
1 / 13

Generation scavenging: A non-disruptive high-performance

storage reclamation algorithm

By David Ungar

Presented by Donald Nguyen

February 9, 2009



Context

2 / 13

■ The year was 1984. . .

◆ Microcomputers, interactive programming environments

■ Design interactive Smalltalk-80 system for Sun workstation

◆ Main technical hurdles:

■ Limit pause times
■ Play well with virtual memory



Players

3 / 13

■ Virtual memory

◆ Segmentation
◆ Paging

■ Popular GC algorithms

◆ Reference counting
◆ Mark-sweep [MKSMW]
◆ Copy-collector [Baker-78]
◆ Generational collection [Lieberman-Hewitt-83]



Virtual Memory

4 / 13

■ Segmentation

◆ Main memory divided into blocks of potentially unequal lengths
◆ Typically typed into program and data segments
◆ When a segment is swapped in, it can only replace a segment of the

same size or larger (fragmentation)

■ Paging

◆ Fixed-size blocks



Reference counting

5 / 13

■ High overhead because additional action must be done for all objects
■ Immediate reference counting
■ Deferred reference counting [Deutsch-Bobrow]

◆ Ignore references from local variables
◆ Precludes reclamation during execution

■ Question: Reference counting today?

◆ Different overheads today?
◆ What about William’s anecdote about only using reference countable

data structures?



Tracing Algorithms

6 / 13

■ Mark-sweep

◆ Mark phase inspects all live objects, sweep phase modifies all dead
objects

◆ Large pause times

■ Scavenging algorithms

◆ Psuedo real-time; overhead to install and check forwarding pointers,
maintain remembered set

◆ Baker’s semispace algorithm
◆ Ballard’s modification of Baker’s algorithm

■ Create separate area for old objects
■ 600 KB for old objects, 512 KB object table, 2 x 1 MB semispaces

◆ Lieberman-Hewitt’s generational algorithm, not implemented



Straw Man

7 / 13

■ OS already has virtual memory, leverage abstraction of “infinite memory”

◆ One object per segment/page
◆ Use VM to keep live objects in main memory
◆ Dead objects will be moved to secondary storage

■ Problems?



Straw Man

7 / 13

■ OS already has virtual memory, leverage abstraction of “infinite memory”

◆ One object per segment/page
◆ Use VM to keep live objects in main memory
◆ Dead objects will be moved to secondary storage

■ Problems?

◆ For segmentation, object variance: [24, 128,000] bytes (mean: 50)
and number: 32,000–64,000 objects

◆ Object fragmentation



Straw Man

7 / 13

■ OS already has virtual memory, leverage abstraction of “infinite memory”

◆ One object per segment/page
◆ Use VM to keep live objects in main memory
◆ Dead objects will be moved to secondary storage

■ Problems?

◆ For segmentation, object variance: [24, 128,000] bytes (mean: 50)
and number: 32,000–64,000 objects

◆ Object fragmentation
◆ Allocation rates:

70 bytes

1 object
×

1 object

80 instructions1
×

9000 bytecodes

second
=

7800 bytes

second

BS-II second

7800 bytes
×

Dorado second

13 BS-II seconds
×

100 MB

disk
≈

20 minutes

disk

1Appel reports 1 object every 30 instructions



Design Space

8 / 13

■ Keep main memory footprint low: 1.5–3 MB
■ Low pause time, but not necessarily real-time
■ Reduce page faults
■ Reduce CPU overhead



Generational Scavenging

9 / 13



Generational Scavenging

10 / 13

■ Novelties:

◆ Regions of different sizes: NewSpace (140 KB), *SurvivorSpace
(28 KB each)

◆ OldSpace not resident in main memory
◆ Tenuring : after a while a surviving object is promoted to OldSpace.

■ Similarities with Ballard’s algorithm:

◆ Young and old generations
◆ Copies live objects
◆ Reclaims old objects offline

■ Differences with other generational algorithms:

◆ Divides new space into three regions instead of two
◆ Not incremental, no checks needed on loads



Results

11 / 13

CPU
Time
(%)

Main
Memory
(KB)

Paging
I/O

Pause
time (s)

Pause
interval
(s)

page it ? 15 ≈ 50/s
imm. ref. count 15–20 15 ? 0 ∞

compaction 1.3 60–1200
def. ref. count 11 40 ? 0.030 0.30
compaction 1.3 60–1200
mark-sweep 25–40 1900 90/gc 4.5 74
Ballard 7 2000 0 0 ∞

Gen. Scavenge 1.5–2.5 200 1.2/s 0.38 30

Table 1: Summary of reclamation strategies



Is This Still Relevant Now?

12 / 13

■ Revisiting the claims:

◆ Limit pause times to a fraction of a second
◆ Requires no hardware support
◆ Meshes well with virtual memory
◆ Reclaims circular structures
◆ Uses less than 2% of the CPU time

■ Is the experimental methodology still sound?
■ Should old objects be kept in secondary storage?



Breaking or Enforcing Abstractions

13 / 13

■ If computer science is generally about making abstractions and extracting
performance about breaking them, how should we view Ungar’s work?

◆ A case for a wider interface between runtime system and OS?
◆ An isolated issue related to implementing a managed memory system?

■ What memory management techniques can help or hinder virtual memory
systems and vice versa?

◆ E.g., Appel recommends mapping the memory just before the free
space (assuming allocation goes from high to low) to an inaccessible
page so that the out of memory test can be converted to a page fault


	Context
	Context
	Players
	Virtual Memory
	Reference counting
	Tracing Algorithms

	Design
	Straw Man
	Design Space
	Generational Scavenging
	Generational Scavenging

	Results
	Results

	Questions
	Is This Still Relevant Now?
	Breaking or Enforcing Abstractions


