On-the-Fly Garbage
Collection: An Exercise in
Cooperation

Rudy Kaplan Depena
CS 395T: Memory Management
March 30th, 2009

Outline

* Motivation

» Setting up the Playing Field

* First Coarse-Grain Solution

» Second Coarse-Grain Solution
* Fine Grain Solution

 The End

Motivation

Garbage Collection is a useful tool for...

1...Automating Memory Management

2. Making Memory Management less error-

PronNe (Developer doesn’t have to think about the. memory
model or use special keywords.)

Motivation (cont.)

However, using GC is very costly for the
mutator because ...

1. In the case of McCarthy’s Mark-Sweep (and
other GC algorithms), collection is performed on

the whole heap

2. Whole heap collectors incur long pause times
which hault the mutator from executing and

unpredictable

Motivation (cont.)

However, using GC is very costly for the mutator
because ...

1. In the case of McCarthy’'s Mark-Sweep (and other GC
algorithms), collection is performed on the whole heap

2. Whole heap collectors incur long pause times which
hault the mutator from executing

Motivation (cont.)

Steele® proposes using two (or more) processors ...

1. One processor is in charge of mutator program

2. One processor is in charge of the garbage collector

Goal: Have little to no pause times interrupting the
mutator by housekeeping concurrently. However,
exclusion and synchronization of processors
are an overhead.

* Multiprocessing Compactifying Garbage Collection (Communications of the ACM, 1975)

Motivation (cont.)

. Dijkstra et. al. proposes the use of
multi-processing garbage
collection, but keep exclusion
and synchronization constraints
weak

. Weak constraints mean that we
avoid highly frequent mutual
exclusion of activities amongst
processors. (e.g. - marking
objects)

. The above may help reduce
mutator overhead

. Paper’s Goal: Not to make GC
better, but to have a use-case for
multi-processor interaction

Motivation (cont.)

 Although we would like to keep these weak
constraints on exclusion (avoid use of common
resource) and synchronization (timekeeping) there
are a few unavoidable situations ...

« When needing a new object from the free list, the
mutator may be delayed until collector has
appended some objects to the free list

« Between the marking phase and appending/collection
phase, it is impossible to guarantee that we append
all garbage: new garbage could have been created
between marking and appending phase.

Setting up the Playing Field

« The paper reasons about the problem of managing
weak synch and exclusion by using a Directed
Graph with a few constraints ...

Fixed number of nodes

Each node has at most 2 outgoing edges

Setting up the Playing Field (cont.)

A few tidbits in terminology ...
Roots - A fixed set of nodes

Reachable - Node is reachable if reachable if there exists
a directed path from one root to the node.

Data Structure - Subgraph of all reachable nodes
Garbage - Non-reachable node P

Setting up the Playing Field (cont.)

1. Redirect an edge from one reachable node to
another

Coo

@
o —©

Setting up the Playing Field (cont.)

1. Redirect an edge from one reachable node to
another

Setting up the Playing Field (cont.)

2. Redirect an edge from one reachable node to a non-
reachable node

R
® -

Setting up the Playing Field (cont.)

2. Redirect an edge from one reachable node to a non-
reachable node

Coo

@
®

®

Setting up the Playing Field (cont.)

3. Add missing outgoing edge from one reachable node
to another

Coo

@

®

Setting up the Playing Field (cont.)

3. Add missing outgoing edge from one reachable node
to another

Setting up the Playing Field (cont.)

4. Add missing edge from reachable node to non-
reachable node

Setting up the Playing Field (cont.)

4. Add missing edge from reachable node to non-
reachable node

Coo

@
®

®

Setting up the Playing Field (cont.)

5. Remove the edge of a reachable node

.
®

@
®

Setting up the Playing Field (cont.)

5. Remove the edge of a reachable node

R
® -

@

Discussion

. The authors set a special root node called NIL whose
outgoing edges point to itself

. The authors also represent a formerly missing edge now
as an edge with NIL as the logic

. They say that NIL allows them to view data structure
modifications of types (3) and (5) as special cases of (1).

. Why does NIL help with this ?77?

Remember:

(1) Redirect an outgoing edge of reachable node to already reachable node
(3) Add an edge pointing from reachable node to a reachable node

(5) Remove edge of reachable node

Setting up the Playing Field (cont.)

Rules that make garbage:
(1) Redirect edge from one reachable node toward another
(2) Redirect edge from reachable node toward a
non-reachable node
(5) Remove edge of reachable node

Rules that recycle garbage:
(2) Redirect edge from reachable node toward a
non-reachable node

(4) Add missing edge from reachable node to non-reachable
node

Setting up the Playing Field (cont.)

Suppose we have two programs A and B.

In this paper, atomic operations are denoted with angle brackets:
. A: <z:=0> and B: <z:=3>

We say that A is coarser-grained than B if B is the result of

replacing an atomic operation of A by a piece of program containing

at least two atomic operations and having the same net effect as the
original operation:

. A: <z:=0>
. B: <z,:= 0>
<z.:=0>

If correctness is proved on finer-grained solution, this implies that
coarse-grained solution is correct also.

