
Scheduling

Previously

• Value Numbering

Today: Scheduling to Minimize Register pressure

• Introduction to scheduling

• Scheduling a basic block

• Sethi-Ullman Numbering (quick review)

• Proebsting & Fischer

CS 380C Lecture 10 1 Scheduling

What makes instruction scheduling hard?

Instruction data path

IF
⇒ Reg ⇒

ALU
⇒

DM
⇒ Reg2

IF: Instruction Fetch
Reg: Instruction Decode/Register Fetch
ALU: Execute/Fetch
DM: Memory Access
Reg2: Write Back

Pipelining

Instead of:
Instr

Instr
Instr

Instr

We do:
Instr

Instr
Instr

Instr

By instruction component and cycle:

1 2 3 4 5 6 7 8 9
IF Reg ALU DM Reg

IF Reg ALU DM Reg
IF Reg ALU DM Reg

IF Reg ALU DM Reg
IF Reg ALU DM Reg

CS 380C Lecture 10 2 Scheduling



Pipelining

1 2 3 4 5 6 7 8 9
IF Reg ALU DM Reg

IF Reg ALU DM Reg
IF Reg ALU DM Reg

IF Reg ALU DM Reg
IF Reg ALU DM Reg

• Potential speed up = number of stages in the
pipeline

• time to drain and fill pipeline limits speed up

• Rate through the pipeline is limited by the slowest
stage

• No individual instruction executes any faster

Modern Processors (aside)

• Multi-issue: 2, 4, or more instructions issued per
cycle

• Dynamic run-time scheduling of some window
(16-64) of instructions

• Speculate branches, loads, values ...

CS 380C Lecture 10 3 Scheduling

What makes scheduling a pipeline hard?

Structural hazards: when the hardware cannot
support all possible combinations of instructions in
the pipeline because of resource conflicts

Data hazards: an instruction depends on the result of
a previous instruction which is still in the pipeline.

Control hazards: arise due to branches and any other
instruction that modifies the PC and affects which
instructions should be in the pipeline.

One solution =⇒ Insert bubbles

CS 380C Lecture 10 4 Scheduling



Bubbles

Control Hazard: worst case: (btru R1, R2; inst2)

1 2 3 4 5 6 7 8 9 10
IF Reg ALU DM Reg

© © © ©
IF Reg ALU DM Reg

Structural Hazard
3 cycle multiply: (mul t1,r1,r2; mul t2,r3,r4)

1 2 3 4 5 6 7 8 9 10
IF Reg © © ALU DM Reg

© © IF Reg © © ALU DM Reg
IF . . .

or

1 2 3 4 5 6 7 8 9 10
IF Reg © © ALU DM Reg

IF Reg © © © © ALU DM Reg
IF . . .

CS 380C Lecture 10 5 Scheduling

Other solutions

Structural hazards:

• hardware functional unit replication

• compiler instruction scheduling

Data hazards:

• partial solution - hardware forwarding

• compiler instruction scheduling

• sensitive to accuracy of aliasing
→ runtime speculation

Control hazards:

• runtime speculation

• compiler instruction scheduling

Is there a pattern here?

CS 380C Lecture 10 6 Scheduling



Scheduling for a Pipelined Architecture

Simplification: consider only data (register and
memory) hazards (a.k.a., interlocks).

Goal: an efficient, compile-time algorithm for
reordering instructions to minimize the number of stalls
(bubbles) in the pipeline. This scheduling is performed
after code generation and register allocation.

• Hennessy & Gross (’83) - O(n4) algorithm (where n
is the number of instructions in the basic block).
It uses lookahead to avoid deadlocking the
scheduling algorithm. (Deadlock can occur
because they do not represent write-write
dependences in their dag).

• Gibbons & Muchnick (’86) - O(n2) worst case, O(n)
in practice, with nearly the same results as
Hennessy & Gross.

P. B. Gibbons and S. S. Muchnick, “Efficient
Instruction Scheduling for a Pipelined Architecture”,
Proceedings of the SIGPLAN 86 Symposium on

Compiler Construction, Palo Alto, CA, June 1986.

CS 380C Lecture 10 7 Scheduling

Scheduling, Experssions, and Code Generation

How does code generation and the shape of
expressions relate to scheduling and register allocation?

