
Advanced Topics

Optimization for parallel machines and memory
hierarchies

Last Time

• Dependence analysis

Today

• Loop transformations

• An example - McKinley, Carr, Tseng
loop transformations to improve cache
performance

CS 380C Lecture 24 1 Locality Analysis

Which Loops are Parallel? review

do I = 1, N
do J = 1, N

S1 A(I,J) = A(I,J-1) + 1

do I = 1, N
do J = 1, N

S2 A(I,J) = A(I-1,J-1) + 1

do I = 1, N
do J = 1, N

S3 B(I,J) = B(I-1,J+1) + 1 J

I

• A dependence D = (d1, . . . ,dk) is carried at level i, if
di is the first nonzero element of the
distance/direction vector.

• A loop li is parallel, if 6 ∃ a dependence D j carried
at level i. Either

distance vector direction vector
∀D j d1, . . . ,di−1 > 0 d1, . . . ,di−1 = “ <′′

OR d1, . . . ,di = 0 d1, . . . ,di = “ =′′

CS 380C Lecture 24 2 Locality Analysis



Loop Transformations

Taxonomy

• Loop unrolling

• Loop interchange

• Loop fusion

• Loop distribution (a.k.a. fission)

• Loop skewing

• Strip mine and interchange (a.k.a. tiling &
blocking)

• Unroll-and-jam (a variety of tiling)

• Loop reversal

CS 380C Lecture 24 3 Locality Analysis

Loop Interchange

do I = 1, N
do J = 1, N

S1 A(I,J) = A(I-1,J) + 1
enddo

enddo

do I = 1, N
do J = 1, N

S2 B(I,J) = B(I-1,J+1) + 1
enddo

enddo

I

J

I

J
Loop interchange is safe iff

• it does not reverse the execution order of the
source and sink of any dependence in the nest,
i.e., if the distance vector would become negative.

◦ Enables parallelization of outer and/or inner loops

◦ Changes execution order of the statements

◦ Can improve reuse

CS 380C Lecture 24 4 Locality Analysis



Loop Fusion

=⇒ loop fusion =⇒

do i = 2, n
s1 a(i) = b(i)

do i = 2, n
s2 c(i) = b(i) ∗ a(i-1)

do i = 2, n
s1 a(i) = b(i)
s2 c(i) = b(i) ∗ a(i-1)

⇐= loop distribution ⇐=

Loop Fusion is safe iff

• no forward dependence between nests becomes a
backward loop carried dependence.

⇒ Would fusion be safe if s2 referenced a(i+1) ?

• Benefits

◦ Reuse

◦ Eliminates synchronization between parallel
loops

◦ Reduced loop overhead

CS 380C Lecture 24 5 Locality Analysis

Loop Distribution

=⇒ loop distribution =⇒

do i = 2, n
s1 a(i) = b(i)
s2 c(i) = b(i) ∗ a(i+1)

do i = 2, n
s2 c(i) = b(i) ∗ a(i+1)

do i = 2, n
s1 a(i) = b(i)

Loop Distribution is safe iff

• statements involved in a cycle of dependences
(recurrence) remain in the same loop, &

• if ∃ a dependence between two statements placed
in different loops, it must be forward.

• Benefits

◦ Partial parallelization

◦ Reduces resource requirements

◦ Enables other transformations

CS 380C Lecture 24 6 Locality Analysis



Loop Skewing and Interchange

do I = 1, 100
do J = 2, 100

A(I,J) =
A(I-1,J) + A(I,J-1)

do I = 1, 100
do J = I+2, i+100

A(I,J) =
A(I-1,J) + A(I,J-1)

J

I

J

I

Loop skewing is always safe.

• The original dependences, (1,0) & (0,1) prevent
interchange and parallelization.

• It changes the dependences to (1,1) & (0,1) and
after interchange, (1,1) & (1,0), the inner loops is
parallel.

⇒ Enables inner loop parallelization

CS 380C Lecture 24 7 Locality Analysis

Strip Mine and Interchange

=⇒ Strip Mine =⇒

do I = 1, n
do J = 1, n

A(J,I) = B(J) ∗ C(I)

=⇒ Interchange =⇒

do II = 1, n, tile
do I = II, II + tile -1

do J = 1, n
A(J,I) = B(J) ∗ C(I)

do II = 1, n, tile
do J = 1, n

do I = II, II + tile -1
A(J,I) = B(J) ∗ C(I)

