
Free-Me: A Static Analysis for
Automatic Individual Object

Reclamation
Samuel Z. Guyer, Kathryn McKinley,

Daniel Frampton

Presented by: Jason VanFickell

Thanks to Dimitris Prountzos for slides adapted from
the original PLDI talk

Motivation
 Automatic memory reclamation (GC)

 No need for explicit “free”
 Garbage collector reclaims memory
 Eliminates many programming errors

 Problem: when do we get memory back?
 Frequent GCs:

 Reclaim memory quickly (minimize memory footprint), with
high overhead

 Infrequent GCs:
 Lower overhead, but lots of garbage in memory

Can we combine the software engineering
advantage of garbage collection with the

low-cost incremental reclamation of
explicit memory management ?

Can we combine the software engineering
advantage of garbage collection with the

low-cost incremental reclamation of
explicit memory management ?

Example

 Notice: String idName is often garbage
Memory:

void parse(InputStream stream) {
 while (not_done) {
 String idName = stream.readToken();
 Identifier id = symbolTable.lookup(idName);
 if (id == null) {
 id = new Identifier(idName);
 symbolTable.add(idName, id);
 }
 computeOn(id);
 }
}

Read a token
(new String)

Look up in
symbol table

If not there, create
new identifier, add

to symbol table
Compute on

identifier

Explicit Reclamation as the
solution

 Garbage does not accumulate
Memory:

void parse(InputStream stream) {
 while (not_done) {
 String idName = stream.readToken();
 Identifier id = symbolTable.lookup(idName)
 if (id == null) {
 id = new Identifier(idName);
 symbolTable.add(idName, id);
 }
 else free(idName);
 computeOn(id);
}} String idName is garbage,

free immediately

FreeMe as the solution
 Adds free() automatically

 FreeMe compiler pass inserts calls to free()
 Preserve software engineering benefits

 Can’t determine lifetimes for all objects
 Works with the garbage collector
 Implementation of free() depends on collector

 Goal:
 Incremental, “eager” memory reclamation
 Results: reduce GC load, improve performance

Potential: 1.7X performance
malloc/free vs GC

in tight heaps
(Hertz & Berger, OOPSLA 2005)

FreeMe Analysis
 Goal:

 Determine when an object becomes unreachable

 Not a whole-program analysis*

 Idea: pointer analysis + liveness
 Pointer analysis for reachability
 Liveness analysis for when

Within a method,
 for allocation site “p = new A”
 where can we place a call to “free(p)”?

I’ll describe the
interprocedural

parts later

idName

symbolTable

readToken
String

Identifier

(global)

id

Pointer Analysis
String idName = stream.readToken();
Identifier id = symbolTable.lookup(idName);
if (id == null) {
 id = new Identifier(idName);
 symbolTable.add(idName, id);
}
computeOn(id);

 Connectivity graph
 Variables
 Allocation sites
 Globals (statics)

 Analysis algorithm
 Flow-insensitive, field-insensitive

Pointer Analysis in more depth

void function(A p1, A p2, A p3)
{
 v1 = new O
 p1.f = v1
 p2 = p1.f
 p3 = p1
}

Calculating the Points-To relation

p1p1

Np1Np1

NI1NI1

p2p2

Np2Np2

NI2NI2

p3p3

Np3Np3

NI3NI3

∀ i , P t s T o (p i) = { N P i
}

" i , P t s T o (N P i
) = { N I i

}

" i , P t s T o (N I i
) = { N I i

}

v1v1

O1O1

P t s T o (p 1) = { N P 1
, O 1 }

P t s T o (p 2) = { N P 1
, O 1 , N I 1

, N P 2 }

P t s T o (p 3) = { N P 1
, N P 3

}

Interprocedural component
 Detection of factory methods

 Return value is a new object
 Can be freed by the caller

 Effects of methods called

 Describes how parameters are connected

 Compilation strategy:
 Summaries pre-computed for all methods
 Free-me only applied to hot methods

String idName = stream.readToken();

symbolTable.add(idName, id);

Hashtable.add:
 (0 → 1)
 (0 → 2)

Generating summaries in more depth

P t s T o (p 1) = { N P 1
, O 1 }

P t s T o (p 2) = { N P 1
, O 1 , N I 1

, N P 2 }

P t s T o (p 3) = { N P 1
, N P 3

}

(p 2 , p 1) , (p 2 , * p 1)

