
Dynamic Compilation

Advanced Topics:

• Dynamic compilation

Today:

– Finish How to Compile

– Inlining in ahead of time and dynamic
compilers

• Garbage collection

• Alias Analysis

• Interprocedural Analysis

• Dependence Testing

• Locality and parallelization

CS 380C Lecture 16 1 Inlining

Inlining

Benefits and costs

• Direct benefit: reduced call overhead

– allocating and deallocating local variables

– saving and restoring registers call convention

– pushing and popping parameters on to the
stack

• Indirect benefit:

– exposes optimization opportunities

• Direct cost:

– code size increases (mostly) and can thus can
degrade instruction cache behavior

• Indirect/direct cost:

– increases compile time and space, e.g., tips the
register allocator to spill

CS 380C Lecture 16 2 Inlining

Inlining

Results vary across language and compiler

J. W. Davidson & A. M. Holler, “A Study of a C
Function Inliner”, Software—Practice and Experience,
18:8, August 1988

K.D. Cooper, M. Hall, & L. Torczon, “An Experiment
With Inline Substitution,” Software–Practice and

Experience, 21:6, June 1991

K.D. Cooper, M. Hall, & L. Torczon, “Unexpected
Side Effects of Inline Substitution: A Case Study,”
ACM LOPLAS 1(1), March 1992

M. D. Bond & K. S. McKinley, “Practical Path
Profiling for Dynamic Optimizers,” CGO, March 2005.

K. Hazelwood and D. Grove, “Adaptive Online
Context-Sensitive Inlining” International Symposium

on Compiler Code Generation and Optimizations

(CGO), pp. 253–264, San Francisco, CA March 2003.

CS 380C Lecture 16 3 Inlining

Profitability of Inlining

Davidson & Holler

• non-optimizing C compilers

• only 1 had register allocation

Cooper, Hall, & Torczon

• highly optimizing Fortran compilers

• compile times increased, some dramatically

Using simple heuristics to guide inlining, program

growth not a problem in either study

average DH CHT
|lines| 1725 C 3103 Fortran
range of lines 217 - 6781 321 - 5979
|procedures| 50 27
original proc length 66
inlined proc length 297
static calls 157∗ 83
dynamic calls 3,123,118
% statically inlined 75 %
% dynamically inlined 89 %

∗: static calls exercised dynamically

CS 380C Lecture 16 4 Inlining

Profitability of Inlining

Davidson & Holler

Improvement due to inlining

(with no optimizations, register displacement)

inlining strategies
intra-module

processors program in > 1 inter
1 module module module

VAX-8600 15% 7% 8%
MC68020 6% 4% 5%
Clipper 7% 1% 0%
Convex 11% 4% 2%

CS 380C Lecture 16 5 Inlining

Profitability of Inlining

Cooper, Hall, Torczon

Improvement/degradation due to inlining and
optimizations

-20

-10

0

10

20

Execution Time
% change

Programs

vortex shal64 e f ie wanal1 wave euler cedetalinpackd

⋄

⋄

⋄
⋄

⋄

⋄

⋄
•
•

•

•

•
•

••

•
• •

•

•
•

••

• •
•

•
•

•

•

⋄

⋄

⋄ ⋄

⋄
⋄ ⋄

•
•
•
⋄
⋄

•
•
•
⋄
⋄

C240
3081
M120
S81
Titan

Secondary effects of inlining hard to predict

• eliminated 89% of dynamic calls on average
⇒ (5 were > 99.5%)

• eliminated 75% of static calls on average

• good compilers

(Convex, IBM, MIPS, Stellar, Ardent)

