Cork: Dynamic Memory Leak
Detection for Garbage-
Collected Languages

Maria Jump
& Kathryn McKinley

Presented by Yuhao Zhu
CS 395T

Motivation

= Garbage collection has to be conservative

= Which leads to maintaing references to inactive objs

= Difficult to find these bugs
= Memory leak detection

= Efficiency

= Precision

= Easy to parse

= Now we have Cork!

Type Points-From Graph

Type Symbol Size
HashTable H 256
Queue N 256
= Node: total volumn of type ¢ Queue B 25
Company C 64
People P 32
= Edge: t'->t where an obj of -
type t 1s pointing to obj of
type t

= Constructed during whole
heap collection (scanning

phase) (b) Object points-to graph
= Additional type lookup Y e D

(upon scanning an obj)

c-"‘"‘#
\%,_
0 \ %
2>
72
[N:256

Detecting heap growth

= Basic idea: differencing consecutive TPFGs, but
needs to consider fluctuations

= Ratio Ranking Technique:
= Decay factor (1):

VT, > (1=) V1,
= Phase growth factor (g): Q > 1

grg:Prg*(Q_l)

= Ranking by accumulating g over several collections,
rewarding growth and penalizing decay

= Objs with rank > R are considered as candidates
threshold

Memory leak localization

= Data structures

= Slice: a path on which the ranks of all edges are
positive

= The slice contains the dynamic data structures
containing candidate nodes

= Allocation site:

= Reports all allocation sites for candidates

= Associate a SiteMap of a particular type with each
allocation site duing compilation

= Seach the maps to find allocation sites for a type

Optimizations

= Efficiency
= Only look at four recent TPFGs

= Each type has its own type information (over four
collections) recorded 1n its Type Information Block

= Scalability

= Edges are linear with respect to the nodes (quadratic
in theory)

= Remove edges from the edge pool and adding to the
edge lists

Evaluation

(a) Benchmark Statistics (b) Type Points-From Statistics (c) Space Overhead
of # of # of # edges # edges %
Alloc Colltn types Lypes per type per TPEG pru- TIB TIB+Cork
Benchmark MB whl gen bm +VM || avg max | avg max avg max ned MB %H MB %H Daff
Eclipse 3839 73 11 | 1773 3365 || 667 775 2203 | 4090 7585 422 || 0.53 0011 | 0.70 0.015 0.167
fop 137 9 0 700 2292 || 423 435 3 406 | 1559 2623 452 || 036 00160 | 0.55 0.655 0495
pmd 518 36 1 340 1932 || 360 415 3 121 967 1297 66.0 || 0.30 0.031 | 044 0.186 0.155
ps 470 89 0 188 1780 || 314 317 2 93 813 824 663 || 0.28 0.029 | 039 0.082 (0.053
javac 192 15 0 161 1753 || 347 378 3 99 | 1118 2126 458 || 0.28 0.071 | 043 0222 0.151
jython 341 39 0 157 1749 || 351 368 2 114 928 940 662 || 028 0.041 | 039 0.112 0.071
jess 268 41 0 152 1744 || 318 319 2 89 844 861 66.0 || 027 0.049 | 038 0.143 0.094
antlr 793 119 6 112 1704 || 320 356 2 123 860 1398 558 || 0.27 0016 | 0.39 0.282 0.266
bloat 710 29 5 71 1663 || 345 347 2 101 892 1329 506 || 0.26 0.017 | 0.38 0064 0.047
jbb2000 wE wE w5 71 1663 || 318 319 2 110 904 1122 59.0 || 0.26 = 1 0.38 wE wE
jack 279 47 0 61 1653 || 309 318 217 838 878 662 || 026 0.042 | 037 0.131 0.089
mitrt 142 17 0 371629 || 307 307 2 91 820 1047 575 || 0.26 0081 | 0.37 0258 0.177
raytrace 135 20 0 36 1628 || 305 306 2 91 g14 1074 56.1 || 0.26 0.085 | 0.37 0272 0.187
compress 106 6 3 16 1608 || 286 288 2 89 763 898 609 || 025 0.105 | 036 0336 0231
db 75 8 0 & 1600 || 289 289 2 91 773 787 66.1 || 025 0.160 | 035 0467 0307
Geomean 303 27 n/a 104 1813 || 342 357 2 116 | 1000 1303 574 || 029 0048 | 041 0168 0.145
u

4% types are resident at a time

= More than half of the edges are pruned (rank < 0)

= Very very little space overhead

Evaluation (cont.)

Normalized Scanning Time

—w— Genhiy
E
#
] ® . «
:ﬁ— e - - —
S T T T R R
3 4 3 §
Heap size relative to minimum
(a) Scan Time
|

Normalized GC Time

| —F— Genh§] —x— Gen MY
2.5 ¥ =

. é 124
2.0 < :

1 = IIE X

: 2 L B X %
o

: x « E Lod

I ¥ r~. " F]

3 4 5 6 3 4 5 6

Heap size relative to minimum Heap size relative to minimum

(b) GC Time {c) Total Time

11.1% to 13.2% for scan time, 12.3% to 14.9% for
collector time, resulting 1n 1.9% to 4.0% for total

time

Evaluation (cont.)

= Accuracy (sensitivity) analysis
= The larger the better, but at some point it stops

(b) Rank
(a) Decay Factor Threshold
Benchmark 0% 15% 25% 0 100
Eclipse bug#115789 12
fop 35
pmd 11
ps 3
javac 71
jython 3
jess 9
antlr 9
bloat 33
jbb2000

jack

mtrt
raytrace
compress
db

Table 2. Number of types reported in at least 25% of garbage
collection reports: (a) Varying the decay factor from Ratio Ranking
Technique (R}, =~ = 100). We choose a decay factor f = 15%.
(b) Varying the rank threshold from Ratio Ranking Technique
(f = 15%). We choose rank threshold R}, = 100.

[

SSSSS-&ES—ESEG—G\S

=

COoOooooooooo oo

—E—N—I——N IR
SO oOOE D O =0 00N
—N—N— I W %

Mo WO D

fires

Evaluation (cont.)

= Two case studies: SPECjbb2000 and Eclipse

= Find the candidates -> correlate to the code ->
localize the bug

= Human ingenuity 1is still required!

Discussion

= How to deal with unmanaged languages where type
information 1s not contained?

= How to further reduce the need for programmers'
instrumentations?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