CS 380C Lecture 10 8 Scheduling



Code Generation

Sethi-Ullman numbering of an expression

• Determines the minimal number of registers to
evaluate a tree

• Generates code using that number of registers, or
fewer

• Assumes

◦ memory can be used directly

◦ no delay between a load and its use

• Works for dags by converting them into trees

CS 380C Lecture 10 9 Scheduling

Sethi-Ullman numbering

Given a binary expression tree,

• label the left leaves 1

• label the right leaves 0

• label unary operations 1

• label the interior nodes in bottom-up order:

label(n) =

{

max(l1, l2) if l1 6= l2
l1 +1 if l1 = l2

• evaluate the most demanding subtree first

Example:

(m1/m2) * ((m3 -m4) + (m5 << m6))

×
�

�
�

�
��=

HHHHHHHHj
÷

�
�

��	

@
@

@@R

m1 m2

+
�������

HHHHHHj

−
�

�
��	

@
@

@@R

m3 m4

≪
�

�
��	

@
@

@@R

m5 m6

CS 380C Lecture 10 10 Scheduling



Code Generation versus Scheduling

Sethi-Ullman is optimal on simple (unrealistic)
model

• minimizes register use

• minimizes execution time

=⇒ assumes loads from memory are immediate

Delayed-load architectures are more complex

• issue load, result appears delay cycles later

• execution continues unless result is referenced

• premature reference causes an interlock

Many RISC systems have this property (e.g., SPARC
and MIPS R3000)

T.A. Proebsting and C.N. Fischer, “Linear-time, optimal code
scheduling for delayed-load architectures”,in Proceedings of the
SIGPLAN 91 Conference on Programming Language Design and
Implementation”

CS 380C Lecture 10 11 Scheduling

Scheduling

The big picture

• interlocks waste resources

• rearrange instructions to fill delay slots

• combine scheduling and register allocation for

expressions

• ⇒ move loads as early as possible given register

constraints

Assumptions

1. input is an expression tree for a basic block

2. delayed-load, RISC architecture

• register-to-register ops, load, & store

• 1 cycle/instruction

• non-blocking, 2 cycle load

CS 380C Lecture 10 12 Scheduling



So what’s wrong with Sethi-Ullman?

1. modify labeling scheme for RISC (data in memory
must be loaded into a register)

• left & right leaves labeled with 1

• interior labels as before

label(n) =

{

max(l1, l2) if l1 6= l2
l1+1 if l1 = l2

2. code generation

• more demanding subtree first

• if l > R , spill (R is # regs.)

Optimal if delay = 0

The problem

• loads will interlock if delay > 0

Overview of the solution

• move loads back at least delay slots from ops

• what happens to register pressure?

CS 380C Lecture 10 13 Scheduling

Brute force solution

Obvious approach

• issue all the loads

• execute all the operators

Unfortunately, this approach creates too much register
pressure

Phase ordering

• allocate first ⇒ poor schedule

• schedule first ⇒ poor allocation

=⇒ Consider scheduling & allocation together.

Proebsting and Fischer’s DLS (Delayed-Load
Scheduling) Algorithm

• retain properties of Sethi-Ullman

◦ contiguous evaluation

◦ minimize register use

• consider two problems together†

CS 380C Lecture 10 14 Scheduling



The DLS algorithm

Legal ordering

• given an operator O, its children appear before O

• each load appears before the operator that uses it

The big picture

• schedule the operations (à la Sethi-Ullman),
preserving their relative order (ops ↔ ops)

• schedule the loads, preserving their relative order
(loads ↔ loads)

• move the loads up just enough to fill the delay
slots

CS 380C Lecture 10 15 Scheduling

The DLS algorithm

The canonical order

Given R registers

1. schedule R loads

2. schedule a series of (operation; load) pairs

3. schedule the remaining R −1 ops

This keeps extra register pressure down

The algorithm

1. run Sethi-Ullman algorithm

• calculate minReg for each subtree

• create an ordering of the operators

2. put loads into canonical order

• uses minReg+1 regs

• requires some renaming

CS 380C Lecture 10 16 Scheduling



Example

×
�

�
�

�
��=

HHHHHHHHj
÷

�
�

��	

@
@

@@R

m1 m2

+
�������

HHHHHHj

−
�

�
��	

@
@

@@R

m3 m4

≪
�

�
��	

@
@

@@R

m5 m6

Canonical ordering

Operators Loads

1. sub 1. load m3
2. shift 2. load m4
3. add 3. load m5
4. div 4. load m6
5. mult 5. load m1

6. load m2

CS 380C Lecture 10 17 Scheduling

Example

×
�

�
�

�
��=

HHHHHHHHj
÷

�
�

��	

@
@

@@R

m1 m2

+
�������

HHHHHHj

−
�

�
��	

@
@

@@R

m3 m4

≪
�

�
��	

@
@

@@R

m5 m6

Sethi-Ullman DLS(3) DLS(4)

