
1

List Processing in Real Time on a
Serial Computer

Henry G. Baker, Jr.

Presented by Mike Bond

Talk outline

� Problem and solution

� MFYCA Algorithm

� Baker’s Algorithm (SRT)

� Discussion

Problem

� Three problems with list processing systems:
1. Interpretation kills performance
2. Inefficient use of space
3. Garbage collection halts execution for time

proportional to size of live data

� Compilation fixes first two

� Paper targets third problem

Solution

� Baker’s algorithm (SRT)
� Based on MFYCA’s algorithm
� Basic idea: Do a little copying during each

cons, rather than a lot of copying infrequently
� Real-time: all operations in O(1) time
� Pretty good space efficiency

Talk outline

� Problem and solution

� MFYCA Algorithm

� Baker’s Algorithm (SRT)

� Discussion

MFYCA algorithm: The setup

fromspace
tospace

registers

2

MFYCA algorithm: Between
garbage collections

fromspace
tospace

registers

Between garbage collections, everything in tospace

MFYCA algorithm: Flip

fromspace
tospace

registers

Flip is the first step of garbage collection

MFYCA algorithm: Copying

fromspace
tospace

Nodes pointed to by registers are the first copied

registers

MFYCA algorithm: Copying
(continued)

fromspace
tospace

The yellow arrows represent forwarding addresses

registers S

MFYCA algorithm: Copying
(continued)

fromspace
tospace

The circled nodes will be copied next

registers S

MFYCA algorithm: Copying
(continued)

fromspace
tospace

Some arrows between fromspace and tospace have been omitted

registers

S

3

MFYCA algorithm: Copying
(continued)

fromspace
tospace

The circled nodes will be copied next

registers

S

MFYCA algorithm: Copying
(continued)

fromspace
tospace

Arrows between fromspace and tospace have been omitted

registers

S

MFYCA algorithm: Garbage
collection finished

fromspace
tospace

Everything in fromspace is garbage

registers

space for new objects

Talk outline

� Problem and solution

� MFYCA Algorithm

� Baker’s Algorithm (SRT)

� Discussion

Baker’s algorithm: How it’s
different

� When tospace fills up, do a flip and copy only
roots

� Every cons does a few iterations of garbage
collection

� Each car and cdr checks for a forwarding
address – updates pointer if found

Baker’s algorithm: Proven
guarantees

� Serial Real-Time system
– one thread
– all operations O(1) time

� Won’t run out of tospace (unless we really run
out of space)
– (1 + 1/k) times as much storage needed as for

MFYCA
– Tradeoff between time and space

4

Baker’s algorithm: Unsupported
cases

� Operations not constant time…
… on virtual memory machines (?)
… for arrays
… during memory extensions

� But no one uses those anymore, right?

Baker’s algorithm: Right after flip

fromspace
tospace

registers

Flip is the first step of garbage collection

Baker’s algorithm: Copy the roots

fromspace
tospace

Only roots are copied after a flip

registersk = 2 S

Baker’s algorithm: Result of a cons

fromspace
tospace

Arrows between fromspace and tospace are not shown

registers

Circled nodes are copied to tospace

k = 2

new node

from fromspace

space for new objects

S

T

B

Talk outline

� Problem and solution

� MFYCA Algorithm

� Baker’s Algorithm (SRT)

� Discussion

Discussion: Space

� Paper very concerned with space: with large k,
Baker and MFYCA use essentially same space

� Space still so important in 2003? Or are
concerns somewhat different?

� Small working set size more important today
� How do Baker’s modifications affect working

set size?

5

Discussion: Breadth-first order

� The “graph” of objects is traversed in breadth-
first order
– True for both MFYCA and Baker

� Why?
� Is this beneficial? Consider locality.

Discussion: T pointer

� Baker’s algorithm adds T pointer to MFYCA
� New objects allocated at the end of the free

space; garbage-collected accessible objects
copied to beginning of free space

� Why do this?
� Does this have other effects? Could MFYCA

have used a T pointer?

Free space
Unscanned

nodes

T

Scanned
nodes New nodes

Discussion: Read barrier overhead

� The (potential) copying done by each car and
cdr has to be done by MFYCA, too

� However, each car and cdr checks if the node
is in fromspace vs. tospace

� Is this bad?

� How bad?
� Consider database application (from paper)

Discussion: More operations

� How well does Baker’s algorithm apply to a
larger set of operations than cons, car, cdr,
rplaca, rplacd, eq, and atom?

� Consider imperative languages

Conclusion

� Baker’s algorithm: Modification to MFYCA
� Contributions:

– Real-time: all operations constant time
– Space efficiency and flexibility: can choose k for

space-time tradeoff
– Proof: Correct and doesn’t run out of space when it

shouldn’t

