Putting Data Flow Analysis to Work Live Variable Analysis

Last Time Can a variable v at a point p be used before it is
redefined along some path starting at p?

Iterative Worklist Algorithm via Reaching Definitions
USE(p) - the set of variables that may be used before

e Why it terminates. they are defined by this statement or basic block .
e What it computes. DEF(p) - the set of variables that may be defined by
e Why it works. this statement or basic block.

e How fast it goes.

Today 0: read I

1: read N

e Live Variable Analysis (backward problem) 2: call check (N)

e Constant Propagation: A Progression in Analysis 3: I=1
4: while (I < N) do
5: A() = A@) + 1
6: I=1+41
T endwhile
8: print A(N)

CS 380C Lecture 5 1 Data Flow Analysis CS 380C Lecture 5 2 Data Flow Analysis

Live Variable Analysis

A backward data flow problem: For each point p in
the program and each variable x, determine whether x
can be used before being redefined along some path
starting at p.

For a basic block, x is live if it is used before being
redefined within that block, or if it is live going out of
the block. IN(v) is the set variables live coming into a
block, and OUT(v) is the set of variables live going
out of a block.

USE(v): x € USE(v) iff x may be used before it
is defined in v

DEF(v): x € DEF(v) iff x must be defined before
it is used in v (DEF(v) == KILL(V))

OUT(V) = USESUCC(V)IN(S)
IN(v) = USE(v)U(OUT (v) — DEF(v))

The monotone data flow framework uses powerset
of X (all variables) lattice. The transfer function

Tu(X) = USE(V)| J(x— DEF(v))

The meet is set union.

The operation space is monotone and distributive,
therefore the solution will result in the MOP solution.

CS 380C Lecture 5 3 Data Flow Analysis

Work List Iterative Algorithm Rehashed

initialization
worklist +— the set of all nodes
while(worklist £0)
pick and remove a node n from worklist
recompute Data Flow Equations
if the answer changed then
add affected nodes to worklist

Initialization:
OUT(v)
IN(v)

Data flow equations:
OUT(v)
IN(v)

CS 380C Lecture 5 4 Data Flow Analysis

Live Variable Algorithm

Algorithm:
for all v
OUT(v) =0
IN(v) = USE(v)
endfor

worklist <+ the set of all nodes
while (worklist #0)
pick and remove a node v from worklist
OUT(v) = U IN(S)
scsSUCC(v)
oldin = IN(v)
IN(v) = USE(v) U (OUT(v) - DEF(v))
if oldin # IN(v)
worklist «— worklist U PRED(v)
end while

CS 380C Lecture 5 5 Data Flow Analysis

Live Variable Example

Can a variable v at a point p be used before it is
redefined along some path starting at p?

USE(p) - the set of variables that may be used before
they are defined by this statement or basic block.

DEF(p) - the set of variables that may be defined by
this statement or basic block.

USE DEF LIVE
0: read I
1: read N
2: call check (N)
3: I=1
4. while (I < N) do
5: A() = A() + 1
6: I=1+41
T endwhile
8: print A(N)
CS 380C Lecture 5 6 Data Flow Analysis

Constant Propagation

Discover variables and expressions that are constant
and propagate them as far forward through the
program as possible.

Uses:

e Evaluates expressions at compile time instead of
runtime.

e Eliminate dead code, code that can never be
executed, e.g., debugging code.

e Improves the effectiveness of many optimizations,
e.g., value numbering, software pipelining.

Since it is an analysis, there are no disadvantages.

CS 380C Lecture 5 7 Data Flow Analysis

Constant Propagation

Lattice: T

=3 -2 -1 0 1 2 3

1
Meet Rules:
a n T — a
a N L — L
constant N constant — constant (if equal)
constant N constant — L (if not equal)

Optimistic assumption: all variables start at an
unknown constant value (T # 1)

Pessimistic assumption: all variables are not constant
(T=1)

CS 380C Lecture 5 8 Data Flow Analysis

Kildall’s algorithm for Constant Propagation

Using a worklist

1. Add successor basic blocks (statements) of start.
2. Given v= expression,

3. For every use w in expression, find the reaching
definitions. If all constant, set value of w to the
constant value, otherwise set value of w= 1.

