
More Optimizations

Last Time

• Loop invariant code motion

• Loop induction variables

Today

• Global Common Subexpression Elimination

• Value Numbering

CS 380C Lecture 9 1 Optimization

Common Subexpression Elimination (Example)

Given A[i][j] = A[i][j] + 1, and assuming

1. row-major order

2. each array element is 4 bytes, and

3. R rows in the array

will yield the following 3-address intermediate code:

t0 = A
t1 = R * 4
t2 = t1 * i
t3 = t0 + t2
t4 = j * 4
t5 = t3 + t4
t6 = [t5]

t7 = t6 + 1

t8 = A
t9 = R * 4
t10 = t8 * i
t11 = t8 + t10
t12 = j * 4
t13 = t11 + t12
[t13] = t7

What are the common sub-expressions?

CS 380C Lecture 9 2 Optimization

Global Common Subexpression Elimination

The Goal

to find common subexpressions whose range spans
basic blocks, and eliminate unnecessary
re-evaluations

Safety

• available expressions (AVAIL) proves that value is
current

• transformation gives value the right name

Profitability

• don’t add evaluations to any path

• add some copy instructions

⇒ copy is as cheap as any operator

⇒ may shrink, may stretch live ranges

CS 380C Lecture 9 3 Optimization

Available expressions

For a block b

• AVAIL(b) the set of expressions available on entry
to b.

• NKILL(b) the set of expressions not killed in b.

• DEF(b) the set of expressions defined in b and not
subsequently killed in b.

AVAIL(b) =
\

x∈pred(b)

DEF(x)∪ (AVAIL(x)∩NKILL(x))

IN(b) =

OUT(b) =

CS 380C Lecture 9 4 Optimization

AVAIL

What expressions are available at the end of this basic
block?

t0 = A
t1 = R * 4
t2 = t1 * i
t3 = t0 + t2
t4 = j * 4
t5 = t3 + t4
t6 = [t5]

How do we compute AVAIL for a basic block?

CS 380C Lecture 9 5 Optimization

AVAIL

Returning to our example. How can we detect that t2
and r10 compute the same value?

t0 = A
t1 = R * 4
t2 = t1 * i
t3 = t0 + t2
t4 = j * 4
t5 = t3 + t4
t6 = [t5]

t7 = t6 + 1

t8 = A
t9 = R * 4
t10 = t8 * i
t11 = t8 + t10
t12 = j * 4
t13 = t11 + t12
[t13] = t7

CS 380C Lecture 9 6 Optimization

Value Numbering

Value numbering computes available expressions
(AVAIL or DEF) for a basic block.

Input

basic block of tuples (statements)

symbol table

Output

improved basic block (cse, constant folding)

table of available expressions†

table of constant values

† An expression is available at point p if it is defined
along each path leading to p and none of its
constituent values has been subsequently redefined.

CS 380C Lecture 9 7 Optimization

Value Numbering

Key Notions

• each variable, each expression, and each constant
is assigned a unique number, its value number

– same number ⇒ same value

– based solely on information from within the
block

• if an expression’s value is available (already
computed), we should not recompute it

• constants denoted in both SYMBOLS and tuples

CS 380C Lecture 9 8 Optimization

Value numbering

Principle data structures

CODE

• array of tuples

• Fields: result, operator (op), operands (lhs, rhs)

SYMBOLS

• hash table keyed by variable name

• Fields: name, val, isConstant

AVAIL

• hash table keyed by (lhs, op, rhs)

• Fields: lhsVal, op, rhsVal, resultVal, tuple

CONSTANTS

• table to hold funky machine specific values

• important in cross-compilation

• Fields: val, bits

CS 380C Lecture 9 9 Optimization

Value numbering result = lhs op rhs

for i ← 1 to n
r ← value number for rhs[i]
l ← value number for lhs[i]
if op[i] is a store then

SYMBOLS[result[i]].val ← r
if r is constant then

SYMBOLS[lhs[i]].isConstant ← true
else /* an expression */

if l is constant then replace lhs[i] with constant
if r is constant then replace rhs[i] with constant
if l and r are both constant then

create CONSTANTS(l,op[i],r)
CONSTANTS(l,op[i],r).bits ← eval(l op[i] r)
CONSTANTS(l,op[i],r).val ← new value number
replace (lhs op[i] rhs) with “ constant (l op[i] r)”

else if (l,op[i],r) ∈ AVAIL then
replace (lhs op[i] rhs) with “AVAIL(l,op[i],r).result[j]”

else create AVAIL(l,op[i],r)
AVAIL(l,op[i],r).val ← new value number

endif
SYMBOLS[result[i]].val ← value number of expression

endif
for all AVAIL(l,op[j],r)

if result[i].val = l or r or result[j].val, (j < i)
remove (l,op[j],r) from AVAIL

endfor
endfor

CS 380C Lecture 9 10 Optimization

Example

Tuples Source Avail
a ← C4 a ← 4

T2 ← i × j

T3 ← T2 + C5

k ← T3 k ← i × j + 5

T5 ← C5 × a

T6 ← T5 × k

l ← T6 l ← 5 × a × k

m ← i m ← i

T9 ← m × j

10 ← i × a

T11 ← T9 + T10

b ← T11 b ←

m × j + i × a

CS 380C Lecture 9 11 Optimization

Example

A← X +Y A0← X0+Y0
B← X +Y B0← X0+Y0
A← 1 A1← 1

(1) C← A+Y C0← A1+Y0
B← A B1← A1
C← 3 C1← 3

(2) D← B+Y D0← B1 +Y0

Original SSA Form

CS 380C Lecture 9 12 Optimization

Global Common Subexpression Elimination

Algorithm:

