More Optimizations

Last Time

- Loop invariant code motion
- Loop induction variables

Today

- Global Common Subexpression Elimination
- Value Numbering

Common Subexpression Elimination (Example)

Given A[i][j] = A[i][j] + 1, and assuming

- 1. row-major order
- 2. each array element is 4 bytes, and
- 3. R rows in the array

will yield the following 3-address intermediate code:

t0 = A
t1 = R * 4
t2 = t1 * i
t3 = t0 + t2
t4 = j * 4
t5 = t3 + t4
t6 = [t5]
t7 = t6 + 1
t8 = A
t9 = R * 4
t10 = t8 * i
t11 = t8 + t10
t12 = j * 4
t13 = t11 + t12
[t13] = t7

What are the common sub-expressions?

CS 380C Lecture 9	1	Optimization	CS 380C Lecture 9	2	Optimization
	-	optimzation		<u> </u>	Optimization

The Goal

to find common subexpressions whose range spans basic blocks, *and* eliminate unnecessary re-evaluations

Safety

- available expressions (AVAIL) proves that value is current
- transformation gives value the right name

Profitability

- don't add evaluations to any path
- add some copy instructions
 - \Rightarrow copy is as cheap as any operator
 - \Rightarrow may shrink, may stretch live ranges

3

Available expressions

For a block b

- AVAIL(*b*) the set of expressions available on entry to *b*.
- NKILL(b) the set of expressions not killed in b.
- DEF(b) the set of expressions defined in b and not subsequently killed in b.

 $\mathsf{AVAIL}(b) = \bigcap_{x \in pred(b)} \mathsf{DEF}(x) \cup (\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x))$

IN(b) =

OUT(b) =

CS 380C Lecture 9

4

AVAIL

What expressions are available at the end of this basic block?

t0 = At1 = R * 4t2 = t1 * it3 = t0 + t2t4 = j * 4t5 = t3 + t4t6 = [t5]

How do we compute AVAIL for a basic block?

AVAIL

Returning to our example. How can we detect that t2 and r10 compute the same value?

t0 = A
t1 = R * 4
t2 = t1 * i
t3 = t0 + t2
t4 = j * 4
t5 = t3 + t4
t6 = [t5]
t7 = t6 + 1
t8 = A
t9 = R * 4
t10 = t8 * i
t11 = t8 + t10
t12 = j * 4
t13 = t11 + t12
[t13] = t7

CS 380C Lecture 9	5	Optimization	CS 380C Lecture 9	6	Optimization

Value Numbering

Value numbering computes available expressions (AVAIL or DEF) for a basic block.

Input

basic block of tuples

(statements)

symbol table

Output

improved basic block (cse, constant folding)

table of available expressions[†]

table of constant values

Value Numbering

Key Notions

- each *variable*, each *expression*, and each *constant* is assigned a unique number, its *value number*
 - same number \Rightarrow same value
 - based solely on information from within the block
- if an expression's value is *available* (already computed), we should *not* recompute it
- constants denoted in both SYMBOLS and tuples

[†] An expression is *available* at point p if it is defined along each path leading to p and none of its constituent values has been subsequently redefined.

CS 380C Lecture 9	7	Optimization	CS 380C Lecture 9	8	Optimization

Value numbering

Principle data structures

CODE

- array of tuples
- Fields: result, operator (op), operands (Ihs, rhs)

SYMBOLS

- hash table keyed by variable name
- Fields: name, val, isConstant

AVAIL

- hash table keyed by (*lhs, op, rhs*)
- Fields: IhsVal, op, rhsVal, resultVal, tuple

CONSTANTS

- table to hold funky machine specific values
- important in cross-compilation
- Fields: val, bits

Value numbering

result = lhs op rhs

for $i \leftarrow 1$ to n $r \leftarrow \text{value number for } rhs[i]$ $l \leftarrow \text{value number for } lhs[i]$ if *op*[*i*] is a store **then** SYMBOLS[*result*[*i*]].val $\leftarrow r$ if r is constant then SYMBOLS[lhs[i]].isConstant \leftarrow true else /* an expression */ if *l* is constant **then** replace lhs[i] with constant if r is constant then replace rhs[i] with constant if *l* and *r* are both constant then create CONSTANTS(l, op[i], r)CONSTANTS(l, op[i], r).bits $\leftarrow eval(l op[i] r)$ $CONSTANTS(l, op[i], r).val \leftarrow new value number$ replace (*lhs op[i] rhs*) with " constant (l op[i] r)" else if $(l, op[i], r) \in AVAIL$ then replace (*lhs op[i] rhs*) with "AVAIL(l, op[i], r).result[i]" else create AVAIL(l, op[i], r) $AVAIL(l, op[i], r).val \leftarrow new value number$ endif $SYMBOLS[result[i]].val \leftarrow value number of expression$ endif for all AVAIL(l, op[j], r)if result[i].val = l or r or result[j].val, (j < i)remove (l, op[i], r) from AVAIL endfor endfor

```
CS 380C Lecture 9 9 Optimization CS 380C Lecture 9 10 Optimization
```

