
1

Pretenuring for Java™

Presented by Maria Jump
Special Thanks to Steve Blackburn for the Power Point Presentation

Steve Blackburn, Sharad Singhai, Matthew Hertz,
Kathryn McKinley & Eliot Moss

Architecture and Language Implementation Laboratory
Department of Computer Science, University of Massachusetts, Amherst

14 October 2003 CS395T – Memory Management 2

Where are they now?

• Steven M. Blackburn
– Senior Lecturer, Australia National University

• Sharad Singhai
– Sandbridge Technology

• Matthew Hertz
– Graduate Student, University of Mass., Amherst

• Kathryn S. McKinely
– Associate Professor, University of Texas at Austin

• J. Eliot B. Moss
– Associate Professor, University of Mass., Amherst

14 October 2003 CS395T – Memory Management 3

Generational GC

• Advantage:
– Fast allocation (via ‘bump pointer’)
– Cheap reclamation (en masse)
– Non-fragmenting
– Minimizes copying of older objects

etc. etc …

‘nursery’ ‘older generation’

14 October 2003 CS395T – Memory Management 4

GC Can Be Expensive
Percentage of time spent in GC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.00 1.11 1.27 1.48 1.74 2.04 2.40 2.80 3.25

Heap size relative to minimum heap size (log scale)

Pe
rc

en
ta

ge
 o

f
tim

e
sp

en
t

in
 G

C
 SPEC _202_jess

SPEC _213_javac

SPEC _228_jack

health 6 128
pBOB

2

14 October 2003 CS395T – Memory Management 5

Problem

Long lived objects copied at least once

14 October 2003 CS395T – Memory Management 6

Pretenuring

Allocate long lived objects directly into
older generation
– Identify long lived sites (via profiling)

[CHL98]
– Modify to allocate into older generation

etc. etc …

‘nursery’ ‘older generation’

14 October 2003 CS395T – Memory Management 7

Pretenuring: our Goals

Pretenuring for JavaPretenuring for Java

• Apply pretenuring to Java
• Generalize:

– different garbage collectors
– program scales
– different programs

• Apply to different collectors
– Appel-style generational collector
– Older-first collector

14 October 2003 CS395T – Memory Management 8

Object Lifetime Homogeneity

Pretenuring requires allocation site
lifetime homogeneity
– True for ML [CHL98]
– Not true for C (call chain is necessary)

[BZ93]

What about Java?

3

14 October 2003 CS395T – Memory Management 9

Generalizing Pretenuring

GC-neutral Lifetime Statistics

• Lifetime
– Time from birth to death of an object
– Expressed w.r.t. min heap size

• Time of death
– Point in program when object dies
– Expressed w.r.t. total allocation

• Use profiling
– Trace ‘birth’ and ‘death’ events
– Very frequent GCs (e.g. every 64K)

(In the GC literature,‘time’ is usually expressed in terms of al location, not seconds)

14 October 2003 CS395T – Memory Management 10

Discussion Question

• 64K granularity in GC Profiling
• What affects could profile granularity

have on the pretenuring decision?

14 October 2003 CS395T – Memory Management 11

Three-way Classification

• Short
– Lived less than fraction s of a heap

• Immortal
– Lifetime is longer than ‘deathtime’ (exploit fact

that non-copied space is half cost of copied space)

• Long
– If neither short nor immortal

14 October 2003 CS395T – Memory Management 12

Object Lifetime Demographics
SPEC _213_javac

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

Lifetime

Ti
m

e
of

 d
ea

th

Immortal

Long
Short

4

14 October 2003 CS395T – Memory Management 13

Mapping from Instance to Site

• Given 3 fractions: Sf, Lf, & If:
– If Sf > Lf + If site is short
– If Sf + Lf > If site is long
– Otherwise site is immortal

• Given 3 fractions: Sf, Lf, & If:
– If Sf > Lf + If site is short
– If Sf + Lf > If site is long
– Otherwise site is immortal

• Need to be conservative

• Given 3 fractions: Sf, Lf, & If, and a
homogeneity factor, Hf:
– If Sf + Hf > Lf + If site is short
– Else if Sf + Lf + Hf > If site is long
– Otherwise site is immortal

14 October 2003 CS395T – Memory Management 14

Discussion Question

• What other methods could be used to
decide to pretenure an allocation site?

