Putting Data Flow Analysis to Work

Last Time

Iterative Worklist Algorithm via Reaching Definitions

- Why it terminates.
- What it computes.
- Why it works.
- How fast it goes.

Today

- Live Variable Analysis (backward problem)
- Constant Propagation: A Progression in Analysis

1

Live Variable Analysis

Can a variable v at a point p be used before it is redefined along some path starting at p?

USE(p) - the set of variables that may be used before they are defined by this statement or basic block .

 $\mathsf{DEF}(p)$ - the set of variables that may be defined by this statement or basic block.

- 0: read I
- 1: read N
- 2: call check (N)
- 3: I = 1
- 4: while (I < N) do
- 5: A(i) = A(i) + I
- 6: I = I + 1
- 7: endwhile
- 8: print A(N)

CS 380C Lecture 5

Live Variable Analysis

A backward data flow problem: For each point *p* in the program and each variable *x*, determine whether *x* can be used before being redefined along some path starting at *p*.

For a basic block, x is *live* if it is used before being redefined within that block, or if it is *live* going out of the block. IN(v) is the set variables live coming into a block, and OUT(v) is the set of variables live going out of a block.

 $\mathsf{USE}(v)\colon x\in\mathsf{USE}(v)$ iff x may be used before it is defined in v

$$OUT(v) = \bigcup_{s \in SUCC(v)} IN(s)$$

 $IN(v) = USE(v) \bigcup (OUT(v) - DEF(v))$

The **monotone data flow framework** uses powerset of *X* (all variables) lattice. The transfer function

 $T_v(x) = \mathsf{USE}(v) \bigcup (x - \mathsf{DEF}(v))$

The meet is set union.

The operation space is monotone and distributive, therefore the solution will result in the MOP solution.

CS 380C Lecture 5	3	Data Flow Analysis
-------------------	---	--------------------

Work List Iterative Algorithm Rehashed

initialization worklist \leftarrow the set of all nodes while(worklist $\neq 0$) pick and remove a node *n* from worklist recompute Data Flow Equations if the answer changed then add affected nodes to worklist

Initialization:

OUT(v)

IN(v)

Data flow equations:

OUT(v)

IN(v)

CS 380C Lecture 5

4

Live Variable Algorithm

Algorithm:

for all v $OUT(v) = \emptyset$ IN(v) = USE(v)endfor *worklist* \leftarrow the set of all nodes while (worklist $\neq 0$) pick and remove a node v from worklist OUT(v) =IJ IN(s) $s \in SUCC(v)$ oldin = IN(v) $IN(v) = USE(v) \cup (OUT(v) - DEF(v))$ if old $in \neq IN(v)$ worklist \leftarrow worklist \cup PRED(v) end while

Live Variable Example

Can a variable v at a point p be used before it is redefined along some path starting at p?

USE(p) - the set of variables that *may* be used before they are defined by this statement or basic block.

 $\mathsf{DEF}(p)$ - the set of variables that may be defined by this statement or basic block.

	_	USE	DEF	LIVE
0:	read I			
1:	read N			
2:	call check (N)			
3:	I = 1			
4:	while (I $<$ N) do			
5:	A(i) = A(i) + I			
6:	I = I + 1			
7:	endwhile			
8:	print A(N)	l		1

6

CS 380C Lecture 5

5

Constant Propagation

Discover variables and expressions that are constant and propagate them as far forward through the program as possible.

Uses:

- Evaluates expressions at compile time instead of runtime.
- Eliminate *dead code*, code that can never be executed, *e.g.*, debugging code.
- Improves the effectiveness of many optimizations, *e.g.*, value numbering, software pipelining.

7

Since it is an analysis, there are no disadvantages.

Constant	Pro	pagatio	on					
Lattice:				Т				
3	-2	-1	0		1	2	3	
				\perp				
Meet Rule	es:							
	$\bigcap_{i \in \mathcal{N}}$	\bot	nt	\rightarrow \rightarrow \rightarrow	\perp	nstant	(if e	qual)
constant		constai					•	ot equal

Optimistic assumption: all variables start at an unknown constant value $(\top \neq \bot)$

Pessimistic assumption: all variables are not constant $(\top = \bot)$

CS 380C Lecture 5

Data Flow Analysis

CS 380C Lecture 5 8 Data Flow Analysis

Kildall's algorithm for Constant Propagation

Using a worklist

- 1. Add successor basic blocks (statements) of start.
- 2. Given v = expression,
- 3. For every use *w* in *expression*, find the reaching definitions. If all constant, set value of *w* to the constant value, otherwise set value of $w = \bot$.
- 4. If any w is \bot , the set value of $v = \bot$.
 - \implies What is the effect of a pessimistic vs. optimistic assumption?
- 5. Otherwise, if they are all constants, set v to the value of the expression.

