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Motivation
 Automatic memory reclamation (GC)

 No need for explicit “free”
 Garbage collector reclaims memory
 Eliminates many programming errors

 Problem: when do we get memory back?
 Frequent GCs:

  Reclaim memory quickly (minimize memory footprint), with 
high overhead

 Infrequent GCs:
  Lower overhead, but lots of garbage in memory

Can we combine the software engineering 
advantage of garbage collection with the 

low-cost incremental reclamation of 
explicit memory management ?

Can we combine the software engineering 
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Example

 Notice: String idName is often garbage
Memory:

void parse(InputStream stream) {
  while (not_done) {
    String idName = stream.readToken();
    Identifier id = symbolTable.lookup(idName);
    if (id == null) {
      id = new Identifier(idName);
      symbolTable.add(idName, id);
    }
    computeOn(id);
  }
}

Read a token 
(new String)

Look up in
symbol table

If not there, create 
new identifier, add 

to symbol table
Compute on

identifier



Explicit Reclamation as the 
solution

 Garbage does not accumulate
Memory:

void parse(InputStream stream) {
  while (not_done) {
    String idName = stream.readToken();
    Identifier id = symbolTable.lookup(idName)
    if (id == null) {
      id = new Identifier(idName);
      symbolTable.add(idName, id);
    }
    else free(idName);
    computeOn(id);
}} String idName is garbage, 

free immediately



FreeMe as the solution
 Adds  free() automatically

 FreeMe compiler pass inserts calls to free()
 Preserve software engineering benefits

 Can’t determine lifetimes for all objects
 Works with the garbage collector
 Implementation of free() depends on collector

 Goal:
 Incremental, “eager” memory reclamation
     Results: reduce GC load, improve performance

Potential: 1.7X performance
malloc/free vs GC

in tight heaps
(Hertz & Berger, OOPSLA 2005)



FreeMe Analysis
 Goal:

 Determine when an object becomes unreachable

     Not a whole-program analysis*

 Idea: pointer analysis + liveness
 Pointer analysis for reachability
 Liveness analysis for when

Within a method,
    for allocation site “p = new A”
    where can we place a call to “free(p)”?

I’ll describe the 
interprocedural 

parts later



idName

symbolTable

readToken
String

Identifier

(global)

id

Pointer Analysis
String idName = stream.readToken();
Identifier id = symbolTable.lookup(idName);
if (id == null) {
  id = new Identifier(idName);
  symbolTable.add(idName, id);
}
computeOn(id);

 Connectivity graph
 Variables
 Allocation sites
 Globals (statics)

 Analysis algorithm
   Flow-insensitive, field-insensitive



Pointer Analysis in more depth



void function(A p1, A p2, A p3)
{
  v1 = new O
  p1.f = v1
  p2 = p1.f
  p3 = p1 
}

Calculating the Points-To relation 
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Interprocedural component
 Detection of factory methods

 Return value is a new object
 Can be freed by the caller

 Effects of methods called

 Describes how parameters are connected

 Compilation strategy:
 Summaries pre-computed for all methods
 Free-me only applied to hot methods

String idName = stream.readToken();

symbolTable.add(idName, id);

Hashtable.add:
     (0 → 1)
     (0 → 2)



Generating summaries in more depth
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void function(A p1, A p2, A p3)
{
  v1 = new O
  p1.f = v1
  p2 = p1.f
  p3 = p1 
}

getfield is needed because a single pointer link in summary 
may represent multiple 
pointers in the callee
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The need for liveness analysis

• When objects become unreachable, not just 
whether or not they escape 

idName

symbolTable

readToken
String

Identifier

(global)

id



Adding Liveness
 Key :

idName

readToken
String

Identifier(global)

An object is reachable only when all 
incoming pointers are live

 From a variable: Live range of the variable

 From a global: Live from the pointer store onward

 Live from the pointer store until source 
object becomes unreachable

From other object:

Reachability is union 
of all these live ranges



Liveness Analysis
 Computed as sets of edges

 Variables

 Heap
pointers

String idName = stream.readToken();

id = new Identifier(idName);

computeOn(id);

if (id == null)

Identifier id = symbolTable.lookup(idName);

symbolTable.add(idName, id);

idName

(global)

readToken
String

Identifier



Where can we free it?
 Where object 

exists

   -minus-

 Where 
reachable

String idName = stream.readToken();

id = new Identifier(idName);

computeOn(id);

if (id == null)

Identifier id = symbolTable.lookup(idName);

symbolTable.add(idName, id);

readToken
String

Compiler inserts call 
to free(idName)



Free placement issues

• Select earliest point A,eliminate all B: A dom B
• Deal with double free’s



Runtime support for FreeMe
 Run-time: depends on collector

 Mark/sweep
Free-list:    free() operation

 Generational mark/sweep
Unbump:    move nursery “bump pointer” backward (LIFO frees)

Unreserve: reduce copy reserve
 Very low overhead
 Run longer without collecting

 Size to free defined statically/dynamically (query object)



Experimental Evaluation
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Comparing FreeMe & other approaches 

Stack-like 
• free() allocations of same 
method
• Restrict free  
instrumentation to end of 
method 
• No factory methods
• No conditional freeing

Uncond 
• Prove objects dead on 
all paths 
• Influence of free on 
some paths



Mark/sweep – time

20%

15%

6%

All benchmarks



Mark/sweep – GC time

All benchmarks
30%

9%



GenMS – time

All benchmarks

Brings into question all techniques that target short-lived objects



GenMS – GC time

Why doesn’t this help?

Note: the number of GCs is 
greatly reduced

FreeMe mostly finds short-
lived objects

All benchmarks

Nursery reclaims dead 
objects for free

(cost ~ survivors)



Bloat – GC time

12%



Conclusions
• FreeMe analysis

– Finds many objects to free: often 30% - 60%
– Most are short-lived objects

• GC + explicit  free()
– Advantage over stack/region allocation: no need to make 

decision at allocation time

• Generational collectors
– Nursery works very well

• Mark-sweep collectors
– 50% to 200% speedup
– Works better as memory gets tighter

Embedded applications:
Compile-ahead

Memory constrained
Non-moving collectors



Discussion

• Is compile-time memory management 
inherently incompatible with generational 
copying collection?

• Is the amount of memory freed significant?
• Could static analysis allow mark-sweep 

collectors to compete with generational 
collectors?
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