14 October 2003 CS395T – Memory Management 15

Pretenuring Mechanics

• Generate advice file
– <class> <method> <offset> <[s|l|i]>

• Supply advice to compiler
– Env. variable or command line option
– Compiler generates map
– Consults map for each new()
– Compiles in appropriate allocation code

14 October 2003 CS395T – Memory Management 16

CHL Pretenuring

• CHL pretenuring advice:
– Profile application using generational GC
– Any site where 80% of allocated instances

‘survive’ the nursery is long-lived
• Limitations

– Can’t easily combine advice
– Collector-specific

5

14 October 2003 CS395T – Memory Management 17

Experimental Setting:
Jikes RVM

(formally known as Jalapeño)

• JVM written in Java (see OOPSLA 99,00,01, PLDI 00,01)

– High performance
– Aggressive optimizing compiler
– Flexible GC toolkit

• ‘Boot image’ contains core classes (class loader,
compiler etc.)

– Opportunity for application-neutral pretenuring
– (Additional to application-specific pretenuring)

• GCTk, a OO GC toolkit with run-time and
build-time ‘allocation advice’ implemented

14 October 2003 CS395T – Memory Management 18

Results

• UMass build-time advice is ‘true’ advice
– Advice for each application based on profile

of remaining N-1 applications
– Run-time advice is ‘self’ advice

• Used 5 benchmarks
– 3 from SPEC JVM
– 1 from Olden
– IBM’s pBOB

• Measurements across 32 heap sizes

14 October 2003 CS395T – Memory Management 19

Mark/cons: geometric mean of 5 benchmarks

60%

70%

80%

90%

100%

110%

120%

130%

140%

1.08 1.27 1.48 1.74 2.04 2.40 2.80 3.25

Heap size relative to minimum heap size (log scale)

M
ar

k/
co

ns
 r

at
io

 r
el

at
iv

e
to

 n
o

PT

 UMass run time PT

UMass build time PT
UMass run & build time PT
CHL

14 October 2003 CS395T – Memory Management 20

GC time: geometric mean of 5 benchmarks

60%

70%

80%

90%

100%

110%

120%

1.08 1.27 1.48 1.74 2.04 2.40 2.80 3.25

Heap size relative to minimum heap size (log scale)

G
C

tim
e

re
la

tiv
e

to
 n

o
PT

UMass run time PT
UMass build time PT

UMass run & build time PT
CHL

6

14 October 2003 CS395T – Memory Management 21

Execution time: geometric mean of 5 benchmarks

90%

92%

94%

96%

98%

100%

102%

104%

1.08 1.27 1.48 1.74 2.04 2.40 2.80 3.25

Heap size relative to minimum heap size (log scale)

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 n
o

PT

UMass run time PT

UMass build time PT
UMass run & build time PT

CHL

14 October 2003 CS395T – Memory Management 22

Pretenuring in the Older First
GC Algorithm

• Older First [SMM99]
– Efficient new copying GC algorithm
– Different collection order to generational GC
– Different heap layout to generational GC

• We add a permanent space (for immortals)

14 October 2003 CS395T – Memory Management 23

Older First GC
Execution time: geometric mean of 5 benchmarks

65%

70%

75%

80%

85%

90%

95%

100%

105%

1.32 1.54 1.81 2.13 2.49 2.91

Heap size relative to minimum heap size (log scale)

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 n
o

PT

UMass run time PT

UMass build time PT
UMass run & build time PT

14 October 2003 CS395T – Memory Management 24

Conclusions

• Java programs are suitable for pretenuring
• UMass pretenuring is general:

– Exploits ‘immortal’ objects
– Combinable (suitable for build-time)
– Collector neutral

• Applied to Jalapeño/Jikes RVM
– Significant performance improvements
– Build-time pretenuring highly practical (significant

benefits without application profiling)

7

14 October 2003 CS395T – Memory Management 25

The End