Simple constants. No information is assumed about which direction branches take, and only one value for each variable is maintained along each path in the program.

Time: $O(E * V^2) - E * V$ node visits, V operations at a visit.

Space: O(N * V), N statements in the program

Kildall, G. A., A unified approach to global program optimization. *conference Record of the First ACM Symposium on Principles of Programming Languages*, October 1973, pages 194-206.

CS 380C Lecture 5 9

Data Flow Analysis

DefUse Graph

Reaching definitions and live variables help us find constants.

A *DefUse* chain is a connection from a *definition site* for a variable to a *use site* for that variable along a path in the *CFG* without passing through another definition.

How should we build it?

z =	z =
x =	x =
y = y = z $x =$	y = y = z $x =$
= x + y + z DefUse edges	= x + y + z DefJoin and JoinUse edges
Hints o	of static single assignment (SSA)

CS 380C Lecture 5 10 Data F

Reif and Lewis Constant Propagation

Finds **simple constants**, but improves the time and space complexity of Kildall.

Worklist algorithm:

- 1. Put all the root edges from the *DefUse* graph on the worklist.
- 2. A definition site in the roots, is assigned a constant, if it can be evaluated to a constant, otherwise it is assigned \perp .
- 3. All other variables are assigned \top .
- 4. *DefJoin* edges are taken off the worklist. The value of the src of an edge is propagated to the use using the meet rules.
- 5. If the value is lowered, the new value is propagated and evaluated at the use expression. If this causes a variable to be lowered, the node is added to the worklist.

Time: The complexity is now in terms of the DefUse graph.

11

Reif and Lewis Constant Propagation

i = 1for () j = ii = f(...)i = jendfor

Handles loops because of optimistic assumption. Previous techniques couldn't do loops.

What do we need to do to detect that j is constant?

$$i = 1$$

$$j = 3$$

...
if (i == 1)
then j = 1

$$k = j$$

CS 380C Lecture 5

Data Flow Analysis

CS 380C Lecture 5

12

Wegman and Zadeck - Conditional Definition

Conditional Definition. Keeps track of the results of conditional branches. A form of dead code elimination.

- Whenever the expression in a branch is a constant, determine the direction of the branch.
- Only propagate definitions when the flow graph node is marked as executable.
- Use symbolic execution of the program to mark edges.
- When propagating constants ignore edges at join nodes that are not executable.

Wegman Zadeck - Conditional Constant

Conditional Constant. Adds identity i = i on *birth points* that are not definitions to determine kills along paths that must be executed.

Birth point for a variable *v*:

- Each definition site for v is a birth point.
- Let *n* be a node with two or more incoming edges. If there is a node *m* which is a birth point for *v* and there is a birth point free path from *m* to *n* along one in edge, but not the other, then *n* is a birth point for *v*.

Time: O(2*N+2*C) C is the number of DefUse chains.

Wegman, M. N. and Zadeck, F. K., Constant Propagation with Conditional Branches, *Conference Record of the Twelfth Annual ACM Symposium on the Principles of Programming Languages*, January, 1985.

13

CS 380C Lecture 5

Data Flow Analysis

CS 380C Lecture 5

14

Constant Propagation truth tables

Lattice for integer addition, multiplication, mod, etc.

ор	Т	c_1	\perp
Т	Т	c_1	\perp
c_2	c_2	$c_1 \text{ op } c_2$	\perp
\perp	\perp	\perp	\perp

Lattice for AND

AND	\top	false	true	\perp	
Т	Т	false	Т	\perp	
false	false ⊤	false	false	false	
true	Т	false	true	\perp	
\perp	\perp	false	\perp	\perp	

Lattice for OR

\top	false	true	\perp
Т	Т	true	\perp
Т		true	\perp
true	true	true	true
\perp	\perp	true	\perp
	⊤ ⊤ true ⊥	T T T false	$\begin{array}{cccc} \top & \top & true \\ \top & false & true \\ true & true & true \end{array}$

CS 380C Lecture 5 15

Data Flow Analysis

CS 380C Lecture 5 16

16

Data Flow Analysis

A last refinement

Insert an assignment/assertion i = 4 on the *true* branch.

Worst Case Example

select j when a do	i = 1	i = 2	i = 3
i = 1 when b do			
i = 2 when <i>c</i> do			
i = 3 end select	a = i	b = i	c = i
select k when a do			
a = i when <i>b</i> do b = i			
when c do c = i	i = 1	i = 2	i = 3
end select			

Next Time

More Program Representation

- Dominators
- Control Dependence

K. D. Cooper, T. Harvey, and K. Kennedy, A Simple, Fast Dominance Algorithm, Software Practice and Experience, 2001:4:1-28.

a = i b = i c = i

CS 380C Lecture 5

D

17

18