
Data Flow Analysis and Optimizations

Last Time

• Control Flow Graphs

Today

• Data Flow Analysis

• Data Flow Frameworks

• Constant Propagation

• Reaching Definitions

CS 380C Lecture 3 1 Data Flow Analysis

Data Flow Analysis

Data flow analysis tells us things we want to know
about programs, for example:

• Is this computation loop invariant?

• Which definition reaches this use?

• Is this value a constant?

Example:

B = 2
A = 3

C = A + B

X = true
if (X)

then else

A = 2
B = 3

CS 380C Lecture 3 2 Data Flow Analysis

Data Flow Analysis

Systems of equations that compute information (e.g.,
uses, definitions, values) about variables at program
points.

A Monotone Data Flow Framework

• point - start and/or end of a basic block

• Information for a forward problem
INFOin(v) = merge (INFOoutpredecessors(v))
INFOout(v) = transfer (INFOin(v))

• Transfer functions:
Tv is the transfer function for v, how information is
changed by v.
Tq is the transfer function for a path and describes
how information is carried on path q. All paths
start at the entry entry.

Given Q: entry
+
→ x, where x is a node in the CFG,

such that Q = qo→ q1→ . . .qn, the transfer function is:

tqn−1(tqn−2(. . .(t2(t1(t0(⊤))) . . .)

Meet Over All Paths Solution

mop(x) = ⊓Q∈Paths(x)tQ(⊤)

CS 380C Lecture 3 3 Data Flow Analysis

Data Flow Framework

1. A semilattice L with a binary meet operation ⊓,
such that a,b,c ∈ L :

• a⊓a = a (idempotent)

• a⊓b = b⊓a (commutative)

• a⊓ (b⊓ c) = (a⊓b)⊓ c (associative)

2. ⊓ imposes an order on L, ∀ a,b ∈ L
• a� b⇔ a⊓b = b

• a≻ b⇔ a� b and a 6= b

3. A semilattice has a bottom element ⊥, iff

• a⊓⊥=⊥ for every a ∈ L .
• ∀a ∈ L ,a�⊥

4. It has a top or identity element, iff

• a⊓⊤= a for every a ∈ L
• ∀a ∈ L ,⊤� a

CS 380C Lecture 3 4 Data Flow Analysis

Problem Representation

• choose a semilattice L to represent facts

• attach to each a ∈ L a meaning

each a ∈ L is a distinct a set of known facts

• with each node n, associate a function fn : L→ L
fn models behavior of code corresponding to n

• let F be the set of all functions the code generates

CS 380C Lecture 3 5 Data Flow Analysis

Constant Propagation Example Framework

Constant propagation lattice: ⊤

. . . -2 -1 0 1 2 . . .

⊥

1. meet rules

• a ⊓ ⊤ = a

• a ⊓ ⊥ = ⊥

• constant ⊓ constant = constant (if equal)

• constant ⊓ constant = ⊥ (if not equal)

2. meet properties impose a partial order on L

• 3 ⊓ 3 = 3

• 3 ⊓ 2 = 2 ⊓ 3

• 3 ⊓ (2 ⊓ 4) = (3 ⊓ 2) ⊓ 4

3. bottom • a⊓⊥=⊥ for every a ∈ L .
• ∀a ∈ L ,a�⊥

4. top • a⊓⊤= a for every a ∈ L
• ∀a ∈ L ,⊤� a

CS 380C Lecture 3 6 Data Flow Analysis

Data Flow Framework

A descending chain in L is a sequence x1,x2, · · · ,xn,

a) 1≤ i≤ n,xi ∈ L, and

b) 1≤ i < n,xi ≤ xi+1

If ∀a ∈ L, ∃ constant ba such that any chain beginning
with a has length ≤ ba, we say that L is bounded.

Any bounded semilattice has finite descending chains.

CS 380C Lecture 3 7 Data Flow Analysis

Admissible Function Spaces [Kam & Ullman]

For a bounded semilattice L, F : L→ L is an admissible

function space iff:

1. Monotonic:

∀ f ∈ F ,∀ x,y ∈ L, x� y =⇒ f (x)� f (y)

2. Identity operation:

∃ fi ∈ F , such that ∀ x ∈ L, fi(x) = x

3. Closed under composition:

f ,g ∈ F ⇒ f ◦g ∈ F ,where ∀ x ∈ L, [f ◦g](x) = f (g(x))

4. ⊥ exists to any x ∈ L

∀ x ∈ L, ∃ a finite subset H ⊆ F ∋ x = ⊓ f∈H f (0)

CS 380C Lecture 3 8 Data Flow Analysis

Monotone Data Flow Framework

is a triple 〈L ,⊓,F 〉 where

• ⊓ is the meet operation, or confluence operator.

