Z-Rays: Divide Arrays and
Conquer Speed and
Flexibility

Jennifer B. Sartor et al.

Presented by Yuhao Zhu
CS 395T

Motivations

= Contiguous implementation of arrays incurs
fragmentation (wastes space), and 1s GC-
unfriendly, especially latency

= Discontiguous implementation overcomes above
problems, but brings about the throughput issue
due to the high overhead of indirection

Discountiguous Arrays

Regular Heap
= Organization "Te
= Header Array spine E‘“‘"ﬂﬁﬂﬂ
. . . Header -
= Indirection pointers . e
Indill'ent'nn : Arraylet
= Remainders omiers o RC
. :Ftemainder E Arraylet
= Why does it work? ¢ Elemens :
= Why does it not work? * Arayle
ar
E Arraylet

Z-rays implementation

Regular Heap E Arraylet Space
= 5 optimizations in a moment E EE -
— Mk
= Separate arraylet space ”:-::r‘"e : .,E
:
= sub-space of the heap : | o Amayet
= Collected under the control | =N :
of its parent spine |3 Ayt
= Each arraylet has its own . | fe
liveness bit o i . Araylet
= Spines are in the nursury space oRemainder L
and collected as normal : Fg .
L |2 Amaylet
! a

First-N

= Nearly 90% of all array accesses occur at access
positions less than 4KB. So inline them 1n the
spine and access without indirection

= Most effective optimization

= Addressed the performance issue of basic
discontiguous design

Lazy Allocation

= Space optimization

= Employs an immutable zero arraylet, to which all
indirection pointers are pointing upon creation

= Need to be performed atomically due to possible
race condition of multiple threads

Zero Compression

= Space optimization, utilizes the zero arraylet

Reinstall the indirection pointer to the zero arraylet
when all elements 1n an arraylet are zeros

= Performed during GC time

Incurs additional indirection and scanning
operatins, but compensated by the reduction in
the memory cost

Fast Array Copy

= Discontiguous arrays make array copy complicated

= One optimization 1s to hoist the indirection
operation outside of the loop when performing
sequential copy

= One indirection instead of n

Copy-on-Write

= Space optimization
= A generalization of lazy allocation

= Only create the private instance of an arraylet after
first write

= Realized by tainting the least significant bit of the
indirection pointers pointing to the shared arraylet

Implementation Notes

Read/Write Barriers

The arraylet space 1s non-moving, and the age of an
object 1s indicated by its parent spine

= Promote survived spines into mature space, which
effectively promotes corresponding arraylets

= What's the arraylet space allocator? Any comment?

= Do we mark the liveness bits of arraylets whose
source spine 1S 1n nursery space?

= If no, what's the implication?

Evaluations

= Benchmark characteristics

Allocation Heap Accesses Array Copy

MB/ Array % Composition per write % read % byte %

Benchmark Lsec all prim. MB % usec fast slow fast slow usec =N
antlr 72 83 80 12 52 157 9.3 7.6 735 9.6 52 23
bloat 77 65 60 18 51 264 1.0 0.4 97.8 0.8 52 0
chart 23 49 48 18 49 320 53 71 498 378 44 76
eclipse 57 75 55 38 57 373 4.6 1.4 894 4.7 30 25
fop 11 34 26 19 47 94 1.7 0.1 97.3 0.9 5 0
hsgldb 29 38 21 67 31 463 0.7 0.3 981 0.9 5 16
jython 125 77 66 24 51 584 1.2 0.3 98.0 0.6 132 3
luindex 32 40 36 12 52 186 286 0.2 70.7 0.5 21]
lusearch 201 87 B2 15 57 699 145 0.5 841 1.0 3 8
pmd 156 33 1 23 45 419 09 1.01 96.2 1.9 7 69
xalan 766 88 52 31 73 342 75 024 915 0.7 4 0
compress 24 100 100 4 57 191 129 225 253 393 0 0
db 4 64 9 11 56 48 0.8 89 658 244 15 99

jack 28 32 26 B 51 92 4.8 0.2 943 0.7 49 0
javac 22 49 42 12 41 106 73 0.4 909 1.4 6 4

jess 75 47 0 7 54 197 19 0.2 971 0.8 66 0
mpegaudio 0.2 15 6 3 52 BE9 143 0.1 855 0.1 35 0
mtrt 30 25 18 9 42 267 4.3 0.2 952 0.3 0 0
pjbb2005 70 63 42 193 B4 1109 2.4 0.3 96.5 0.8 271 0
min 0.2 15 0 3 31 48 0.7 01 253 0.1 0 0

max 766 100 100 193 73 1109 286 225 981 393 271 99
mean 47 56 40 - 52 338 6.4 26 846 6.4 45 17

