More Data Flow Analysis

Last Time

- Data Flow Analysis
- Data Flow Frameworks
- Constant Propagation Framework
- Reaching Definitions

Today

Iterative Worklist Algorithm via Reaching Definitions

- Why it works
- What it computes

Work List Iterative Algorithm

for \(v \in V \)
\[
\text{IN}(v) = \emptyset \\
\text{OUT}(v) = \text{GEN}(v)
\]
endfor

worklist \(\leftarrow v \in V \)
while (\(\text{worklist} \neq \emptyset \))

pick and remove a node \(v \) from worklist

\(\text{oldout}(v) = \text{OUT}(v) \)
\(\text{IN}(v) = \bigcup (\text{OUT}(p)), p \in \text{PRED}(v) \)
\(\text{OUT}(v) = \text{GEN}(v) \cup (\text{IN}(v) - \text{KILL}(v)) \)

if \(\text{oldout}(v) \neq \text{OUT}(v) \) then

worklist \(\leftarrow \text{worklist} \cup \text{SUCC}(v) \)
endif
Work List Iterative Algorithm

Questions

• Does this always terminate?
• How fast (or slow) is it?
• What answer does it compute?
• How fast can we make it?

Termination

Why does the iterative data flow algorithm terminate?

Sketch of proof for reaching definitions
1. each node is initialized to ∅
2. a definition has only one statement that generates it
3. \(\mathcal{F} \) is associative \(\Rightarrow \) \(\mathcal{F} \) is monotone
 \(\Rightarrow \) each \(x \in \text{Reaching definitions} \) can be added once
4. \(N*(E+1) \) trips to take a definition to every node

Consequence of finite descending chain property

Question: How do we generalize this proof?
Correctness and Quality of Solution

Does it compute the answer we want?

Definition: For each basic block \(b \)

\[
\text{MOP}(b) = \bigcap f_p(\top), \text{ for all paths } p \text{ "reaching" } b
\]

- Paths that reach a block are reachable in the control flow graph, which may be conservative.
- Perfect Solution = meet over real paths taken during program execution
- MOP \(\leq \) Perfect Solution
- In some sense, MOP is best feasible solution
- Not guaranteed to achieve MOP solution
- MOP is undecidable, even for monotonic framework
- Reduction to Modified Post's Correspondence Problem

Quality of Solution

Maximal Fixed Point (MFP)

- Any iterative data-flow problem that satisfies admissible function requirements when it converges to a solution and terminates, will have reached a Maximal Fixed Point solution.
- MFP is unique, regardless of order of propagation
- If distributive, MFP = MOP
- Otherwise, MFP \(\leq \) MOP
- So, MFP \(\leq \) MOP \(\leq \) Perfect Solution
How fast can we make the iterative algorithm?

Execution time of iterative framework

- For each basic block: \# successors (predecessors) + constant bit vector operations
- Number of visits to basic block: length of longest acyclic path
- What is the complexity equation? \(O(n^2) \)

Where is unnecessary work being performed?

- Iteration over every node on each pass.
- Testing for altered sets on each pass.
- Extra pass to detect stabilization.

Problem: Nodes may be visited in any order

How fast can we make the iterative algorithm?

To avoid unnecessary work:

- Bound number of visits by visiting a node roughly after all its predecessors
 (reverse PostOrder for forward data-flow problem; conceptually, PostOrder for backward problem).

- Change to algorithm:

  ```
  change = true;
  while (change)
      change = false;
      for each basic block in rPostOrder:
          solve for b
          if (old ≠ new) change = true;
      end for
  end while
  ```

- How does this improve performance?
"Rapid" Data-Flow Problems

Necessary and sufficient condition for "rapid" stabilization of iterative framework:
\[\forall f, g \in \mathcal{F}, \forall x \in L, \quad f \circ (\bot) \succeq g(\bot) \cap f(x) \cap x \]

An equivalent condition:
\[\forall f \in \mathcal{F}, \forall x \in L, \quad f(x) \succeq x \cap f(\top) \]

For Reaching Definitions:
\[
\begin{align*}
 f(x) & \succeq x \cap f(\top) \\
 a \cup (x - b) & \succeq x \cup (a \cup (\top - b)) \\
 a \cup (x - b) & \succeq x \cup a \\
 x - b & \succeq x \\
\end{align*}
\]
\[\Rightarrow \text{Reaching definitions is rapid} \]

"Rapid" data-flow problems stabilize in at most \(d(G) + 2\) passes over the control flow graph, (iff for forward problems you use rPostOrder, and backwards problems use PostOrder).

Loop Interconnectiveness

- \(d(G)\) = maximum number of retreating edges on any acyclic path on graph \(G\)
- \(d\) is the degree of loop interconnectiveness
- \(d\) is unique for reducible flow graphs
Node Listing

key: iterate exactly enough times to transmit information along any simple paths of CFG.

A node listing \[l = (v_1, v_2, \ldots, v_m)\] [Kennedy 75]

requires that every simple path in CFG is in sequence in \(l\), i.e., if \(p = (x_1, x_2, \ldots, x_k)\) is a simple path then

\[(\exists j_1, j_2, \ldots, j_k) j_i < j_{i+1} \text{ and } x_i = n_{j_i}, 1 \leq i \leq k,\]

\(\forall \text{ CFG}, \exists\) node listing of length \(\leq n^2, n = |V|\)

For a large class of graphs (which ones?), there is an \(O(n)\) listing.
“Rapid” Data-Flow Problems

Property of “rapid” data-flow problems

- the “rapid” condition means information stabilizes in two passes around a loop
- \(d+1 \) iterations to propagate data, 1 iteration to detect stability
- in practice, \(d(G) \) is less than 3 \([\text{Knuth}]\)
- in practice, iterative algorithms make a small number of passes
- each pass computes
 - \(\mathcal{O}(E) \) meets (sets of size \(|defs|\))
 - and \(\mathcal{O}(N) \) other operations
- Effectively \(O(n) \) complexity

Data-flow hierarchy

“rapid” \(\subset \) “fast” \(\subset \) distributive \(\subset \) monotone

Analysis of Data-flow Frameworks

Key things to look for in a data-flow framework

- the domain and its size
- size of a single fact
- forward or backward problem
- model of characteristic function

Representation

- Sets represented by bit vector

- Size of each bit vector:
 - Available Expressions: \# distinct expressions in program
 - Reaching Definitions: \# definitions in program
 - Live Variable Analysis: \# variables in program

Complexity

- distinguish bit-vector steps from logical steps
- watch out for complex mappings (GEN \(\rightarrow \) KILL)
Summary

- Iterative data-flow framework used to solve global data-flow problems.
- Use semi-lattice to represent facts.
- Analysis on semi-lattice with finite descending chains and monotone data-flow framework guarantees termination.
- Monotonic data-flow framework guarantees MFP solution reached.
- Distributivity property necessary to guarantee MOP solution reached.
- rPostOrder (or PostOrder) for “rapid” data-flow problems guarantees bound of O(n(d+2)) complexity.

Next Time

- Live Variable Analysis (backward problem)
- Constant Propagation