
Control Flow Analysis

Last Time

• Constant propagation

• Dominator relationships

Today

• Static Single Assignment (SSA) - a sparse
program representation for data flow

• Dominance Frontier

CS 380C Lecture 7 1 Static Single Assignment

Computing Static Single Assignment (SSA) Form

Overview

• What is SSA?

• Advantages of SSA over use-def chains

• “Flavors” of SSA

• Dominance frontier

• Control dependence

• Inserting φ-nodes

• Renaming the variables

• Translating out of SSA form

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck, “Efficiently Computing Static
Single Assignment Form and the Control Dependence
Graph”, ACM TOPLAS 13(4), October, 1991, pp.
451–490.

CS 380C Lecture 7 2 Static Single Assignment

What is SSA?

• Each assignment to a variable is given a unique
name

• All of the uses reached by that assignment are
renamed

• Easy for straight-line code

V ← 4 V0 ← 4
← V + 5 ← V0 + 5

V ← 6 V1 ← 6
← V + 7 ← V1 + 7

What about control flow?

=⇒ φ-nodes

CS 380C Lecture 7 3 Static Single Assignment

What is SSA?

H
H

H
H

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

H
H

Hj

if (. . .)B1

X ← 5B2 X ← 3B3

Y ← XB4

H
H

H
H

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

H
H

Hj

if (. . .)B1

X0 ← 5B2 X1 ← 3B3

X2 ← φ(X0, X1)

Y ← X2

B4

CS 380C Lecture 7 4 Static Single Assignment

What is SSA?

I ← 1B1

I ← I + 1B2

?

?

?

I0 ← 1B1

I1 ← φ(I2, I0)

I2 ← I1 + 1
B2

?

?

?

CS 380C Lecture 7 5 Static Single Assignment

Advantages of SSA over use-def chains

• More compact representation

• Easier to update?

• Each USE has only one definition

• Definitions are explicit merging of values
φ-node merge together multiple definitions
definitions may reach multiple φ-node

CS 380C Lecture 7 6 Static Single Assignment

“Flavors” of SSA

Where do we place φ-nodes?

Condition:
If two non-null paths X

+
→ Z and Y

+
→ Z converge

at node Z, and nodes X and Y contain
assignments to V (in the original program), then a
φ-node for V must be inserted at Z (in the new
program).

minimal
As few as possible subject to condition

Briggs-minimal Invented by Preston Briggs
As few as possible subject to condition, and V
must be live across some basic block

pruned
As few as possible subject to condition, and no
dead φ-nodes

CS 380C Lecture 7 7 Static Single Assignment

Motivating Example

A =

1

2

3 4

5

6

7

8 9

10

A =

A =

Where do you put the φ-nodes?

CS 380C Lecture 7 8 Static Single Assignment

Dominance Frontiers

Intuitively: The dominance frontier indicates a join
point of control flow where two or more potential
definitions can come together.

DF(v) dominance frontier of v is a set.
DF(v) includes w iff

• v dominates some predecessor of w
• v does not strictly dominate w

DF(v) =
{w|(∃u ∈ PRED(w)) [v DOM u] ∧ v DOM! w}

Remember:

• If X appears on every path from entry to Y,
then X dominates Y (X DOM Y).

• If X DOM Y and X 6= Y,
then X strictly dominates Y (X DOM! Y).

• The immediate dominator of Y (IDOM(Y))
is the closest strict dominator of Y.

• IDOM(Y) is Y’s parent in the dominator tree.

CS 380C Lecture 7 9 Static Single Assignment

Dominance Frontier Example

1

2

3 4

5

6

7

8 9

10

A =

A = A =

DF(9)

DF({8,9}) =

DF(10) =

 =

DF(8) =

 =DF(2)

DF({2,8,9,10}) =

CS 380C Lecture 7 10 Static Single Assignment

Dominance Frontier

Intuitively: The dominance frontier indicates a join
point of control flow where two or more potential
definitions can come together.

DF(v) dominance frontier of v is a set.
DF(v) includes w iff

• v dominates some predecessor of w
• v does not strictly dominate w

DF(v) =
{w|(∃u ∈ PRED(w)) [v DOM u] ∧ v DOM! w}

Algorithm:
procedure FindDF(v)
forall v

if (the number of predecessors of v≥ 2) then
forall predecessors p of v

runner = p
while (runner 6= IDOM(v)

add v to DF(runner)
runner = IDOM(runner)

endwhile
endfor

endif

CS 380C Lecture 7 11 Static Single Assignment

Dominance Frontier Example

DF(2)

DF(3)

DF(1) = DF(6) =

DF(4) = DF(9) =

DF(5) = DF(10) =

1

2

3 4

5

6

7

8 9

10

A =

A = A =

 = DF(7) =

 = DF(8) =

CS 380C Lecture 7 12 Static Single Assignment

Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes
to sets of nodes:

DF(L) =
S

X∈L DF(X)

The iterated dominance frontier DF+(L) is the limit
of the sequence:

DF1 = DF(L)
DFi+1 = DF(L

S

DFi)

Theorem 1
The set of nodes that need φ-nodes for any
variable V is the iterated dominance frontier
DF+(L), where L is the set of nodes with
assignments to V.