• 〈L ,⊓,〉 is a semilattice of finite length with bottom
⊥.

• F is a monotone operation space on L

A monotone operation space on a semilattice 〈L ,⊓,〉 is
a set of unary functions such that for each operation
f ∈ F is monotonic:

(∀ f ∈ F)(∀x,y ∈ L)[f (x⊓ y)� f (x)⊓ f (y)]

A Distributive framework

(∀ f ∈ F)(∀x,y ∈ L) f (x⊓ y) = f (x)⊓ f (y)

Meet Over All Paths Solution

mop(x) = ⊓Q∈Paths(x)tQ(⊤)

CS 380C Lecture 3 9 Data Flow Analysis

Constant Propagation Example Framework

1. Is CP monotonic?

2. Is CP distributive?

3. Is every solution a meet overall paths solution?

B = 2
A = 3

A = 3
B = 2

C = A + B

if (X)

then else

CS 380C Lecture 3 10 Data Flow Analysis

Reaching Definitions

For each vertex, find the set of variable definitions that
might reach that vertex.

GEN(v) - variable v may be defined or assigned to

KILL(v) - variable v is defined, overwriting other
definitions

1: read N
2: call check (N)
3: I = 1
4: while (I < N) do
5: A(I) = A(I) + I
6: I = I + 1
7: endwhile
8: print A(N)

GEN KILL PRED SUCC
1: N1 N 2
2: N2 1 3
3: I3 I 2 4
4: 3,7 5,8
5: A5 4 6
6: I6 I 5 7
7: 6 4
8: 4

CS 380C Lecture 3 11 Data Flow Analysis

Reaching Definitions - Transfer Function

IN(v) - the set of definitions that reach
statement v

IN(v) =
[

p∈PRED(v)

OUT(p)

OUT(v) - the set of reaching definitions just after
statement v

OUT(v) = GEN(v)∪ (IN(v)−KILL(v))

• IN is an inherited attribute;

• OUT is a synthesized attribute;

• GEN and KILL are basic attributes.

• Forward data flow problems propagate information
from predecessors of a vertex v to v.

Backward data flow problems propagate from
successors of v to v.

CS 380C Lecture 3 12 Data Flow Analysis

Reaching Definitions

Monotone Data Flow Framework

• A = set of generations,
generation = (statement, variable)

• Lattice: L = 〈 powerset(A), ∪ - set union 〉
powerset(A) is the set of all subsets of A
What does it look like?

• initial value = /0

• transfer function Tv: Tv(x) = (x−KILL(v))∪GEN(v)

• monotone: x≤ y ⇒ Tv(x)≤ Tv(y)

• distributive: Tv(x∪ y) = Tv(x)∪Tv(y)

CS 380C Lecture 3 13 Data Flow Analysis

Work List Iterative Algorithm

initialize ReachingDefinitions(n)
worklist ← the set of all nodes
while (worklist 6= /0)

pick and remove a node n from worklist

recompute ReachingDefinitions(n)
if ReachingDefinitions(n) changed then

worklist ← worklist ∪ SUCC(n)

initialization

IN(v) =

OUT(v) =

computation

IN(v) =

OUT(v) =

CS 380C Lecture 3 14 Data Flow Analysis

Reaching Definitions Algorithm

for v ∈V
IN(v) = /0
OUT(v) = GEN(v)

endfor
worklist ← v ∈V
while (worklist 6= /0)

pick and remove a node v from worklist

IN(v) =
S

(OUT(p)), p ∈ PRED(v)

OUT(v) = GEN(v)
S

(IN(v) - KILL(v))

if OUT(v) changed then
worklist ← worklist ∪ SUCC(v)

endwhile

CS 380C Lecture 3 15 Data Flow Analysis

Reaching Definitions

For each vertex, find the set of variable definitions that
might reach that vertex.

GEN(v) - variable v may be defined or assigned to

KILL(v) - variable v is defined, overwriting other
definitions

1: read N
2: call check (N)
3: I = 1
4: while (I < N) do
5: A(I) = A(I) + I
6: I = I + 1
7: endwhile
8: print A(N)

GEN KILL PRED SUCC
1: N1 N 2
2: N2 1 3
3: I3 I 2 4
4: 3,7 5,8
5: A5 4 6
6: I6 I 5 7
7: 6 4
8: 4

CS 380C Lecture 3 16 Data Flow Analysis

Reaching Definitions Example

Initial value iteration 1 iteration 2 iteration 3
IN OUT IN OUT IN OUT IN OUT

1

2

3

4

5

6

7

8

CS 380C Lecture 3 17 Data Flow Analysis

Next Time

Questions for the Reaching Definitions Algorithm

• Does this always terminate?

• What answer does it compute?

• How fast (or slow) is it?

CS 380C Lecture 3 18 Data Flow Analysis

