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Word Of Caution 

n This presentation is going to be my interpretation of Generation Scavenging
n This paper was published in 1984. To appreciate ideas presented in this paper 

we should read it with right mind set.



September 16, 2003 4

Introduction To Generation Scavenging Algorithm

n Computing systems provide automatic storage facilities
n Price to be paid :

n CPU Time
n Main Memory
n Unexpected pauses cause distraction and reduction of productivity

n Proposed Generation Scavenging Algorithm (GSA)
n Limits pause times to a fraction of a second
n Requires no hardware support
n Meshes well with virtual memory
n Reclaims circular structures, and
n Uses less than 2% of CPU time on Smalltalk system

n GSA has been implemented on Berkeley Smalltalk (BS)
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Relationship : Virtual Memory and Storage Reclamation
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Bandwidth Issues With Storage Allocator

n Bandwidth is the reclamation rate for system to be in equilibrium.
n Smalltalk-80 system allocates a new object every 80 instructions.
n Mean dynamic object size is about 70 bytes.
n If system runs at 9000 bytecodes per second :–
n Storage Allocator Bandwidth = 

70bytes/1object * 1object/80instruction * 9000bytescodes/second = 7800b/s

n What does this mean ?
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Bandwidth Issues With Storage Allocator

n Flush out data from main memory to secondary storage at 7800b/s

n Recycle data from Main Memory (GC)
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Various Garbage Collection Algorithms

n Reference Counting (1960) : 
Maintain a count of number of pointers that reference each object
n Immediate RC : 

n Adjust reference count on every store instruction
n Counting references takes time. Around 15% of CPU time
n Additional 5% for decrementing counts when object is released
n Advantages : least amount of memory for dynamic objects
n Fails to reclaim circular structure

n Deferred RC :
n Ignore references from local variables
n Preclude reclamation during program execution
n System has to periodically stop to free dead objects
n Requires 25 KB more space as compared to Immediate RC
n 30 ms pause every 500 ms
n Saves 90% of reference count manipulation
n 3% CPU Time + 3% periodic reconciliation + 5% for recursive freeing
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Various Garbage Collection Algorithms

n Marking Storage Reclamation Algorithms (1960) : 
First traverse and mark reachable objects and then reclaim the space filled by unmarked 
ones
n Mark and Sweep

n Marking phase identifies all live objects
n Reclaims one object at a time.
n Inefficient, because this algorithm requires object space to be traversed twice.
n CPU Time : 25%-40%
n 4.5 second pause every 79 seconds

n Scavenging Live Objects
n Costly sweep phase can be eliminated by moving live objects to a new area
n After scavenging former area is free and new objects can be allocated from its base
n Forwarding pointers are required
n CPU Time : 7%
n Next improvement is to divide objects into generations and do GC more often for 

younger ones.
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Generation Scavenging Algorithm

n Each object is classified as new or old
n Old objects reside in memory region called old area
n New objects can be found in following places

n NewSpace
n PastSurvivorSpace
n FutureSurvivorSpace

n Remembered Set : Set of old objects having a reference to new object
n All new objects are reachable through Remembered Set objects and

roots
n During GC, live objects from NewSpace and PastSurvivorSpace are 

moved to FutureSurvivorSpace
n Interchange FutureSurvivorSpace with PastSurvivorSpace
n NewSpace can be reused for new objects
n Space cost of only 1bit/object
n Tenuring : promotion from new space to old space
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Generation Scavenging Algorithm
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Generation Scavenging Algorithm
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Generation Scavenging Algorithm
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Generation Scavenging Algorithm : Tenuring
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GSA : Role Of Virtual Memory
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Comparison of GSA with other scavenging algorithms

n Similarities
n It divides objects into young and old generations
n Copies live objects instead of sweeping dead ones
n Reorganizes old objects offline

n Differs
n Conservers memory space by dividing new space into three spaces instead of two
n Is not incremental. This eliminates the checking needed for load instructions
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Evaluation of GSA

n CPU Time : 
n Takes only 1.5% of total user CPU Time
n This is four times better than its nearest competitor (7%)

n Main Memory Consumption :
n Takes only 200 KB (140 + 28 + 28) for dynamic objects
n Around 10% of BS main memory
n Comparison with Baker Semispace Algorithm: 2 * (140+28) = 360 KB (appx)

n Pauses
n Pauses were small averaging 150 ms
n Longest was 330 ms

Microsoft Excel 
Worksheet



September 16, 2003 18

Conclusion

n Combination of generation scavenging and paging provides high performance 
GC

n Careful consideration of virtual memory is essential for any GC algorithm
n GSA uses these principles to achieve 2% CPU time, 200 KB primary memory, 

1.2/s backing store operations and 1/6-1/3 s pause time.
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Discussion

n Do we have a control over paging ?
n Is it still a good idea to page out old object space to secondary memory ?
n Are the results reliable ? He used only (I guess) smalltalk-80 macro bench 

marks.


