MULTIPROCESSING COMPACTIFYING
GARBAGE COLLECTION

GuUuY STEELE

PRESENTED BY

SUMAN JANA

(SOME SLIDES COURTESY DONALD NGUYEN)



PROBLEM SETTING

* Stop-the-world GC causes large pause times for
interactive/real-time apps

* Can we parallelize GC and mutator ?

- Invoke GC while waiting for user input (e.g. key
stroke)

- Time-share one processor between mutator and
GC

* Less pause but no net speedup
- One processor for mutator, another for GC
* Describes a concurrent Mark-sweep-compact GC



PROBLEMS WITH CONCURRENT GC
(OBJECT ACCESS)

* What if GC moves an object while the mutator is
accessing the object ?

* Solution:

- Forwarding pointers store new address of
relocated objects

- Marked “flag" bit of an object indicates
relocated object

- Mutator "normalizes” pointers based on GC state

- Semaphores to protect GC state and individual
objects



PROBLEMS WITH CONCURRENT GC
(OBJECT CREATION)

* The mutator may create a new object during GC.
Freelist needs to be synchronized; GC needs to
know about the new object

* Solution:
- Semaphores protect access to freelists

* Increasing concurrency by having GC access
the front and the mutator access the back.

- Modify mutator to signal new objects to GC
thread.

- Increased overhead for object creation,
contention with GC



PROBLEMS WITH CONCURRENT GC
(POINTER MODIFICATION)

* The mutator may add or remove references from
objects.

- If the object was marked by GC, the new
references may not be traced.

- If the modification occurs during object
relocation, modifications could be lostduring
pointer update.

* 6C needs to know about the new object



PROBLEMS WITH CONCURRENT GC
(POINTER MODIFICATION CNTD.)

* Solution:

- Mutator must notify GC thread after modifying a
field of a marked object to point to an unmarked
object.

* Increased overhead for pointer modification,
acquiring object ("munch”) lock.



OVERVIEW OF GC THREAD

Gemark

- Process rootset

- Process mutator stack

- Process additional mutator generated objects
Gcrelocate

- Two-pointer swapping

Gcupdate

- Using obj lock, update pointer references to
"relocated” objs

GCreclaim



FLAGS

Mark bit false false true true
Flag bit false true false true
Meaning Not traced Relocated  Accessible  On freelist
Mark phase Cell not yet Accessible
traced
Relocate phase | Candidate =~ Relocated =~ Candidate
target for source for
relocation relocation
Update phase Need to
normalize
pointers
Reclaim phase || Return to Return to On freelist
freelist freelist




GCMARK

setgcstate(‘ ‘mark’’)

for addr in rootspace: # Process rooisetl
gcpush (addr)
gemarkl ()

i=20

while True: # Process mutator stack
P(mstack)
if (i >= mstack.index)

break

gcpush(mstack.cells[il.ptr)
mstack.cells[i] .mark = True
V(mstack)
gemarkl ()
i+=1

mstack.gcdone = True

V(mstack)




GCMARK (CONTD.)

P(gcstate)

while gcstack.index > 0O: # Process mew objects
V(gcstate)
gemarkd ()
P(gcstate)

gcstate = ‘‘relocate’’

mstack.gcdone = False

V(gcstate)




GCMARKI

| while gestack.index != O:

x = gepop()

if x.space == ‘‘mstack’’:
contents(x) .mark = True
x = contents(x).ptr

if not contents(x).mark:
munch (x)
for addr in contents(x).ptrs:

gcpush (addr)

contents(x) .mark = True
unmunch ()




MUNCH AND UNMUNCH

munch(x):
P(munch)
while x = munch[other]:
Dass
munch[mine] = x
V(munch)

unmunch() ;
munch[mine] = Nome




LIST PROCESSING PRIMITIVES

Argument passing: push and pop

Object creation (cons ): create

Object traversal (car, cdr ): select

Object update (rplaca and rplacd ): clobber

Object equality (eq): identity



PUsSsH (X: POINTER)

P(mstack)
mstack.index += 1
munch (address(mstack, mstack.index))
mstack.cells[mstack.index] .ptr = normalize(x)
unmunch ()
if gcstate == ‘‘mark’’
and mstack.gcdone # GC Done marking stack
and mstsack.cells[mstack.index] .mark
and not contents(x).mark: # But z unmarked
mstack.cells[mstack.index] .mark = False
gcpush(address (mstack, mstack.index))
V(mstack);




CLOBBER
(X:POINTER,Y:POINTER,I:INT)

P(gcstate)
y = popQ)
x = pop()
if gcstate == ‘‘update’’:
y = normalize(y)
munch (x)
contents(normalize(x)).ptrs[i] = y
unmunch ()
if gcstate == ¢ ‘mark?’
and contents(x).mark # Replacing marked with unmarked
and not contents(y) .mark:
contents(x) .mark = False
gcpush(x)
V(gcstate)




GCRELOCATE

A BIC| D

1 AS BT T

Figure 1: One step of the gcrelocate algorithm




DISCUSSION QUESTIONS

* How can we modify copying algorithm to handle
heap (i.e. different sized objects) ?

* Are the locks too coarse ?

- Instead of having a single object lock, can have
fine granular locks

- More complexity



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

