
Advanced Topics

Last Time

• Experimental Methodology

Today

• What’s a managed language?

• Alias Analysis - dealing with pointers

– Focus on statically typed managed languages

– Method invocation resolution

CS 380C Lecture 21 1 Alias Analysis

Alias Analysis

What is pointer analysis?

• For umanaged languages like C, C++, and
managed languages like C#, Java, Modula-3

• Goal: given two memory references, m and n, and
a program point, p, can m and n access the same
memory location?

Pointer analysis is an important problem

• Compiler optimizations require alias information

• Error detection

• Program slicing/debugging

• Data structure shape analysis: is it a tree?

• Object inlining, object colocation, synchronization
elimination, etc.

CS 380C Lecture 21 2 Alias Analysis

Pointer analysis is hard

• Undecidable in general [Landi 92]

• Many approximations

– Near linear, but imprecise [Steensgaard 97]

– Double exponential shape analysis [Sagiv 98]

• Why haven’t we solved this problem? [Hind 01]

⇒ No one algorithm satisfies all client needs

Sample Client driven results:

• Error detection: needs high precision, but a
demand driven precision can provide precision at
low cost [Guyer/Lin 03]

• Scalar optimizations: do not need high precision
[Chowdhury et al. 03, Diwan et al. 98/01]

• Object colocation: a fast, simple, and unsound

analysis is effective [Guyer/McKinley 04]

CS 380C Lecture 21 3 Alias Analysis

Taxonomy

Interprocedural data-flow analysis

• Interprocedural or intraprocedural? Do we
compute the effects of calls?

• Context-sensitive or insensitive? Do we take into
account the calling context?

• Flow-sensitive or insensitive? Do we take into
account control flow

More precise means more expensive.

Address-taken: Flow and context insensitive.
Intraprocedural or interprocedural. Every variable
that may be aliased goes in a single set. Single
pass.

Steensgaard: Flow and context insensitive.
Interprocedural. Uses union-find to create sets of
aliases. Single pass.

Anderson: Flow and context insensitive.
Interprocedural. Creates sets of aliases. Iterative
on the CFG.

Burke: Flow-insensitive and context sensitive.
Interprocedural. Iterative on the CFG and Call
graph.

Choi et al.: Flow and context sensitive.
Interprocedural. Iterative on the CFG and Call
graph.

CS 380C Lecture 21 4 Alias Analysis

Example: Simple Alias Analysis

Language context

• Modula-3: a statically-typed, object-oriented
programming language.

• Techniques apply directly to Java and C#, and
may apply to C++.

Clients: scalar optimizations and method resolution

Alias analysis: Type-based alias analysis

Using types is

• Fast and surprisingly effective for these clients

Evaluation: A limit analysis computes a runtime upper
bound on effectiveness of these compiler optimizations.

A. Diwan, K. S. McKinley, and J. E. B. Moss, Using
Types to Analyze and Optimize Object-Oriented
Programs, ACM Transactions on Programming
Languages and Systems, 23(1): 30-72, January 2001.

CS 380C Lecture 21 5 Alias Analysis

Type-Based Alias Analysis

Use language types to disambiguate memory references

NType
compatability

High-level
operations

Instructions
in program

T
s1 ? s2

t ? s1

S2S1

t.f ? u.g

Y

N

Y

N

Y

p q

CS 380C Lecture 21 6 Alias Analysis

Strengths and Weakness of Analysis

Types Instructions

Speed O(Instructions) O(Instructionsd)
Unsafe programs No Yes
Precision Good Better

Type-based alias analysis is fast. Is it effective?

Evaluation

Static Run time Upper-bound

Coverage
√ √

Run-time impact
√

Compare analyses
√ √ ∼

Compare to best
√

Deficiencies
√

Lots of alias analysis work uses static metrics and does
not consider the clients.

Client 1: Redundant Load Elimination (RLE)

CS 380C Lecture 21 7 Alias Analysis

Modula-3 Benchmarks

% Heap % Other
Name Lines Instructions loads loads

format 395 1,879,195 10 17
dformat 602 1,442,541 9 19
write-pickle 654 1,614,437 13 16
k-tree 726 50,297,517 10 21
slisp 1,645 11,462,791 27 9
pp 2,328 45,779,402 11 19
m2tom3 10,574 50,894,990 8 28
m3cg 16,475 5,636,004 8 21

CS 380C Lecture 21 8 Alias Analysis

Static Evaluation

Average number of potential aliases for each reference.

Declarations Fields Statements
Interprocedural 4.7 3.4 3.4

[0.3 to 21]
Intraprocedural 54.1 12.7 12.7

[2 to 28]

• Bad news!