4. If any wis 1, the set value of v= 1.
— What is the effect of a pessimistic
vs. optimistic assumption?

5. Otherwise, if they are all constants, set v to the
value of the expression.

Simple constants. No information is assumed about
which direction branches take, and only one value for
each variable is maintained along each path in the
program.

Time: O(E*V?) - ExV node visits, V operations at a
visit.

Space: O(NxV), N statements in the program

Kildall, G. A., A unified approach to global program optimization.
conference Record of the First ACM Symposium on Principles of
Programming Languages, October 1973, pages 194-206.

CS 380C Lecture 5 9 Data Flow Analysis

DefUse Graph

Reaching definitions and live variables help us find
constants.

A DefUse chain is a connection from a definition site
for a variable to a use site for that variable along a
path in the CFG without passing through another
definition.

How should we build it?

zZ = zZ =
X = X =
y = y =1¢ y = y =12
X = X =
=X+y+z =X+y+z
DefUse edges DefJoin and JoinUse edges

Hints of static single assignment (SSA)

CS 380C Lecture 5 10 Data Flow Analysis

Reif and Lewis Constant Propagation Reif and Lewis Constant Propagation

Finds simple constants, but improves the time and

space complexity of Kildall. i =1
for ()
Worklist algorithm: i =
= f(...)
1. Put all the root edges from the DefUse graph on i =]
the worklist. endfor

2. A definition site in the roots, is assigned a
constant, if it can be evaluated to a constant,
otherwise it is assigned L.

3. All other variables are assigned T.

4. DefJoin edges are taken off the worklist. The
value of the src of an edge is propagated to the
use using the meet rules.

Handles loops because of optimistic assumption.
Previous techniques couldn't do loops.

What do we need to do to detect that j is constant?

5. If the value is lowered, the new value is
propagated and evaluated at the use expression. If i =1
this causes a variable to be lowered, the node is j =3
added to the worklist.
if (i == 1)
Time: The complexity is now in terms of the DefUse then j = 1
graph. kK =]

CS 380C Lecture 5 11 Data Flow Analysis CS 380C Lecture 5 12 Data Flow Analysis

Wegman and Zadeck - Conditional Definition

Conditional Definition. Keeps track of the results of
conditional branches. A form of dead code elimination.

Whenever the expression in a branch is a constant,
determine the direction of the branch.

Only propagate definitions when the flow graph
node is marked as executable.

Use symbolic execution of the program to mark
edges.

When propagating constants ignore edges at join
nodes that are not executable.

Wegman Zadeck - Conditional Constant

Conditional Constant. Adds identity i =i on birth
points that are not definitions to determine Kills along
paths that must be executed.

Birth point for a variable v:

e Each definition site for v is a birth point.

e Let n be a node with two or more incoming edges.
If there is a node m which is a birth point for v and
there is a birth point free path from m to n along
one in edge, but not the other, then nis a birth
point for v.

Time: O(2«N+2xC) C is the number of DefUse chains.

Wegman, M. N. and Zadeck, F. K., Constant Propagation with

Conditional Branches, Conference Record of the Twelfth Annual
ACM Symposium on the Principles of Programming Languages,

January, 1985.

CS 380C Lecture 5 13 Data Flow Analysis

CS 380C Lecture 5 14 Data Flow Analysis

Constant Propagation truth tables

Lattice for integer addition, multiplication, mod, etc.

op| T c1 1
T T c1 1
Co C Cciopc L
1L 1 1 1
Lattice for AND
AND | T false true 1
T T false T 1
false | false false false false
true T false true 1
1 1 false 1 1
Lattice for OR
OR | T false true L
T T T true 1
false T false true 1
true | true true true true
1 1 1 true 1
CS 380C Lecture 5 15 Data Flow Analysis

A last refinement

if (i = 4) then

j=i4+2
. use of j, i
endif
. use of j, i
Insert an assignment/assertion i = 4 on the true
branch.
CS 380C Lecture 5 16 Data Flow Analysis

Worst Case Example

select |
when a do
i=1
when b do
i =2
when c do
i=3
end select

select k
when a do
a =i
when b do
b=
when c do
cC=
end select

CS 380C Lecture 5

17

Data Flow Analysis

Next Time

More Program Representation

e Dominators
e Control Dependence

K. D. Cooper, T. Harvey, and K. Kennedy, A Simple,
Fast Dominance Algorithm, Software Practice and
Experience, 2001:4:1-28.

CS 380C Lecture 5 18 Data Flow Analysis