Example

Tuples		Source	Avail
a ← C4		a ← 4	
T2 ← i ×	j		
$T3 \leftarrow T2$	+ C5		
k ← T3		$k \leftarrow i \times j + 5$	
$T5 \leftarrow C5$	×а		
$T6 \leftarrow T5$	× k		
$I \leftarrow T6$		$I \leftarrow 5 \times a \times k$	
m ← i		m ← i	
$T9 \leftarrow m$	хj		
$10 \leftarrow i \times$	а		
$T11 \leftarrow T9$	+ T10		
b \leftarrow T11		b ←	
		m×j+i×a	

Example

	$A \leftarrow X + Y$	$A_0 \leftarrow X_0 + Y_0$
	$B \leftarrow X + Y$	$B_0 \leftarrow X_0 + Y_0$
	$A \leftarrow 1$	$A_1 \leftarrow 1$
(1)	$C \leftarrow A + Y$	$C_0 \leftarrow A_1 + Y_0$
	$B \leftarrow A$	$B_1 \leftarrow A_1$
	$C \leftarrow 3$	$C_1 \leftarrow 3$
(2)	$D \leftarrow B + Y$	$D_0 \leftarrow B_1 + Y_0$

Original

SSA Form

CS 380C Lecture 9

11

Algorithm:

- 1. \forall block *b*, compute DEF(*b*) and NKILL(*b*)
- 2. \forall block *b*, compute AVAIL(*b*)
- 3. \forall block *b*, value number the block using AVAIL
- 4. replace expressions in AVAIL(b) with references

Computing DEF(b) and NKILL(b)

- use value numbering, or
- do it by inspection

Specifics

- 1. \forall block *b*, compute DEF(*b*) and KILL(*b*)
- 2. assign each $e \in AVAIL(b)$ a name (small integer)
- 3. \forall variables v, initialize MAP(v) to empty
- 4. \forall expressions *e*, $\forall v \in e$, add *name* to MAP(*v*)
- 5. \forall block *b*, NKILL(*b*) = $\bigcup_{v \notin \text{KILL}(b)} \text{MAP}(v)$
- A bit-vector set implementation works fine for AVAIL \Rightarrow can use bit position as e's name

13

CS 380C Lecture 9

Optimization

Global Common Subexpression Elimination

How do we handle naming?

Would like to ensure that $e \in \mathsf{AVAIL}(b)$ has a unique name.

- 1. as replacements are done
 - (a) generate unique temporary name
 - (b) add a copy at each DEF for that expression
- map textual expressions into unique names (hash, bv pos'ns)
- 3. equivalent value numbers get same temporary name

Strategies to be discussed

- (1) the classical method it works
- (2) limits replacement to textually identical expressions
- (3) requires more analysis but yields more cses

Are copies a concern? Ask the register allocator.

CS 380C Lecture 9	14	Optimization
-------------------	----	--------------

Approach 2:

textually identical expressions get the same name

Before any value numbering

- 1. initialize an array USED to false (|USED| = |AVAIL|)
- 2. $\forall e \in AVAIL(b)$, initialize AVAILTAB and mark it
- 3. if we use e and $e \in AVAIL(b)$
 - (a) if *e* is unused (*i.e.*, it has not been assigned a *name*) allocate one, else use assigned *name*
 - (b) set USED [name] to true
 - (c) replace e with name

After all value numbering

4. \forall block *b*, if $e \in \mathsf{DEF}(b)$ and $\mathsf{USED}[e]$

insert a copy to *name* after the DEF of e

17

Problems

- may insert extra copies
- adds one more pass over the code

CS 380C Lecture 9

Optimization

Global Common Subexpression Elimination

Approach 3:

textually identical expressions get the same name

In value numbering step

- 1. $\forall e \in AVAIL(b)$, initialize AVAILTAB
- 2. at an evaluation of e
 - insert a copy of e to name (hash 'em)
- 3. at a use of e, if $e \in AVAIL(b)$
 - $\circ\,$ replace it with a reference to name

Problems:

• inserts more extraneous copies than approach 2

18

• extra copies are dead

Example

Global Common Subexpression Elimination

What about all those extra copies?

- dead code elimination
- subsumption or coalescing
- \Rightarrow rely on other optimizations to catch them!

Common strategy

(PL.8 compiler)

- insert copies that might be useful
- let dead code eliminator discover the useless ones
- simplifies compiler (for a price)

Dead code elimination

- must be able to recognize global usefulness
- must be able to eliminate useless stores
- must have strong notion of "dead"

CS 380C Lecture 9

20

The iterative algorithm computes a *maximum fixed point* MFP solution to the set of equations. This need not be same as the MOP.

- if \mathcal{F} is distributive, MOP = MFP
- if \mathcal{F} is not distributive, MOP \geq MFP

Is AVAIL(*b*) distributive?

Is AVAIL(b) rapid, *i.e.* does AVAIL(b) converge after two iterations around a loop?

Next Time

Scheduling and Register in a single basic block

Read: Proebsting & Fischer, "Linear-time, Optimal Code Scheduling for Delayed-Load Architectures," *ACM Conference on Programming Language Design and Implementation*, pp. 256-267, Toronto, Canada, June 1991.

21

CS 380C Lecture 9

22