• Much higher accuracy with interprocedural
analysis.

• Flow-insensitive data-flow analysis contributes very
little to the precision of a type-based alias analysis.

CS 380C Lecture 21 9 Alias Analysis

Run-Time Impact of Alias Analysis

Measure the performance improvement due to RLE.

0

20

40

60

80

100

Format Dformat WrPkl K-Tree M2toM3 Slisp M3CG

Pe
rc

en
t o

f
or

ig
in

al
 r

un
ni

ng
 ti

m
e

Types
Fields

Statements

CS 380C Lecture 21 10 Alias Analysis

Comparing Alias Analysis to an Upper-bound

.08
.05

.56

.06

.34

.22

.32

.14

.05

.01

.16

.02

.21

.03 .04 .05

.00

.10

.20

.30

.40

.50

.60

fo
rm

at

df
or

m
at

sl
is

p pp

kt
re

e

m
3c

g

m
2t

om
3

w
ri

te
-p

ic
kl

e

Fr
ac

tio
n

of
 o

ri
gi

na
l h

ea
p

re
fe

re
nc

es

Redundant originally
Redundant after optimizations

6in

CS 380C Lecture 21 11 Alias Analysis

What’s Left to Disambiguate?

0.00

0.10

0.20

0.30

0.40

0.50

0.60

fo
rm

at

df
or

m
at

sl
is

p pp

kt
re

e

m
3c

g

m
2t

om
3

w
ri

te
-p

ic
kl

e

Fr
ac

tio
n

of
 o

ri
gi

na
l h

ea
p

re
fe

re
nc

es

Rest
Alias
Breakup
Conditional
Encapsulation

CS 380C Lecture 21 12 Alias Analysis

Bottom Line

• All metrics are useful.

• In this case, static measures are misleading.

• Alias analysis & RLE yield modest improvements
for our benchmarks.

• There is not much room for improvement in the
alias analysis for RLE.

• RLE acts locally.

CS 380C Lecture 21 13 Alias Analysis

Client 2: Resolving Method Invocations

o := NEW (T) o := NEW (S)

o.m ()
Procedure mT

Procedure mS

• A polymorphic method invocation may call more
than one procedure at run time.

• A monomorphic method invocation always calls
the same procedure at run time.

CS 380C Lecture 21 14 Alias Analysis

Resolving Method Invocations

Method invocations

• are more expensive than direct calls

• inhibit compiler optimizations

We want to resolve monomorphic method invocations:
replacing method invocations with direct calls.

Full resolution is undecidable so any resolution
technique must be conservative and assume
polymorphic.

Technique Complexity Source

Type hierarchy O(|Types| ∗ |Methods|) borrowed
(Fernandez, Dean et al.)

Intraprocedural
type propagation O(∑p np ∗ vp) simplified
Aggregate O(∑p np ∗ vp) new
Interprocedural
type propagation O(p∑p np ∗ vp) simplified

CS 380C Lecture 21 15 Alias Analysis

Type Hierarchy Analysis

Bounds the procedures a method invocation may call
by examining the type hierarchy declarations for
method overrides.

ProceduremT

Procedure nS

ProcedurepS

Type T

Subtype S

S is a subtype of T

n

p

m
ProceduremS

CS 380C Lecture 21 16 Alias Analysis

Type Hierarchy Analysis

o.m ()o.m ()
o := po := NEW (T)

p := NEW (S)
p : T; o : T;

p.m ()
o.m ()

p: {S,T}

p: {S,T} p: {S,T}

p: {S,T}

o: {S,T} o: {S,T}

Declarations set types. Analysis ignores control flow.

CS 380C Lecture 21 17 Alias Analysis

Intraprocedural Type Propagation: Data-Flow
Analysis

p: {S}

o.m ()o.m ()
o := po := NEW (T)

p := NEW (S)
p : T; o : T;

p.m ()
o.m ()

p: {S}

p: {S}

p: {S}
o: {S}

p: {S}
o: {T}

o: {S,T}

Allocation, type discrimination, and assignment affect
types

CS 380C Lecture 21 18 Alias Analysis

Aggregate Analysis

Use type-based alias analysis to disambiguate pointer
references. Type-based alias analysis

• merges all instances of an object or record type,
and

• ignores all control flow.

Aggregate analysis finds monomorphic uses of general
data structures.