% Overhead w3017
B o 8 &8 8 8

Evaluations (cont.)

100 1 1 Naive (2'%

mmmm_llill I oo e

] NaweBE]E]
B 7-ray | o]

[Nawemz” + Lazy)

B Perf Z-ray (Mo CoW)

i b

a’?‘* %ﬂr % %’ﬂs Jb’“ %ﬁn ‘%ﬁ. %ﬂ’e ’%ﬂ’ *‘:"{‘r‘a 0”?% % f“'"‘:‘fr ’%‘fac ,9% %&L:‘b ﬂ%ﬂa
: 5
o

g

= COW degrades the performance
= Due to the maintenance of barriers
= Z-rays could even IMPROVE the performance

= The indirection overhead 1s compensated by the
reduction of collection time

o
Eﬁ%&q

Evaluations (cont.)

= How does Z-ray atfect the
performance’?

= Mutator: indirection
beyond First N

= Collector: varies
significantly
= - indirection
= + 1mprovements

through space
efficiency

Total Overhead (%) C2D Overhead Breakdown (%)

Benchmark c2D Atom Ref. Prim. Mutator GC
anflr 22.0 ss2 37.7+123 3.2 144 17.9 98.2
bloat 15.9 =20 2B.7 s 43 114 14.2 73.9
chart 57.2 <04 54.9 03 0.2 570 61.4 £.9
eclipse 142 12 249 73 19 103 167 -28.1
fop 5.1 :37 19.0 s 89 142 44 33.6
hsgldo 23.8 25 7.5 «18 22 339 26.9 12.9
jython 57 <11 126 =22 26 28 5.0 60.9
lusearch 224 <13 24.0 w09 42 239 226 18.3
luindex 101 =08 14.9 =10 1.3 104 9.6 26.8
pmd 6.0z 7.2 sz 55 08 7.9 19.4
xalan 55 213 114 227 48 07 20 -56.0
compress 20.2 =03 51.2 204 04 203 219 g2.9
db 3.7 00 14.0 200 34 04 3.8 4.0

jack 59 15 7.6 2 03 47 6.6 15.6
javac B.0 =05 115 212 22 59 83 4.2
jess 12.2 z10 17.0 228 103 14 120 29.0
mpegaudio 314 04 441 =08 23 144 3.2 3580
mirt 4.2 217 6.8 ws 14 34 44 1.7
pjbb2005 3.4 w05 51 :25 0.1 06 36 0.6
min 5.5 5.1 48 -0.7 20 -56.0

max 57.2 54.9 103 570 61.4 4.2
geomean 12.7 20.2 22 1041 133 -11.3

Evaluatlons (cont.)

I S-ray - FirstM
1 Z-ray - Lazy

":ﬁ; 7 - L I Z-ray - Zero
g 20 1 1 Z-ray - Fast AC
g 10 A I Z-ray - CoW F’erf}
é 0 - 'I'EIII“—H‘LD_-EII‘ LLI.._,:_'_D. -—-I—-D-I-c.l_n-l-ll I-Il a0,
N ;%' :ﬁ;% I%”' ;%b&e % Ilj%’? %E“"‘fo;%%% %"’ D%"e:b Ja% HP&E‘ Iﬂ& %eéfa i% %b"’% GG"‘E%
Figure 5. Overhead taking away each optimization from our Z-ray configuration.
= First-N 1s the most significant optimization
= Fast array copy benefits benchmarks with frequent
array copying very much
|

COW degrades performance

Discussion

= Why 1s it called Z-rays???
= Any concurrency to explore?

= How to configure Z-rays for different design goals?

Any further optimization?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

