
A Real-Time Garbage Collector
Based on the Lifetimes of Objects

Henry Lieberman and Carl Hewitt
(CACM, June 1983)

Maria Jump

CS395T: Memory Management Hierarchies

September 9, 2003

LH83 - – p.1/15

Lifetime Observation

Programs have two types of objects
“thinking objects” � � short-lived
“decision objects” � � long-lived

Improve performance of Baker’s Algorithm
optimize for scavenging short-lived objects
scavenge long-lived objects less frequently

Rental cost
storage management cost for an object is
proportional to the time during which the object
is used

LH83 - – p.2/15

Modify Baker’s Algorithm

address space broken up into generations
small (relative to address space) set of pages

Baker’s algorithm used per region
flip � � condemning a region
fromspace � � obsolete areas
tospace � � non-obsolete areas
evacuate objects in the same way

LH83 - – p.3/15



Lieberman & Hewitt Algorithm

1960.0

Regions are tagged with generation and version number

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0

Allocation occurs in creation region

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0

... until the creation region is full

LH83 - – p.4/15



Lieberman & Hewitt Algorithm

1960.0 1970.0

... then new creation region is created

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0 1970.0

... and so on

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0 1970.0

... and so on

LH83 - – p.4/15



Lieberman & Hewitt Algorithm

1960.0 1970.0 1980.0

... and so on

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0 1970.0 1980.0

1970.1

GC is initiated by condemning a region (making it
obsolete) and creating an evacuation region

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0 1970.0 1980.0

1970.1 1980.1

this requires that younger generations also be condemned

LH83 - – p.4/15



Lieberman & Hewitt Algorithm

1960.0 1970.0 1980.0

1970.1 1980.1

accessible objects in condemned region(s) are
incrementally evacuated using Baker’s Algorithm

LH83 - – p.4/15

Lieberman & Hewitt Algorithm

1960.0

1970.1 1980.1

... and the memory is recycled

LH83 - – p.4/15

The Good – Varying GC Rates

Vary the rate of GC for each generation
younger generations contain high percentages of
garbage and are collected frequently
older generations contain relatively permanent
data and are collected seldomly

Focus scavange time where the highest proportion of
inaccessible objects

Minimizes the amount of scavenging needed per
inaccessible object

LH83 - – p.5/15



The Bad – Fragmentation

Fragmentation results from partially-filled regions
choose a region size to minimize fragmentation
coalesce older regions reducing the amount of
wasted space

LH83 - – p.6/15

The Ugly – Scavenge Time

Whole heap scavenge required to ensure no pointers
point into condemned region(s)

Scavenging is a lot of work

Scavenging is good because it
reuses the address space
compacts the address space

Want to reduce the scavenging time by using
forward pointers

LH83 - – p.7/15

Forward Pointers

1960.0 1970.1 1980.1

LH83 - – p.8/15



Forward Pointers

1960.0 1970.1 1980.1

CONS composes existing components into objects
creates a backward pointer

LH83 - – p.8/15

Forward Pointers

1960.0 1970.1 1980.1

CONS composes existing components into objects
creates a backward pointer

RPLACA can assign a new pointer as a component to
an older object

creates a forward pointer

LH83 - – p.8/15

Entry Tables

1960.0 1970.1 1980.1

Problem occurs after heap is manipulated further

LH83 - – p.9/15



Entry Tables

1960.0 1970.1 1980.1

Problem occurs after heap is manipulated further

Add entry table to record forward pointers

LH83 - – p.9/15

Entry Tables

1960.0 1970.1 1980.1

Problem occurs after heap is manipulated further

Add entry table to record forward pointers

Adds a level of indirection for some pointers

LH83 - – p.9/15

Entry Tables

1960.0 1970.1 1980.1

Problem occurs after heap is manipulated further

Add entry table to record forward pointers

Adds a level of indirection for some pointers

GC uses entry table entries as roots to the region

LH83 - – p.9/15



Contributions

Different objects have different lifetimes

Performance benefit from varying the collection of
rates of objects with different lifetimes

Introduced concept of different generations within a
copying collector

Introduced use of entry table to avoid scanning
entire heap

LH83 - – p.10/15

Sidebar 1: Weak Pointers

Pointers in the program which do not protect an object
from being collected

not followed during GC

small in number

forward weak pointers use the entry table

LH83 - – p.11/15

Sidebar 2: Value Cells & Stacks

Represent roots of scavenging

What is the advantage of considering them the
“oldest” generation?

What is the advantage of considering them the
“youngest” generation?

no entry tables pointers needed

LH83 - – p.12/15



Sidebar 3: Flavors of Allocation

Providing different allocators for different regions

Can sophisticated users direct the flavor of
allocation?

Can compiler analysis accurately change the flavor
of allocation?

Can runtime information accurately change the
flavor of allocation?

LH83 - – p.13/15

Aspects of Program Behavior

Rate of object creation

Average lifetimes of objects

Proportion of forward vs. backward pointers

Average “length” of pointers

LH83 - – p.14/15

The End

LH83 - – p.15/15


	Lifetime Observation
	Modify Baker's Algorithm
	Lieberman & Hewitt Algorithm
	The Good -- Varying GC Rates
	The Bad -- Fragmentation
	The Ugly -- Scavenge Time
	Forward Pointers
	Entry Tables
	Contributions
	Sidebar 1: Weak Pointers
	Sidebar 2: Value Cells & Stacks
	Sidebar 3: Flavors of Allocation
	Aspects of Program Behavior
	

