changed then
worklist «— worklist U SUCC(n)

initialization
IN(v) =
OUT(v) =

computation
IN(v) =

OUT(v) =

CS 380C Lecture 3 14 Data Flow Analysis

Reaching Definitions Algorithm

for veV
IN(v) =0
OUT(v) = GEN(v)
endfor
worklist «— veV
while (worklist #0)
pick and remove a node v from worklist

IN(v) = U (OUT(p)), pe PRED(v)
OUT(v) = GEN(v) U (IN(v) - KILL(Vv))

if OUT(v) changed then
worklist «— worklist U SUCC(v)
endwhile

CS 380C Lecture 3 15 Data Flow Analysis

Reaching Definitions

For each vertex, find the set of variable definitions that
might reach that vertex.
GEN(v) - variable v may be defined or assigned to

KILL(v) - variable v is defined, overwriting other
definitions

GEN | KILL | PRED | SUCC

1: read N 1: N3 N 2
2: call check (N) 20 Ng 1 3
3 I=1 3: I3 I 2 4
4: while (I < N) do 4: 3.7 5,8
5: A(D) = A0 +1 5: As 4 6
6: I=1+4+1 6: Ig I 5 7
7. endwhile T 6 4
8: print A(N) 8: 4

CS 380C Lecture 3 16 Data Flow Analysis

Reaching Definitions Example Next Time

Questions for the Reaching Definitions Algorithm
Initial value iteration 1 iteration 2 iteration 3

IN OouT | IN OuT | IN | OUT | 1IN ouT e Does this always terminate?

e What answer does it compute?
e How fast (or slow) is it?

CS 380C Lecture 3 17 Data Flow Analysis CS 380C Lecture 3 18 Data Flow Analysis