CS 380C Lecture 16 6 Inlining

Another Data Point - Bond/McKinley CGO

C & Fortran SPEC 2000 programs; Scale Compiler
% calls Avg. unroll
inlined factor Speedup

vpr 71% 1.65 0.97
mcf 98% 1.00 1.01
crafty∗ 0% 1.00 1.00
parser 29% 1.46 1.03
perlbmk∗ 14% 1.00 1.02
gap 59% 1.22 1.02
bzip2 49% 1.99 1.07
twolf 23% 2.19 0.96
INT Avg 43% 1.44 1.01

wupwise 0% 1.90 0.98
swim 0% 4.00 1.02
mgrid 10% 4.00 0.96
applu 0% 1.31 1.14
mesa∗ 0% 2.31 1.00
art 100% 4.00 1.06
equake 100% 2.97 1.03
ammp 98% 1.81 1.02
sixtrack 57% 3.35 1.29
apsi 100% 3.90 1.02
FP Avg 46% 2.96 1.05

Overall Avg 45% 2.28 1.03

Inlining and Unrolling.
∗No cross-module inlining.

CS 380C Lecture 16 7 Inlining

Adaptive Policies for Inlining

Hazelwood & Grove

• OO language encourages small methods

– inlining ameliorates this cost

• JIT:

– application exposed to compile time costs of
inlining

• Static profiling (not compatible with dynamic
class loading):

– only inline hot methods

• Their policies:

– Online profiling and inlining

– Context sensitive profiling

– Adaptive policies

CS 380C Lecture 16 8 Inlining

What does context sensitivity mean?

insensitive sensitive

CS 380C Lecture 16 9 Inlining

Remember the Jikes RVM JIT profiling
structure?

Separation of dynamic profile gathering and policy

Sample time: gather profile information

• examine the stack

• identify hot method

• context insensitive: (caller,callee)

• context sensitive:
(caller1,callsite1,. . .,callerN,callsiteN,callee)

Policies for choosing N

– Fix N

– Dynamic: no parameters? N=1

– Dynamic: Stop when the tracer sees a method
call (N=2 typically)

– Dynamic: Stop when the method is too large
(N=4 typically)

– Dynamic Hybrids

– Unimplemented: exclude biased call sites, and
make N large for hard to predict method
invocations

• build the dynamic call graph annotated with edge
frequencies

• decay old information

CS 380C Lecture 16 10 Inlining

Inlining Heuristics

Jikes RVM Static Policies

• Always inline statically known tiny methods

– Tiny = smaller than 2 times the size of the
call instruction sequence (CIS)

• Subject to code growth budget and inlining depth
bound

– Inline small (2-5x CIS) statically known
methods

– Never Inline medium (5-25x CIS) methods

– Never inline large methods (25x CIS or more)

Jikes RVM Dynamic Policies, when the controller
reoptimizes a hot method

• Subject to code growth budget and inlining depth
bound

– Inline and guard small (2-5x CIS) methods

– Inline (and if needed, guard) hot medium
(5-25x CIS) methods using context sensitive
call graph

• Inline hot small (2-5x CIS) methods even when
code growth and inlining depth exceeded

CS 380C Lecture 16 11 Inlining

Hazelwood & Grove: Bottom Line

Context sensitive inlining vs. static heuristics for
inlining

• Inlining is needed in this setting

• Simple policies work, better policies reduce
compile time, but don’t help performance that
much

• Average reduction in compile time and space: 10%

• Compile time reductions up to: 33% space, and
56% time

• Average code size reductions: approximately 10%

• Performance between -4% and 5%

CS 380C Lecture 16 12 Inlining

Profitability of Inlining

Compilers are engineered objects

• implementations rely on properties of hand-written
code
finite limits on data structures
assumptions get violated (global regs)

• call sites provide big hints
clear out all registers
limits “global” impact

• smaller procedures map better onto small
resources
32 (or 32 + 32) registers
less control flow ⇒ better knowledge

Separation of concerns

• optimization ignores resource constraints

• global methods work well with plentiful resources

• bigger scope ⇒ separation can break down

Inlining is not a panacea

CS 380C Lecture 16 13 Inlining

Next Time

Garbage collection

Read: Blackburn, Cheng, and McKinley, Myths and
Realities: The Performance Impact of Garbage
Collection, SIGMETRICS, pp. 25-36, New York, NY,
June 2004.

CS 380C Lecture 16 14 Inlining

