Optimization

Last Time

Building SSA

e Basic definition, and why it is useful
e How to build it

Today

e Putting SSA to work
e Analysis and Transformation

— Analysis - proves facts about programs

— Transformation - changes the program to
make it “better” while preserving its semantics

e SSA Loop Optimizations

— Loop Invariant Code Motion
— Induction variables

— While we do the above, let's think about
comparing SSA with dataflow def/use chains.

CS 380C Lecture 8 1 Optimizations with SSA

Loop Optimization

Loops are important, they execute often

e typically, some regular access pattern

regularity = opportunity for improvement
repetition = savings are multiplied

e assumption: loop bodies execute 10depth times

Classical Loop Optimizations

Loop Invariant Code Motion
Induction Variable Recognition
Strength Reduction

Linear Test Replacement
Loop Unrolling

Other Loop Optimizations

Scalar replacement

Loop Interchange

Loop Fusion

Loop Distribution (also known as Fision)
Loop Skewing

Loop Reversal

CS 380C Lecture 8 2 Optimizations with SSA



Loop Invariant Code Motion Loop Invariant Code Motion Example I

e Build the SSA graph
e Need Briggs-minimal insertion of @-nodes

If two non-null paths X 5 Z and Y &% Z converge
at node Z, and nodes X and Y contain
assignments to V (in the original program),
then a @-node for V must be inserted at Z (in
the new program).

and V must be live across some basic block

Simple test:
for a statement s, none of the operands point to a

@-node or a definition inside the loop.

Transformation:
Given, | =r1 op ry, assign the computation a new
temporary name, tx=ry op rp, move it to the loop
pre-header, and assign | =t.

CS 380C Lecture 8 3 Optimizations with SSA CS 380C Lecture 8 4 Optimizations with SSA



Loop Invariant Code Motion

More invariants:

e Start at roots in loop

e If the operands point to a definition inside loop,
and that definition is a function of loop invariants
(recursive definition).

e Do the same replacement as in the simple test as
each invariant expression is found.

After we finish the example, let's think about using
use/def chains from dataflow for loop invariant code
motion.

CS 380C Lecture 8 5 Optimizations with SSA

Loop Invariant Code Motion Example II

Any more?

CS 380C Lecture 8

Optimizations with SSA



Induction Variable Recognition

e What is a loop induction variable?

e Why might we want to detect one?

i=0
while i < 10 do

i=i4+1
end while

Simplest Method:

Pattern match for “i = i + b” in loop and look at the
DEF/USE chains to determine there are no other
assignment to i in loop.

Problem: Does not catch all induction variables.

CS 380C Lecture 8 7 Optimizations with SSA

Taxonomy of Induction Variables

1. A basic induction variable is a variable J

e whose only definition within the loop is an
assignment of the form J := J £ ¢, where c is
loop invariant).

2. A mutual induction variable I is

e defined once within the loop, and its value is a
linear function of some other induction
variable(s) I’ such that

I =cl1 %I £ c2
or
I =1I"/cl + c2.
where c1, c2 are loop invariant.

CS 380C Lecture 8 8 Optimizations with SSA



Optimistic Induction Variable Recognition

Optimistic Induction Variables
IV =0
for each statement s in the loop

if op is ADD,SUB, or NEG

add sto IV
if op is LOAD or STORE & address is loop invariant
add sto IV
end for
repeat

loop
changes = false
for each sin IV

~ —
I
o O

if either operand is not in IV
remove s from IV

j _
k
changes = true
endif
end for
until - changes

++
N -

i =i % 2
end loop
Finds linear induction variables.
Catches mutual induction variables.
Does not exploit SSA

CS 380C Lecture 8 Optimizations with SSA

CS 380C Lecture 8

10 Optimizations with SSA



Loop Induction Variables with SSA

e Build the SSA graph
e Going from the innermost to the outermost loop
e Find cycles in the graph

Each cycle may be a basic induction variable

If the variable(s) in the cycle is a function of loop
invariants and its value on the current
iteration,

i.e., @is a function of an initialized variable and
an instance of V in the cycle.

e Other induction variables can depend on basic
induction variables.

CS 380C Lecture 8 11 Optimizations with SSA

Loop Induction Variables Example I

i=1 il =1
loop loop
i2 = @(i1,i3)
. o (i) L
NON
. . i3 =i 1
=41 3 2 +
. oo (ig) .
() .
end loop
end loop
CS 380C Lecture 8 12 Optimizations with SSA



Loop Induction Variables with SSA

Are the variable(s) in the cycle a function of loop
invariants and its value on the current iteration?

e The @-node in the cycle will take one definition
from inside the loop and one from outside the
loop (assuming @-nodes with only two inputs).

e Two statement cycle: The definition inside the
loop will be part of the cycle and will get one
operand from the @-node and any others will be
loop invariant.

e Larger cycles: Other definitions in the cycle will
chain as follows:

i2=@(io,i1)
j = iziC].
k= j+c2
.r..: q+c6
ip =r+c7

The definition at @ is the basic induction variable.

Mutual induction variables are functions of other
induction variables. If they are in a cycle with a
basic variable, they must follow the above form. If
they are not in a cycle, they can take the form
j=clxi£tc2 where i is an induction variable.

CS 380C Lecture 8 13 Optimizations with SSA

Loop Induction Variables Example II

loop

j=3

i=i4+1
l=m+1
m=1+4+2
j=i4+2
k=2x j

end loop

CS 380C Lecture 8

14

ip =3

m=20

loop
i2 = @ (i1i3)
My = ¢ (Mg, mg)
j1=3
i3 =i+ 1
lh=m + 1
m =1 + 2
jo =13+ 2
ki=2=x jo

end loop

Optimizations with SSA



Next Time

Optimizating expressions
e common subexpression elimination

e value numbering

CS 380C Lecture 8 15 Optimizations with SSA