Discussion

. A simplification that the authors made is treating the free list not as a list of
garbage, but as part of the data structure

. Link NIL and free nodes such that they are reachable from special root
nodes.

. A modification of (2) is now replaced by a sequence of modifications of type
(1).

. Why does this simplification allow them to replace (2) with a sequence of (1)

modifications ??7?

Remember:
(1) Redirect an outgoing edge of reachable node to already reachable node

(2) Redirect an outgoing edge of reachable nodes towards a not yet reachable one
with outgoing edges

Setting up the Playing Field (cont.)

. Now because of NIL and free list being apart of the data structure, mutator and
collector activities are now repeated executions of (1)

. Mutator: “redirect an edge of reachable node to already reachable one”
. Collector:
. Mark Phase: “mark all reachable nodes”
. Append Phase: “append all unmarked nodes ot the free list and remove markings

from all marked nodes”

. Two correctness criteria must be satisfied when mutator and collector
cooperate together

. CC1: Every garbage node is eventually appended to free list.

. CC2: Appending a garbage node to the free list is the collector’'s only change to
the shape of the data structure

Remember:
(1) Redirect an outgoing edge of reachable node to already reachable node

Setting up the Playing Field (cont.)

The final goal was a fine-grained solution that
would accept the following atomic operations ...

Redirect an edge

Find the successor of a node
Test/Set attribute of a node

*4. Append node nr.i to the free list

oy A=

The authors want to find a coarse grained solution
and then transform it to a finer grained solution.

* Operation available to the collector

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

% o
O

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

: o

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

oo A ———5

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

oo @——(o

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

o

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

0\ o
O

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

0\ @
O

Now C has not been marked by collector and it is garbage !!!!

First Coarse-Grained Solution

« Counter-Example shows that goal of “no
extra mutator.overhead” is unattainable.

0\. @

Solution: Mutator may have to mark target of edge it
redirects. So how does it mark a node?

First Coarse-Grained Solution

Marking described in colors

WERITE = Garbage or not yet marked
RBlack : Marked and reachable

Gray : Intermediate color given to current node
that is being marked. Signifies reachability.

Burdens of Proof:
 Progress: Based on a monotonicity argument
* No Node will become a lighter color

« Safety: Based on invariant that is true and will not be
destroyed during repetition

« P1: No edge points from a black node to a white one

First Coarse-Grained Solution

Gray :Marking a node gray is a way of protecting the mutator
and/or collector from not violating invariant, P1

. A coarse grained mutator will repeatedly “shade a node” by
making it gray if it is white and leaving it unchanged if it is
already gray or black.

. A coarse grained collector will also make all reachable
nodes black while keeping P1 an invariant during its marking
phase.

. The marking phase terminates when all gray nodes are
black

. Thus, we may change (1) to atomic operation M1

. M1: <redirect an outgoing edge of a reachable node towards
an already reachable one, and shade the new target>

Remember:
P1 No edge points from a black node to a white node
(1) Redirect an outgoing edge of a reachable node towards another already reachable node.

First Coarse-Grained Solution

The Garbage collector’'s Append Phase terminates when all black
nodes have been changed to white and all previously

white nodes have been appended to free list.
appending phase:

do 1 < M -> {all nodes with a number < 1 are nonblack; all nodes with
a number >= i-are nongray, and are garbage, if white}

<c:= color of node nr.i>:

if ¢ = white -> <append node nr.i to the free list>
| c = black -> <make node nr.i white>

fi,;

i =1 + 1

od {there are no black nodes}

Remember that all these guarantees are to make sure that
1. GC is not leaking memory

2. Processors are playing nice and not giving the mutator
unecessary overhead

First Coarse-Grained Solution

 To satisfy these goals we have to demonstrate that
CC1 and CC2 are being met

« To prove CC2 we must show that a white node
with a number >= i is garbage

1. 1s an invariant

Proof: The only way a violation happens is by making a
nongarbage node white, since i increases, this never happens

2. Holds when the collector enters its append cycle

Remember:

CC1 Every garbage node is eventually appended to the free list

CC2 Appending a garbage node to the free list is the collector's only modification of the shape of
the data structure

P1 No edge points from a black node to a white node

First Coarse-Grained Solution

2. a white node with a number >=i is garbage holds when the
collector enters its append cycle

Proof: We must show all white nodes are garbage.
. All nodes are white before marking. This implies P1 holds.
. Repeated use of M1 is safe so this also preserves P1

. Since the mark phase leaves no gray nodes available and
leaves all reachable nodes black this means all white nodes are
garbage.

. So the white node with a number >= | s garbage
. Thus, CC2 holds

Remember:
CC1 Every garbage node is eventually appended to the free list

CC2 Appending a garbage node to the free list is the collector's only modification of the shape of
the data structure

P1 No edge points from a black node to a white node

M1 <redirect an outgoing edge of a reachable node towards an already reachable one and shate
the new target>

First Coarse-Grained Solution

We must now prove CC1 by showing that both phases (mark & append)
terminate properly

Proof of Append’s Termination:

. At the end of the marking phase there are no gray nodes and every
white node is garbage.

