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• Sharad Singhai
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– Associate Professor, University of Texas at Austin

• J. Eliot B. Moss
– Associate Professor, University of Mass., Amherst
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Generational GC

• Advantage:
– Fast allocation (via ‘bump pointer’)
– Cheap reclamation (en masse)
– Non-fragmenting
– Minimizes copying of older objects

etc. etc …

‘nursery’ ‘older generation’
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GC Can Be Expensive
Percentage of time spent in GC
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Problem

Long lived objects copied at least once
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Pretenuring

Allocate long lived objects directly into 
older generation
– Identify long lived sites (via profiling) 

[CHL98]
– Modify to allocate into older generation

etc. etc …

‘nursery’ ‘older generation’
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Pretenuring: our Goals

Pretenuring for JavaPretenuring for Java

• Apply pretenuring to Java
• Generalize:

– different garbage collectors
– program scales
– different programs

• Apply to different collectors
– Appel-style generational collector
– Older-first collector
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Object Lifetime Homogeneity

Pretenuring requires allocation site 
lifetime homogeneity
– True for ML [CHL98]
– Not true for C (call chain is necessary) 

[BZ93]

What about Java? 
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Generalizing Pretenuring

GC-neutral Lifetime Statistics

• Lifetime
– Time from birth to death of an object
– Expressed w.r.t. min heap size

• Time of death
– Point in program when object dies
– Expressed w.r.t. total allocation

• Use profiling
– Trace ‘birth’ and ‘death’ events
– Very frequent GCs (e.g. every 64K)

(In the GC literature,‘time’ is usually expressed in terms of al location, not seconds)
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Discussion Question

• 64K granularity in GC Profiling
• What affects could profile granularity 

have on the pretenuring decision?
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Three-way Classification

• Short
– Lived less than fraction s of a heap

• Immortal
– Lifetime is longer than ‘deathtime’ (exploit fact 

that non-copied space is half cost of copied space)

• Long
– If neither short nor immortal
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Object Lifetime Demographics
SPEC _213_javac
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Mapping from Instance to Site

• Given 3 fractions: Sf, Lf, & If:
– If Sf > Lf + If site is short
– If Sf + Lf > If site is long
– Otherwise site is immortal

• Given 3 fractions: Sf, Lf, & If:
– If Sf > Lf + If site is short
– If Sf + Lf > If site is long
– Otherwise site is immortal

• Need to be conservative

• Given 3 fractions: Sf, Lf, & If, and a 
homogeneity factor, Hf:
– If Sf + Hf > Lf + If site is short
– Else if Sf + Lf + Hf > If site is long
– Otherwise site is immortal

14 October 2003 CS395T – Memory Management 14

Discussion Question

• What other methods could be used to 
decide to pretenure an allocation site?
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Pretenuring Mechanics

• Generate advice file
– <class> <method> <offset> <[s|l|i]>

• Supply advice to compiler
– Env. variable or command line option
– Compiler generates map
– Consults map for each new()
– Compiles in appropriate allocation code
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CHL Pretenuring

• CHL pretenuring advice:
– Profile application using generational GC
– Any site where 80% of allocated instances 

‘survive’ the nursery is long-lived
• Limitations

– Can’t easily combine advice
– Collector-specific
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Experimental Setting:
Jikes RVM

(formally known as Jalapeño)

• JVM written in Java (see OOPSLA 99,00,01, PLDI 00,01)

– High performance
– Aggressive optimizing compiler
– Flexible GC toolkit

• ‘Boot image’ contains core classes (class loader, 
compiler etc.)

– Opportunity for application-neutral pretenuring
– (Additional to application-specific pretenuring)

• GCTk, a OO GC toolkit with run-time and 
build-time ‘allocation advice’ implemented
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Results

• UMass build-time advice is ‘true’ advice
– Advice for each application based on profile  

of remaining N-1 applications
– Run-time advice is ‘self’ advice

• Used 5 benchmarks
– 3 from SPEC JVM
– 1 from Olden
– IBM’s pBOB

• Measurements across 32 heap sizes
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Mark/cons: geometric mean of 5 benchmarks
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GC time: geometric mean of 5 benchmarks
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Execution time: geometric mean of 5 benchmarks
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Pretenuring in the Older First 
GC Algorithm

• Older First [SMM99]
– Efficient new copying GC algorithm
– Different collection order to generational GC
– Different heap layout to generational GC

• We add a permanent space (for immortals)
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Older First GC
Execution time: geometric mean of 5 benchmarks

65%

70%

75%

80%

85%

90%

95%

100%

105%

1.32 1.54 1.81 2.13 2.49 2.91

Heap size relative to minimum heap size (log scale)

Ex
ec

ut
io

n 
tim

e 
re

la
tiv

e 
to

 n
o 

PT
  

 

UMass run time PT

UMass build time PT
UMass run & build time PT

14 October 2003 CS395T – Memory Management 24

Conclusions

• Java programs are suitable for pretenuring
• UMass pretenuring is general:

– Exploits ‘immortal’ objects
– Combinable (suitable for build-time)
– Collector neutral

• Applied to Jalapeño/Jikes RVM
– Significant performance improvements
– Build-time pretenuring highly practical (significant 

benefits without application profiling)
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The End