J

I

J

I

Strip Mining is always safe. With interchange it

• enables loop invariant reuse by changing the shape
of the iteration space

CS 380C Lecture 24 8 Locality Analysis



Improving Reuse with Loop Transformations

Motivation: Enable portable programming without
sacrificing performance

• optimization framework

• cache model

• compound loop transformation algorithm

◦ permutation ◦ fusion

◦ distribution ◦ reversal

• results

◦ transformation

◦ simulation

◦ performance

CS 380C Lecture 24 9 Locality Analysis

Optimization Framework

1. improve order of memory accesses to exploit all
levels of the memory hierarchy

=⇒ cache line size

2. Tile to fit in cache, second level cache, TLB

=⇒ size of cache(s), replacement policy,
associativity,

3. register tiling via unroll-and-jam and scalar
replacement

=⇒ number and type of registers

Assumptions

• cls - the cache line size in terms of data items

• Fortran column-major order

• interference occurs rarely for small numbers of
inner loop iterations

CS 380C Lecture 24 10 Locality Analysis



Reuse

• temporal locality reuse of a specific location

• spatial locality reuse of adjacent locations
(cache lines)

do j = 1, 100
do k = 1, 100

do i = 1, 100
c(i,j) = c(i,j) + a(i,k) ∗ b(k,j)

To Determine Temporal and Spatial Reuse:

for each loop l in a nest, consider l innermost

• group references with temporal locality
⇒ reference groups

• compute the cost in cache lines accessed
⇒ loop cost

• rank the loops based on their cost
=⇒ memory order

CS 380C Lecture 24 11 Locality Analysis

Loop Cost of dmxpy From Linpackd

Loop Cost in cache lines, cls = 4

do j = 1, n2
do i = 1, n1

y(i)= y(i) + x(j) ∗ m(i,j)

reference group loop i loop j
y(i) 1/4 n1 ∗ n2 1 ∗ n1
x(j) 1 ∗ n2 1/4 n2 ∗ n1

m(i,j) 1/4 n1 ∗ n2 n2 ∗ n1

total loop cost 1/2 n1 ∗ n2 + n2 5/4 n1 ∗ n2 + n1

CS 380C Lecture 24 12 Locality Analysis



Loop permutation

key insight: If loop l promotes more reuse than loop k
at the innermost position, then it will also
promote more reuse at any outer position.

• memory order

(a) is it legal?
(b) if not find a nearbyPermutation O(n2)

=⇒ avoids combinatorial search present in other
algorithms

CS 380C Lecture 24 13 Locality Analysis

NearbyPermutation

Input:
O = {i1, i2, ..., in}, the original loop ordering
DV = set of original legal direction vectors for ln
L = {iσ1

, iσ2
, . . . , iσn

} , a permutation of O

Output:
P a nearby permutation of O

Algorithm:
P = /0 ; k = 0 ; m = n
while L 6= /0

for j = 1,m
l = l j ∈ L
if direction vectors for {p1, . . . , pk, l} are legal
P = {p1, . . . , pk, l}
L = L −{l} ; k = k +1 ; m = m−1
break for

endif

endfor

endwhile

CS 380C Lecture 24 14 Locality Analysis



Matrix Multiply - execution times in seconds

Execution Times (in seconds) vs. Loop Organization

300 × 300

0

1 0

2 0

3 0

4 0

5 0

6 0

   

Sun Sparc2 Intel i860 IBM RS/6000
JKI KJI JIK IJK KIJ IKJ - ORDER

512 × 512

0

5 0

100

150

200

250

300

350

400

   

Sun Sparc2 Intel i860 IBM RS/6000
JKI KJI JIK IJK KIJ IKJ - ORDER

CS 380C Lecture 24 15 Locality Analysis

Loop Fusion Erlebacher

Fortran 90 loops for ADI Integration
DO I = 2, N

X(I,1:N) = X(I,1:N) - X(I-1,1:N)∗A(I,1:N)/B(I-1,1:N)
B(I,1:N) = B(I,1:N) - A(I,1:N)∗A(I,1:N)/B(I-1,1:N)

⇓ simple translation to Fortran 77DO I = 2, N
DO K = 1, N

X(I,K) = X(I,K) - X(I-1,K)∗A(I,K)/B(I-1,K)
DO K = 1, N

B(I,K) = B(I,K) - A(I,K)∗A(I,K)/B(I-1,K)

⇓ loop fusion & interchangeDO K = 1, N
DO I = 2, N

X(I,K) = X(I,K) - X(I-1,K)∗A(I,K)/B(I-1,K)
B(I,K) = B(I,K) - A(I,K)∗A(I,K)/B(I-1,K)

Execution times in seconds.

