Program Representation

Last Time

e Live variable analysis

e Constant propagation
leads us to SSA and how to connect uses and def

Today

e Finish constants

e Goal: understand control flow more deeply to
build SSA

e Dominator relationships
e DOM, IDOM, DOM™1, DOM!, post-dominators
e Control Dependence

CS 380C Lecture 6 1 Program Representation

Dominator Relationships

Dominators

x dominates y, x DOM vy, in a CFG if V paths from
Entry to y include x.

DOM(v) = the set of all vertices that dominate v.

e All vertices dominate themselves, ve DOM(v).

e Entry dominates every vertex in the graph,
YW Entry € DOM(v).

e DOM is reflexive, antisymmetric, and transitive.
Strict Dominators

e DOMI!(v) = DOM(v) - {v}, strictly dominates v

e antisymmetric and transitive

Immediate Dominator

e IDOM(v) = the closest, strict dominator of v.
d IDOM v if

d DOM! v and (vwew DOM! v) w DOM d|
e antisymmetric

CS 380C Lecture 6 2 Program Representation

Dominator Example Dominator Tree

O

OO
hey e
CRAONC

DOM(v) DOM! (Strict) | IDOM(v)

JOR6

JO

AOTMTOW><

CS 380C Lecture 6 3 Program Representation CS 380C Lecture 6 4 Program Representation

Dominator Relationships

Theorem: IDOM(v) is unique, i.e., a singleton.

Proof:. by contradiction. Suppose ¢ IDOM v and
d IDOM v. By definition, c#v and d#v, so
c DOM! v and d DOM! v. By definition of IDOM,

d DOM! v and (vwew DOM! v) (w DOM d].

Thus, c DOM d and d DOM ¢, but DOM is
antisymmetric, a contradiction if c#d. ¢ and d must
therefore be the same vertex.

Inverse Dominators

e DOM1(v) = the set of all vertices dominated by
V.

e reflexive, antisymmetric, and transitive

CS 380C Lecture 6 5 Program Representation

Inverse Dominator Example

@

OO
0

DOM(v)

DOM~™

{A}

{A.B}
{AB,C}
{A,B,D}
{(A,B,E}
{ABE,F}
{ABE,G}

OTMONW><

CS 380C Lecture 6

Program Representation

Finding Dominators

DOM(v) = the set of all vertices that dominate v.

DOM(V) ={viu ()

pePRED(v)

DOM(p)

Algorithm:

DOM(Entry) = { Entry }
for veV —{ Entry } do DOM(v) =V
repeat
changed = false
for neV—{ Entry } do
olddom = DOM(n

DOM(n) = {nju (| DOM(p)
pePRED(v)
if DOM(n) # olddom then changed = true
endfor
until changed = false
Complexity: O(N?)
CS 380C Lecture 6 7 Program Representation

Dominator Algorithm Example

@

OO,
0
@

| DOM(v) iteration: O |

A | {A}

B | {AB,C,D,E,F,G}
C | {AB,C,D,E,F,G}
D {A, B,C,D,E,F,G}
E | {AB,C,D,E,FG}
F | {AB,C,D,E,F,G}
G | {AB,C,D,E,F,G}

CS 380C Lecture 6 38 Program Representation

Post-Dominators

CFG = (V,E, Entry, Exit)

(WeV)vS Exit]
Exit is reachable from all other nodes

PDOM(v): all nodes that post-dominate v
p post-dominates v, if every path from v to Exit
includes p

e p PDOM v implies v Exit can be split into v p
and p> Exit
e reflexive, antisymmetric, and transitive

e PDOM on CFG is the same as DOM on the
reverse CFG

strict post-dominators
e p PDOM! v<=p PDOM v & p#V

post-dominance frontier

e ve PDF(p) if p PDOM SUCC(v)
but p is not p PDOM! v

CS 380C Lecture 6 9 Program Representation

Post-Dominator Example

CS 380C Lecture 6

@

10

OO,
0
ONC

Program Representation

Control Dependence Graph - Gy Control Dependence Example

y is control dependent on x, x and y in CFG, if:

o - xﬁy, y post-dominates every vertex p in xi>y,
p# X, and

e y does not strictly post-dominate x.

e (x,y) has label I, the first edge on x5 y.

CDPRED(y) = {x | y is control dependent on x}
CDSUCC(x) = {y | y is control dependent on x} @ @ @
Note: add edge (entry, exit) in CFG @

JOR6

O

CS 380C Lecture 6 11 Program Representation CS 380C Lecture 6 12 Program Representation

Aside: we need a basic block for code motion Landing pad (Preheaders)

Entry

e landing pad
e control dependence graph

izi+1l
b=1|c|+b T
\ c=c+2i
m=n
if i<n)
F
Exit

CS 380C Lecture 6 13 Program Representation CS 380C Lecture 6 14 Program Representation

Next Time

Static Single Assignment

Read: Cytron et al. " Efficiently Computing Static
Single Assignment Form and the Control Dependence
Graph, TOPLAS 13(4), Oct 1991, pp. 451-490.

CS 380C Lecture 6 15 Program Representation