CS 380C Lecture 7 13 Static Single Assignment

Inserting φ-nodes

for each variable V
HasAlready ← /0
EverOnWorkList ← /0
WorkList ← /0
for each node X containing an assignment to V

EverOnWorkList ← EverOnWorkList
S

{X}
WorkList ← WorkList

S

{X}
end for

while WorkList 6= /0
remove X from WorkList

for each Y ∈ DF(X)
if Y 6∈ HasAlready

insert a φ-node for V at Y
HasAlready ←HasAlready

S

{Y}
if Y 6∈ EverOnWorkList

EverOnWorkList ← EverOnWorkList
S

{Y}
WorkList ← WorkList

S

{Y}
end for

end while
endfor

CS 380C Lecture 7 14 Static Single Assignment

Inserting φ-node Example

A =

1

2

3 4

5

6

7

8 9

10

A =

A =

CS 380C Lecture 7 15 Static Single Assignment

Renaming the variables

Data Structures

Stacks array of stacks, one for each original variable V
The subscript of the most recent definition of V
Initially, Stacks[V] = EmptyStack, ∀ V

Counters an array of counters, one for each original
variable
The number of assignments to V processed
Initially, Counters[V] = 0, ∀ V

procedure GenName(Variable V)
i ← Counters[V]
replace V by Vi

Push i onto Stacks[V]
Counters[V] ← i + 1

Rename - a recursive procedure

• Walks the control flow graph in preorder

• Initially, call Rename(entry)

CS 380C Lecture 7 16 Static Single Assignment

Renaming the variables

procedure Rename(Block X)

if X visited return

for each φ-node P in X
GenName(LHS(P))

for each statement A in X
for each variable V ∈ RHS(A)

replace V by Vi, where i = Top(Stacks[V])
for each variable V ∈ LHS(A)

GenName(V)

for each Y ∈ SUCC(X)
j ← position in Y ’s φ-nodes corresponding to X
for each φ-node P in Y

replace the jth operand of RHS(P) by Vi

where i = Top(Stacks[V])

for each Y ∈ SUCC(X)
Rename(Y)

for each φ-node or statement A in X
for each Vi ∈ LHS(A)

Pop (Stacks[V])

CS 380C Lecture 7 17 Static Single Assignment

What happens to Stacks during Renaming?

V ←
...
V ←
...
V ←

BeforeStacks

V - i - · · · 0

After

Stacks

V - i+3 - i+2 - i+1 -

?

i -

· · · 0

CS 380C Lecture 7 18 Static Single Assignment

Computing SSA Form

Compute dominance frontiers

Insert φ-nodes

Rename variables

Theorem 2

Any program can be put into minimal SSA form
using this algorithm.

Translating Out of SSA Form

Restore original names to variables

Delete all φ-nodes

Replace φ-nodes with copies in predecessors

CS 380C Lecture 7 19 Static Single Assignment

Translating Out of SSA Form

H
H

H
H

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

H
H

Hj

if (. . .)B1

X0 ← 5B2 X1 ← 3B3

X2 ← φ(X0, X1)

Y ← X2

B4

H
H

H
H

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

H
H

Hj

if (. . .)B1

X0 ← 5

X2 ← X0

B2

X1 ← 3

X2 ← X1

B3

Y ← X2B4

CS 380C Lecture 7 20 Static Single Assignment

Next Time

Static Single Assignment

• Induction variables (standard vs. SSA)

• Loop Invariant Code Motion with SSA

CS 380C Lecture 7 21 Static Single Assignment

Cytron et al. Dominance Frontier Algorithm

let SUCC(S) =
[

s∈S

SUCC(s)

DOM!−1(v) = DOM−1(v) - v, then

DF(v) = SUCC(DOM−1(v)) - DOM!−1(v)

DF(v) = DFlocal(v)
[

c∈Child(v)

DFup(c)

Child(v): children of v in the dominator tree

DFlocal(v) = {w|w ∈ SUCC(v) vDOM!w}

DFup(w) is the subset of DF(w) that is not strictly
dominated by IDOM(w) (IDOM(w) = v).

Algorithm:
procedure FindDF(v)
DF(v) = empty
for w ∈ DomChild(v) do

FindDF(w)
for u in DF(w) do

if not(v DOM! u) then
add u to DF(v)

endfor
endfor
for w in SUCC(v) do

if not(v DOM! w) then
add w to DF(v)

endfor

CS 380C Lecture 7 22 Static Single Assignment