Memory Order
Processor Original Distributed Fused

Sun Sparc2 .806 .813 .672
Intel i860 .547 .548 .518

IBM RS6000 .390 .400 .383

CS 380C Lecture 24 16 Locality Analysis



Loop Distribution Cholesky Factorization

DO K = 1,N
A(K,K) = SQRT(A(K,K))
DO I = K+1,N

A(I,K) = A(I,K)/A(K,K)
DO J = K+1,I

A(I,J) −= A(I,K)*A(J,K)

DO K = 1,N
A(K,K) = SQRT(A(K,K))
DO I = K+1,N
A(I,K) = A(I,K)/A(K,K)

DO J = K,N
DO I=J+1,N
A(I,J) −= A(I,K)*A(J,K)

=⇒ loop distribution & triangular interchange =⇒

Execution times (in seconds)

0

2

4

6

8

1 0

1 2

   

Sun Sparc2 Intel i860 IBM RS/6000
KJI JKI KIJ IKJ JIK IJK - ORDER

CS 380C Lecture 24 17 Locality Analysis

Algorithm Summary

for each nest L | in a set of adjacent nests

• compute reference groups for each li

• compute loop cost for each li and sort

• permutation with reversal?

• fuse inner loops and permute?

• distribute and permute?

fuse nests L |?

CS 380C Lecture 24 18 Locality Analysis



Results

test suite

• Perfect Benchmarks

• SPEC Benchmarks

• NAS Benchmarks

• 4 additional programs

experiments

◦ on our ability to transform programs

◦ simulated hit rates for RS/6000 and i860

◦ execution times on an RS/6000

CS 380C Lecture 24 19 Locality Analysis

Achieving Memory Order for Loop Nests

<= 20

Original

Final

Percentage of Loop Nests in Memory Order

12

8

4

0

N
um

be
r 

of
 P

ro
gr

am
s

>=40         >= 60    >= 70   >=80    >= 90

16

CS 380C Lecture 24 20 Locality Analysis



Achieving Memory Order for Inner Loops

<= 20

Original

Final

Percent of Inner Loops in Memory Order

0

4

8

12

16

20

N
um

be
r 

of
 P

ro
gr

am
s

>=40           >= 60    >= 70   >=80    >= 90

CS 380C Lecture 24 21 Locality Analysis

Simulated Cache Hit Rates

cache1: RS/6000 64K cache, 4-way, 128 byte cache line
cache2: i860 8K cache, 2-way, 32 byte cache line

for RS/6000

=⇒ in 12 of 27 programs, optimized procedures
started with 100% hit rates

=⇒ 98.86 – average hit rate for original programs

Memory Order Opt. Proc. Hit Rates

Perfect Org Prm Fail Cache 1 Cache 2

Club % org final org final

adm 52 16 32 100 100 97.7 97.8

arc2d 55 28 17 89.0 98.5 68.3 91.9

bdna 75 18 7 100 100 100 100
dyfesm 63 15 22 100 100 100 100
flo52 83 17 0 99.6 99.6 96.7 96.3

mdg 83 8 8 100 100 87.4 87.4
mg3d 95 3 3 98.8 99.7 95.3 98.7

ocean 82 13 5 100 100 93.0 92.8

qcd 53 11 36 100 100 100 100
spec77 64 7 29 100 100 100 100
track 50 16 34 100 100 100 100
trfd 52 0 48 99.9 99.9 93.7 93.7

CS 380C Lecture 24 22 Locality Analysis



Performance Results in Seconds on RS6000

Program Original Transformed Speedup

arc2d 410.13 190.69 2.15
dyfesm 25.42 25.37 1.00

flo52 62.06 61.62 1.01
dnasa7 (btrix) 36.18 30.27 1.20
dnasa7 (emit) 16.46 16.39 1.00
dnasa7 (gmtry) 155.30 17.89 8.68
dnasa7(vpenta) 149.68 115.62 1.29

applu 146.61 149.49 0.98
appsp 361.43 337.84 1.07

linpackd 159.04 157.48 1.01
simple 963.20 850.18 1.13
wave 445.94 414.60 1.08

CS 380C Lecture 24 23 Locality Analysis

Summary

Recap of Transformation Results

• 80 % of nests were permuted into memory order

• 85 % of inner loops were permuted into memory
order

• loop permutation is the most effective
optimization

• 229 candidates for fusion, resulting in 80 nests

• 23 nests were distributed, resulting in 52 nests

Observations

• many programs started out with high hit ratios

• smaller cache sizes result in higher improvements
in hit rates

=⇒ regardless of the original target architecture,
compiler optimizations improve locality for
uniprocessors

CS 380C Lecture 24 24 Locality Analysis



Next Time

Compiling for an EDGE Arcuitecture

Read: D. Burger et al., Compiling for TRIPS: Scaling
to the End of Silicon with EDGE Architectures, IEEE
Computer, pp. 44-55, July 2004.

CS 380C Lecture 24 25 Locality Analysis