(p 3 , p 1)

p1p1

N
p1

N
p1

NI

1

NI

1

N
p2

N
p2

NI

2

NI

2

p3p3

N
p3

N
p3

NI

3

NI

3

v1v1

O1O1

void function(A p1, A p2, A p3)
{
 v1 = new O
 p1.f = v1
 p2 = p1.f
 p3 = p1
}

getfield is needed because a single pointer link in summary
may represent multiple
pointers in the callee

getfield is needed because a single pointer link in summary
may represent multiple
pointers in the callee

p2p2

The need for liveness analysis

• When objects become unreachable, not just
whether or not they escape

idName

symbolTable

readToken
String

Identifier

(global)

id

Adding Liveness
 Key :

idName

readToken
String

Identifier(global)

An object is reachable only when all
incoming pointers are live

 From a variable: Live range of the variable

 From a global: Live from the pointer store onward

 Live from the pointer store until source
object becomes unreachable

From other object:

Reachability is union
of all these live ranges

Liveness Analysis
 Computed as sets of edges

 Variables

 Heap
pointers

String idName = stream.readToken();

id = new Identifier(idName);

computeOn(id);

if (id == null)

Identifier id = symbolTable.lookup(idName);

symbolTable.add(idName, id);

idName

(global)

readToken
String

Identifier

Where can we free it?
 Where object

exists

 -minus-

 Where
reachable

String idName = stream.readToken();

id = new Identifier(idName);

computeOn(id);

if (id == null)

Identifier id = symbolTable.lookup(idName);

symbolTable.add(idName, id);

readToken
String

Compiler inserts call
to free(idName)

Free placement issues

• Select earliest point A,eliminate all B: A dom B
• Deal with double free’s

Runtime support for FreeMe
 Run-time: depends on collector

 Mark/sweep
Free-list: free() operation

 Generational mark/sweep
Unbump: move nursery “bump pointer” backward (LIFO frees)

Unreserve: reduce copy reserve
 Very low overhead
 Run longer without collecting

 Size to free defined statically/dynamically (query object)

Experimental Evaluation

Volume freed – in MB

100%

50%

0% compress

105

jess

263

raytrace

91

mtrt

98

javac

183

jack

271

pseudojbb

180

xalan

8195
antlr

1544716

bloat

fop

103

hsqldb

515

jython

348

pmd
822

ps

523

db

74

SPEC benchmarks DaCapo benchmarks

Increasing alloc size Increasing alloc size

Volume freed – in MB

100%

50%

0% compress

105

jess

263

raytrace

91

mtrt

98

javac

183

jack

271

pseudojbb

180

xalan

8195
antlr

1544716

bloat

fop

103

hsqldb

515

jython

348

pmd
822

ps

523

db

74

0
16

73
73

24

163

34 1607

673

22230

57

75

278

22

45

FreeMe
Mean: 32%

Comparing FreeMe & other approaches

Stack-like
• free() allocations of same
method
• Restrict free
instrumentation to end of
method
• No factory methods
• No conditional freeing

Uncond
• Prove objects dead on
all paths
• Influence of free on
some paths

Mark/sweep – time

20%

15%

6%

All benchmarks

Mark/sweep – GC time

All benchmarks
30%

9%

GenMS – time

All benchmarks

Brings into question all techniques that target short-lived objects

GenMS – GC time

Why doesn’t this help?

Note: the number of GCs is
greatly reduced

FreeMe mostly finds short-
lived objects

All benchmarks

Nursery reclaims dead
objects for free

(cost ~ survivors)

Bloat – GC time

12%

Conclusions
• FreeMe analysis

– Finds many objects to free: often 30% - 60%
– Most are short-lived objects

• GC + explicit free()
– Advantage over stack/region allocation: no need to make

decision at allocation time

• Generational collectors
– Nursery works very well

• Mark-sweep collectors
– 50% to 200% speedup
– Works better as memory gets tighter

Embedded applications:
Compile-ahead

Memory constrained
Non-moving collectors

Discussion

• Is compile-time memory management
inherently incompatible with generational
copying collection?

• Is the amount of memory freed significant?
• Could static analysis allow mark-sweep

collectors to compete with generational
collectors?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

