
Optimization

Last Time

Building SSA

• Basic definition, and why it is useful

• How to build it

Today

• Putting SSA to work

• Analysis and Transformation

– Analysis - proves facts about programs

– Transformation - changes the program to
make it “better” while preserving its semantics

• SSA Loop Optimizations

– Loop Invariant Code Motion

– Induction variables

– While we do the above, let’s think about
comparing SSA with dataflow def/use chains.

CS 380C Lecture 8 1 Optimizations with SSA

Loop Optimization

Loops are important, they execute often

• typically, some regular access pattern

regularity ⇒ opportunity for improvement

repetition ⇒ savings are multiplied

• assumption: loop bodies execute 10depth times

Classical Loop Optimizations

• Loop Invariant Code Motion

• Induction Variable Recognition

• Strength Reduction

• Linear Test Replacement

• Loop Unrolling

Other Loop Optimizations

• Scalar replacement

• Loop Interchange

• Loop Fusion

• Loop Distribution (also known as Fision)

• Loop Skewing

• Loop Reversal

CS 380C Lecture 8 2 Optimizations with SSA

Loop Invariant Code Motion

• Build the SSA graph

• Need Briggs-minimal insertion of φ-nodes

If two non-null paths X
+
→ Z and Y

+
→ Z converge

at node Z, and nodes X and Y contain
assignments to V (in the original program),
then a φ-node for V must be inserted at Z (in
the new program).

and V must be live across some basic block

Simple test:

for a statement s, none of the operands point to a
φ-node or a definition inside the loop.

Transformation:

Given, l = r1 op r2, assign the computation a new
temporary name, tk = r1 op r2, move it to the loop
pre-header, and assign l = tk.

CS 380C Lecture 8 3 Optimizations with SSA

Loop Invariant Code Motion Example I

B =
A = X =

Y =

X = A + B
Y = X + Y

loop

end loop

CS 380C Lecture 8 4 Optimizations with SSA

Loop Invariant Code Motion

More invariants:

• Start at roots in loop

• If the operands point to a definition inside loop,
and that definition is a function of loop invariants
(recursive definition).

• Do the same replacement as in the simple test as
each invariant expression is found.

After we finish the example, let’s think about using
use/def chains from dataflow for loop invariant code
motion.

CS 380C Lecture 8 5 Optimizations with SSA

Loop Invariant Code Motion Example II

B =
A = X =

Y =

X = A + B
Y = X + Y

loop

end loop

Z = X + A

Any more?

CS 380C Lecture 8 6 Optimizations with SSA

Induction Variable Recognition

• What is a loop induction variable?

• Why might we want to detect one?

i = 0
while i < 10 do

i = i + 1
end while

Simplest Method:

Pattern match for “i = i + b” in loop and look at the
DEF/USE chains to determine there are no other
assignment to i in loop.

Problem: Does not catch all induction variables.

CS 380C Lecture 8 7 Optimizations with SSA

Taxonomy of Induction Variables

1. A basic induction variable is a variable J

• whose only definition within the loop is an
assignment of the form J := J ± c, where c is
loop invariant).

2. A mutual induction variable I is

• defined once within the loop, and its value is a
linear function of some other induction
variable(s) I’ such that

I = c1 * I’ ± c2

or

I = I’ / c1 ± c2.

where c1, c2 are loop invariant.

CS 380C Lecture 8 8 Optimizations with SSA

Optimistic Induction Variable Recognition

IV = /0
for each statement s in the loop

if op is ADD,SUB, or NEG

add s to IV
if op is LOAD or STORE & address is loop invariant

add s to IV
end for

repeat

changes = false
for each s in IV

if either operand is not in IV
remove s from IV
changes = true

endif

end for

until ¬ changes

Finds linear induction variables.

Catches mutual induction variables.

Does not exploit SSA

CS 380C Lecture 8 9 Optimizations with SSA

Optimistic Induction Variables

i = 0
k = 0
loop

j = k + 1
k = j + 2

i = i ∗ 2

end loop

CS 380C Lecture 8 10 Optimizations with SSA

Loop Induction Variables with SSA

• Build the SSA graph

• Going from the innermost to the outermost loop

• Find cycles in the graph

Each cycle may be a basic induction variable

If the variable(s) in the cycle is a function of loop
invariants and its value on the current
iteration,
i.e., φ is a function of an initialized variable and
an instance of V in the cycle.

• Other induction variables can depend on basic
induction variables.

CS 380C Lecture 8 11 Optimizations with SSA

Loop Induction Variables Example I

i = 1

loop

. . . (i) . . .

i = i + 1

. . . (i) . . .

end loop

i1 = 1

loop

i2 = φ(i1, i3)

. . . (i2) . . .

i3 = i2 + 1

. . . (i3) . . .

end loop

CS 380C Lecture 8 12 Optimizations with SSA

Loop Induction Variables with SSA

Are the variable(s) in the cycle a function of loop
invariants and its value on the current iteration?

• The φ-node in the cycle will take one definition
from inside the loop and one from outside the
loop (assuming φ-nodes with only two inputs).

• Two statement cycle: The definition inside the
loop will be part of the cycle and will get one
operand from the φ-node and any others will be
loop invariant.

• Larger cycles: Other definitions in the cycle will
chain as follows:

i2 = φ(i0, i1)

j = i2± c1

k = j± c2

. . .

r = q± c6

i1 = r± c7

The definition at φ is the basic induction variable.

Mutual induction variables are functions of other
induction variables. If they are in a cycle with a
basic variable, they must follow the above form. If
they are not in a cycle, they can take the form
j = c1∗ i± c2 where i is an induction variable.

CS 380C Lecture 8 13 Optimizations with SSA

Loop Induction Variables Example II

i = 3

m = 0

loop

j = 3

i = i + 1

l = m + 1

m = l + 2

j = i + 2

k = 2 ∗ j

end loop

i1 = 3

m = 0

loop

i2 = φ (i1, i3)

m2 = φ (m1,m3)

j1 = 3

i3 = i2 + 1

l1 = m2 + 1

m3 = l1 + 2

j2 = i3 + 2

k1 = 2 ∗ j2

end loop

CS 380C Lecture 8 14 Optimizations with SSA

Next Time

Optimizating expressions

• common subexpression elimination

• value numbering

CS 380C Lecture 8 15 Optimizations with SSA

