
Register Allocation

Previously

• Graph Coloring Allocators

• Chaitin style

• Briggs enhancements

Today

• Linear-scan Register Allocation
Traub, Holloway, and Smith

CS 380C Lecture 14 1 Register Allocation

Motivation

Fast compilation times are becoming increasingly
important

• dynamic compilation (JIT)

• whole program optimization

• production compilers

Register allocation is often a bottleneck

• Non-linear (sometimes not even a low polynomial)

• Inlining exacerbates its problems

Good register allocation is key to attaining peak
processor performance.

• Quality of code vs.

• Speed of allocation

CS 380C Lecture 14 2 Register Allocation

Linear Scan Register Allocation

• compute live information same way

• traverse the program in a linear order

(rPostOrder)
6

43

2 5

1

• process candidates as they appear (or in rank
order)

• heuristically choose candidates to spill

=⇒ runs in linear time

Examples

• Digital’s Gem compiler

• Jikes RVM

• Scale

• tcc dynamic code generation project

• Traub et al.

CS 380C Lecture 14 3 Register Allocation

Computing Live Information

“Temporaries” - allocation candidates

• program variables

• compiler-generated temporaries

Temporary live ranges

• interval in “linear order” in which the temporary is
live

• the interval is at the granularity of instructions
and basic blocks

Live range holes

• interval during which no useful value is maintained

• e.g., interval between a use and the next definition

Compute live information in a single reverse pass.

CS 380C Lecture 14 4 Register Allocation

Example Live Range Information

T1

T2

T3

T4

B1 B2 B3 B4

w

w w w

r

r r

T1 =

T4 = ...
... = T1

... = T4

T4 = ...
 ... = T4

... = T1

T4 = ...
T2 = ...
T3 = ...
... = T3+T2

w r

w r

r

CS 380C Lecture 14 5 Register Allocation

Bin Packing Register Allocation

1. Compute live ranges

2. Treat registers as bins with one valid value at

any point

3. View a register as containing a hole during

free intervals:

• reflect arbitrary constraints on register usage

4. Pack the same bin with two live ranges if

• live ranges do not interfere

• one live range fits in a live range hole of
another

5. Live range is either in a register or memory

Assign a temporary t a register r if:

• t is not assigned, and r contains a hole large
enough to hold t’s live range.

• choose r with the smallest such hole.

• Otherwise, spill, choose lowest cost candidate

6. One pass for allocation, and another to

rewrite the code.

CS 380C Lecture 14 6 Register Allocation

Example Bin Packing

T1

T2

T3

T4

B1 B2 B3 B4

w

w w w

r

r r

T4 = ...

... = T4

T4 = ...
 ... = T4

T2 = ...
T3 = ...
... = T3+T2

w r

w r

r

T4 = = T1

Assign T1, R1
Assign T4, R2
Assign T2, R1
Spill T4
Assign T3, R2

T1 =

... = T1

Bin Packing

CS 380C Lecture 14 7 Register Allocation

Second-Chance Bin Packing

Give temporaries numerous chances to get a register
(live range splitting)

for each instruction in linear order
for each temporary t

if (t currently in register r)
rewrite reference

else // beginning of live range or spilled
if (∃ r with large enough hole)

assign t to r
else spill lowest cost candidate

end for

end for

for each edge in control flow graph
resolve conflicting location assumptions

end for

CS 380C Lecture 14 8 Register Allocation

Resolution

• Linear order of code ignores dynamic control flow

• A temporary may reside in different locations
across an edge (memory or register)

• Keep a map of locations of a temporary on
entry/exit to basic blocks

• Post-process edges to reconcile conflicting
assumptions

• Avoid stores when evicting a temporary

• Solve the following backward problem

1. propagate information on use of consistency to
avoid store

2. guide insertion of resolution instruction across
the CFG edge

3. temporary in register at beginning of basic
block

– different registers coming in → register move

– in memory & register coming in → register
move

4. temporary in memory at beginning of basic
block

– if in register, spill to memory, but only when
necessary

CS 380C Lecture 14 9 Register Allocation

Example Second-Chance Bin Packing

T1

T2

T3

T4

B1 B2 B3 B4

w

w w w

r

r r

T4 = ...

... = T4

T4 = ...
 ... = T4

T2 = ...
T3 = ...
... = T3+T2

w r

w r

r

T4 = = T1

Assign T1, R1
Assign T4, R2
Assign T2, R1
Spill T4
Assign T3, R2

T1 =

... = T1

Assign T4, R2

Second Chance

CS 380C Lecture 14 10 Register Allocation

Experimental Evaluation

• Machine SUIF

• Implemented

1. second-chance bin packing

2. George & Appel coloring

3. factors out common routines (e.g., live ranges)
into shared libraries

• Platform: Alpha running Digital UNIX 4.0

• After register allocation:

1. dead-code elimination

2. peep-hole optimization

3. copy propagation

• Measure

1. dynamic instruction counts

2. execution time

3. register allocation time

CS 380C Lecture 14 11 Register Allocation

Code Quality

Benchmark ratio: binpacking / graph coloring
Instruction Count Execution Time

alvinn 1.000 0.995
doduc 1.002 1.018
eqntott 1.000 1.003
espresso 1.013 1.060
fpppp 1.052 1.043

li 1.018 0.966
tomcatv 1.000 0.995
wave5 1.000

compress 1.002 1.020
m88ksim 1.008 1.024

sort 1.035 1.082
wc 1.000 1.011

The instruction counts are from recent results, and the
execution times are from the paper.

CS 380C Lecture 14 12 Register Allocation

Spill Code

Percentage of total dynamic instructions due to spill
code:

Second-chance Graph coloring
Benchmark binpacking

alvinn 0% 0%
doduc 0.493% 0.518%
eqntott 0. 001% 0.000%
espresso 0. 901% 0.163%
fpppp 17. 111% 13.521%

li 0% 0%
tomcatv 0% 0%
wave5 0. 046% 0.032%

compress 0% 0%
m88ksim 0.033% 0.049%

sort 1.438% 0.996%
wc 0% 0%

CS 380C Lecture 14 13 Register Allocation

Allocation Time

Average number of Allocation time
seconds

Procedure Register Interference Graph
(code) candidates edges coloring binpack

cvrin.c 245 1061 0.4 1.5
(espresso)
twldrv.f 6218 51796 8.8 3.7
(fpppp)
fpppp.f 6697 116926 15.8 4.5
(fpppp)
field() 7611 86741 14.9 4.9
(wave5)

CS 380C Lecture 14 14 Register Allocation

Summary

• Register allocation is NP-complete

• Heuristic solutions abstract away from register
assignment

• Bin packing may achieve code close to coloring
code

• For large graphs, compile time of bin packing
better than coloring

• Many compilation scenarios prefer linear
algorithms

CS 380C Lecture 14 15 Register Allocation

Next Time

Dynamic Compilation

M. Arnold, S. Fink, D. Grove, M. Hind, P. Sweeney, A
Survey of Adaptive Optimization in Virtual Machines,
IEEE Computer, 92(2):449-466, February 2005.

CS 380C Lecture 14 16 Register Allocation