1. load m3, r1 load m3, r1 load m3, r1
2. load m4, r2 load m4, r2 load m4, r2
3. –stall– load m5, r3 load m5, r3
4. sub r1,r2,r2 sub r1,r2,r2 load m6, r4
5. load m5, r1 load m6, r1 sub r1,r2,r2
6. load m6, r2 –stall– load m1, r1
7. –stall– shift r1,r3,r3 shift r3,r4,r4
8. shift r1,r3,r3 load m1,r3 load m2, r3
9. add r2,r3,r3 add r2,r1,r1 add r2,r4,r4

10. load m1, r1 load m2,r2 div r1,r3,r3
11. load m2, r2 –stall– mult r4,r3,r3
12. –stall– div r3,r2,r2
13. div r1,r2,r2 mult r1,r2,r2
14. mult r3,r2,r2

CS 380C Lecture 10 18 Scheduling



Optimal Spilling

If fewer than minReg+1 registers are available

• Should we spill such that subtrees don’t interlock?

• Where should the spills be introduced?

• How many interlocks must occur?

• Spilling vs. interlock - which results in the minimal
number of cycles?

To minimize spill/delay costs

• Compute register pressure

◦ the number of times minReg registers will be
live during Sethi-Ullman numbering

• Schedule the tree with the minimal pressure last

• Spill the child of this node that was just evaluated
if

◦ minReg of this node equals the number of
registers, and

◦ the pressure is greater than 2 (the cost of a
load and a store).

◦ Otherwise if pressure is ≤ 2, take an interlock.

• Spill also if this node’s minReg is greater than the
number of registers, then spill the child with
greatest pressure.

CS 380C Lecture 10 19 Scheduling

Register Pressure

+

+ +

m1 + m5 m6

m2 +

m3 m4

CS 380C Lecture 10 20 Scheduling



Spilling vs. Interlock Example

4 Regs No Spills, Interlocks Spills, No Interlocks

1. load m1, r1 load m1, r1
2. load m2, r2 load m2, r2
3. load m3, r3 load m3, r3
4. load m4, r4 load m3, r4
5. add r1,r2,r2 add r1,r2,r2
6. load m5, r1 load m5, r1
7. add r3,r4,r4 add r3,r4,r4
8. load m6, r3 load m6, r3
9. add r2,r4,r4 add r2,r4,r4

10. load m7, r2 load m7, r2
11. add r1,r3,r3 store r4, tmp
12. load m8, r1 load m8, r4
13. –stall– add r1, r3, r3
14. add r2,r1∗,r1 load tmp, r1
15. add r3,r1,r1 add r2,r4,r4
16. add r3,r1,r1 add r3,r4,r4
17. add r1,r4,r4

+

+ +

+ + + +

m1 m2 m3 m4 m5 m6 m7 m8

CS 380C Lecture 10 21 Scheduling

Spilling vs. Interlock Example

+

+ +

m1 + m5 +

m2 + m6 +

m3 m4 m7 m8

CS 380C Lecture 10 22 Scheduling



Spilling vs. Interlock Example

3 Regs No Spills, Interlocks Spills, No Interlocks

1. load m3, r1 load m3, r1
2. load m4, r2 load m4, r2
3. load m2, r3 load m2, r3
4. add r1,r2,r2 add r1,r2,r2
5. load m1, r1 load m1, r1
6. add r3,r2,r2 add r3,r2,r2
7. load m7, r3 load m7, r3
8. add r1,r2,r2 add r1,r2,r2
9. load m8, r1 load m8, r1

10. –stall– store r2, tmp
11. add r3,r1∗,r1 load m6, r2
12. load m6, r3 add r3,r1,r1
13. –stall– load m5, r3
14. add r1,r3∗,r3 add r2,r1,r1
15. load m5, r1 load tmp, r2
16. –stall– add r3,r1,r1
17. add r3,r1∗,r1 add r2,r1,r1
18. add r2,r1,r1

CS 380C Lecture 10 23 Scheduling

Limitations

Input (like Sethi-Ullman)

• limited to a single basic block
⇒ How should it be integrated with a global
allocator?

• handles trees, not dags

⇒ use dag-to-tree conversion, but that creates
copies and recomputation

Output

• delay = 1 ⇒ optimal

• delay > 1 ⇒ optimality not guaranteed, but it is
very good (>97% of optimal) on trees of 25 or
fewer nodes

• non-constant delay causes deeper problems

General comments

• fast, simple algorithm

• clever metric for spilling when not enough
registers are available

• no excuse to do worse

This work raises the bar for optimizing and

non-optimizing compilers

CS 380C Lecture 10 24 Scheduling



Next Time

• What about intruction level parallelism (ILP) and
expressions?

• Hunt, Maher, Coons, Burger, and McKinley,
Optimal Huffman Tree-Height Reduction for
Instruction Level Parallelism, Department of
Computer Sciences Technical Report, The
University of Texas at Austin, TR-08-34, 2008.

CS 380C Lecture 10 25 Scheduling