1. ∀ block b, compute DEF(b) and NKILL(b)

2. ∀ block b, compute AVAIL(b)

3. ∀ block b, value number the block using AVAIL

4. replace expressions in AVAIL(b) with references

Computing DEF(b) and NKILL(b)

• use value numbering, or

• do it by inspection

Specifics

1. ∀ block b, compute DEF(b) and KILL(b)

2. assign each e ∈AVAIL(b) a name (small integer)

3. ∀ variables v, initialize MAP(v) to empty

4. ∀ expressions e, ∀v ∈ e, add name to MAP(v)

5. ∀ block b, NKILL(b) =
[

v6∈KILL(b)

MAP(v)

A bit-vector set implementation works fine for AVAIL
⇒ can use bit position as e’s name

CS 380C Lecture 9 13 Optimization

Global Common Subexpression Elimination

How do we handle naming?

Would like to ensure that e ∈AVAIL(b) has a unique
name.

1. as replacements are done

(a) generate unique temporary name

(b) add a copy at each DEF for that expression

2. map textual expressions into unique names

(hash, bv pos’ns)

3. equivalent value numbers get same temporary
name

Strategies to be discussed

(1) the classical method - it works

(2) limits replacement to textually identical
expressions

(3) requires more analysis but yields more cses

Are copies a concern? Ask the register allocator.

CS 380C Lecture 9 14 Optimization

Global Common Subexpression Elimination

Approach 1:

generate a unique name for each replacement

In value numbering step

1. ∀ e ∈AVAIL(b), initialize AVAILTAB and mark it

2. if we use e and e ∈AVAIL(b),

(a) allocate a name n,
(b) search backwards from b along each path in

the cfg to find last DEF of e,
(c) insert a copy to n after DEF

(d) replace e with n

Problems:

• searching might take a fair amount of time

◦ conceptually ugly notion

◦ Scarborough suggests that this is not a major
worry

• |names| ∝ |USES| (> |AVAIL|)

• single DEF followed by many copies

CS 380C Lecture 9 15 Optimization

Example

C = A + B

D = A + B

E = A + B

C = A + B C = A + B

Approach 1 What’s the best we can do?

CS 380C Lecture 9 16 Optimization

Global Common Subexpression Elimination

Approach 2:

textually identical expressions get the same name

Before any value numbering

1. initialize an array USED to false
(|USED|= |AVAIL|)

2. ∀ e ∈AVAIL(b), initialize AVAILTAB and mark it

3. if we use e and e ∈AVAIL(b)

(a) if e is unused (i.e., it has not been assigned a
name) allocate one, else use assigned name

(b) set USED [name] to true

(c) replace e with name

After all value numbering

4. ∀ block b, if e ∈DEF(b) and USED[e]

insert a copy to name after the DEF of e

Problems

• may insert extra copies

• adds one more pass over the code

CS 380C Lecture 9 17 Optimization

Global Common Subexpression Elimination

Approach 3:

textually identical expressions get the same name

In value numbering step

1. ∀ e ∈AVAIL(b), initialize AVAILTAB

2. at an evaluation of e

◦ insert a copy of e to name (hash ’em)

3. at a use of e, if e ∈AVAIL(b)

◦ replace it with a reference to name

Problems:

• inserts more extraneous copies than approach 2

• extra copies are dead

CS 380C Lecture 9 18 Optimization

Example

C = A + B

B = A + 3

D = A + B

E = A + B

B = A + 3
C = A + B

C = A + B

B = A + 3

Approach 2 Approach 3

CS 380C Lecture 9 19 Optimization

Global Common Subexpression Elimination

What about all those extra copies?

• dead code elimination

• subsumption or coalescing

⇒ rely on other optimizations to catch them!

Common strategy (PL.8 compiler)

• insert copies that might be useful

• let dead code eliminator discover the useless ones

• simplifies compiler (for a price)

Dead code elimination

• must be able to recognize global usefulness

• must be able to eliminate useless stores

• must have strong notion of “dead”

CS 380C Lecture 9 20 Optimization

Global Common Subexpression Elimination

The iterative algorithm computes a maximum fixed
point MFP solution to the set of equations. This need
not be same as the MOP.

• if F is distributive, MOP = MFP

• if F is not distributive, MOP ≥ MFP

Is AVAIL(b) distributive?

Is AVAIL(b) rapid, i.e. does AVAIL(b) converge after
two iterations around a loop?

CS 380C Lecture 9 21 Optimization

Next Time

Scheduling and Register in a single basic block

Read: Proebsting & Fischer, “Linear-time, Optimal
Code Scheduling for Delayed-Load Architectures,”
ACM Conference on Programming Language Design
and Implementation, pp. 256-267, Toronto, Canada,
June 1991.

CS 380C Lecture 9 22 Optimization