CS 380C Lecture 21 19 Alias Analysis

Aggregate Analysis Example

√

×

×

T T T T

TT

S S S

S S

S

T T T T

Program 3

Program 2

Program 1

CS 380C Lecture 21 20 Alias Analysis

Interprocedural Type Propagation

• Merge parameter information for all callers
(context insensitive)

• Merge return information for all callers at a call
site

• Reanalyze when more refined information becomes
available

• Update call graph as necessary

R: {T, S}R: {T, S}

p2: {S}
p1: {T}

p1.m ()
Return p2

A B
p2: {T}
p1: {T}

C

CS 380C Lecture 21 21 Alias Analysis

Modula-3 Benchmarks

Static Method Inv.
Name Lines Total Mono Rslv Dyn MI

format 395 37 26 26 47,064
dformat 602 95 77 77 30,775
k-tree 726 13 5 4 714,619
slisp 1645 223 94 94 67,253
pp 2328 24 1 1 458
dom 6186 222 136 128 12,377
postcard 8214 293 129 87 3,076
m2tom3 10574 1821 1110 1110 19,886,862
m3cg 16475 1808 295 213 32,850
trestle 28977 430 22 9 10,756
Total 4966 1895 1749 (92%)

CS 380C Lecture 21 22 Alias Analysis

Effectiveness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

th th+tp th+tp+a th+itp th+itp+a

Fr
ac

tio
n

of
 d

yn
am

ic
 m

et
ho

d
in

vo
ca

tio
ns

Complete
Incomplete

m3cg

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

th th+tp th+tp+a th+itp th+itp+a

Fr
ac

tio
n

of
 d

yn
am

ic
 m

et
ho

d
in

vo
ca

tio
ns

Complete
Incomplete

DFormat

CS 380C Lecture 21 23 Alias Analysis

Upper-Bound Comparison

Compare results with monomorphic method
invocations at run time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fo
rm

at

df
or

m
at

do
m

tr
es

tle

sl
is

p

po
st

ca
rd

kt
re

e

m
3c

g

m
2t

om
3

w
ri

te
-p

ic
kl

e

pp

Fr
ac

tio
n

of
 d

yn
am

ic
 m

et
ho

d
in

vo
ca

tio
ns

Unresolved
Resolved

CS 380C Lecture 21 24 Alias Analysis

Cause Evaluation

Find the source of loss of type information

o: S

o.m ()

o: T

Source Solution

Control merge Context sensitive analysis
Data merge More powerful alias analysis
Unavailable Analyze libraries

CS 380C Lecture 21 25 Alias Analysis

Cause of analysis failure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fo
rm

at

df
or

m
at

do
m

tr
es

tle

sl
is

p

po
st

ca
rd

kt
re

e

m
3c

g

m
2t

om
3

w
ri

te
-p

ic
kl

e

pp

Fr
ac

tio
n

of
 d

yn
am

ic
 m

et
ho

d
in

vo
ca

tio
ns

Unavailable
Control Merge
Data Merge

CS 380C Lecture 21 26 Alias Analysis

Run-Time Impact of Resolving Method
Invocations

0

20

40

60

80

100

FormatDformatWrPkl K-TreeM2toM3 Slisp M3CG

Pe
rc

en
t o

f
or

ig
in

al
 r

un
ni

ng
 ti

m
e

Base
MR

Inlining
MR+Inling

CS 380C Lecture 21 27 Alias Analysis

Bottom Line

• Method resolution improves performance up to
11%.

• Inlining & method resolution improves
performance up to 28% for these benchmarks.

• Different analyses are effective under different
situations; thus we need a range of analyses.

• There is not much room for improvement here.

=⇒ We can eliminate method invocation overhead for
monomorphic call sites.

CS 380C Lecture 21 28 Alias Analysis

Cumulative Impact of Optimizations

0

20

40

60

80

100

FormatDformat Slisp K-Tree M3CGM2toM3 WrPkl

Pe
rc

en
t o

f
or

ig
in

al
 r

un
ni

ng
 ti

m
e

Base
Inlining

MR
RLE

All

CS 380C Lecture 21 29 Alias Analysis

Summary

Type-based analyses are effective at

• reducing the overhead of linked structures, and

• reducing the overhead of method invocations,

Compiler optimizations need static, dynamic, and limit
evaluation.

Open Questions

• Further evaluation of type-based alias analysis.

• Applying limit analysis to other optimizations.

CS 380C Lecture 21 30 Alias Analysis

Next Time

Interprocedural optimization

Grove & Torczon, Interprocedural Constant
Propagation: A Study of Jump Function
Implementations, ACM Conference on Programming
Language Design and Implementation, pp. 90-99,
Albuquerque NM, June 1993.

CS 380C Lecture 21 31 Alias Analysis