. Since the mutator can’t shade a garbage/white node, and shading a
black node has no effect, then every node is black or white during the
append phase.

. So append is sure to end when there are no black nodes left because
there are no gray nodes to leave us in ambiguity.

Remember:
CC1 Every garbage node is eventually appended to the free list

CC2 Appending a garbage node to the free list is the collector's only modification of the shape of
the data structure

P1 No edge points from a black node to a white node

M1 <redirect an outgoing edge of a reachable node towards an already reachable one and shade
the new target>

First Coarse-Grained Solution

We must now prove CC1 by showing that both phases (mark & append) terminate

properly
Proof of Marking Termination:
. Before the marking cycle begins, all roots are shaded.
. Once the marking cycle begins
. If current node == root, then color black and shade all successors because root has
already been shaded gray
. If current node !=root, then color black and shade all successors because current node
has already been shaded from previous cycle iteration
. After last cycle iteration no nodes are gray, so either they have been touched and
are black or they are white and hence garbage.
. Since there are no gray nodes, then marking cycle ends
. Note: Since white nodes are garbage, then there is no edge from black node to

white node and P1 has kept its invariance

CC1 is shown since marking phase ends by guaranteeing all white nodes
are garbage and append phase shows that all garbage is on free list

and black nodes that do remain are turned into new white nodes for
the next GC.

Remember:

CC1 Every garbage node is eventually appended to the free list
P1 No edge points from a black node to a white node

First Coarse-Grained Solution

Since both CC1 and CC2 are met,
Discussion: Why does proving CC1 and CC2 ensure correctness?

P1 was kept invariant during the marking cycle making the solution course-
grained.

In the Fine-Grained solution, the authors also try and keep P1 as an
invariant and split M1 into two atomic operations

. One for edge redirection
. One for shading a new target
. However, the finer grain solution contains a bug.
. There is an edge from node A to node B and the mutator shades B
. A collector’s full mark and append phase eventually changes B to white!
. Another collector's mark/append phase takes B and erroneously appends B to

the free list even though it was supposed to be reachable by the mutator

We must come up with another coarse-grained mutator that will fix this bug
on our fine-grained solution.

Discussion: Why does this bug exist?

Remember:

CC1 Every garbage node is eventually appended to the free list

CC2 Appending a garbage node to the free list is the collector’s only modification of the shape of the data
structure

P1 No edge points from a black node to a white node

M1 <redirect an outgoing edge of a reachable node towards an already reachable one and shade the new target>

Second Coarse-Grained Solution

P1 must be replaced by weaker invariants P2 and P3.

Definition: Propagation Path = A path consisting of only white targets, starting with
gray source nodes

P2 “for each white reachable node, there is a propagation path leading to it’

. Corollary 1: If each root is gray or black, the absence of edges from black to white
implies that P2 is satisfied

Discussion: Why is P2 satisfied from corallary 1?

P3 “only the last edge placed by the mutator may lead from a black node to
a white one”

. Corollary 2: If there are no black nodes, P3 is trivially satisfied. Hence. it holds at
the beginning of the marking cycle.

Both collector phases will leave P2 and P3 as invariants in tact.

Now that we have P2 and P3 defined, we must find a mutator operation that
leaves them as invariants

Remember:
P1 No edge points from a black node to a white node
M1 <redirect an outgoing edge of a reachable node towards an already reachable one and shade the new target>

Second Coarse-Grained Solution

M2: <shade the target of the previously redirected edge and redirect an
outgoing edge of a reachable node towards a reachable node>

. M2 prevents previous edge to have white target by shading old target,
thus sustaining P3

. Every white reachable node which had a propagation path before M2,
has a propagation path after M2.

. If the node whose successor is redefined as black then the outgoing

edge was not part of propagation path, so no path needs to be
maintained after M2.

. So P2 holds.

Discussion: Why does establishing a new M2 help lead us to a fine
grained solution?

Remember:

P1 No edge points from a black node to a white node

P2 “for each white reachable node, there is a propagation path leading to it’

P3 only the last edge placed by the mutator may lead from a black node to a white one

M1 <redirect an outgoing edge of a reachable node towards an already reachable one and shade
the new target>

Fine Grained Solution

We will use the second grained solution as a stepping stone.
For fine grained mutator we must split up M2 into ..

. M2.1 <shade the target of the previous redirected edge>
. M2.2 <redirect an outgoing edge of a reachable node towards a reachable
node>

. In the previous mark phase, it repetitively used an atomic operator ...
. C1: <shade the successors of node nr.i and make node nr.i black>

. In the fine grained solution we must split C1
. C1.1: <m1:= number of the left-hand successor of node nr.i>
. C1.2: <shade node nr.m1>
. C1.3: <m2:= number of the right-hand successor of node nr.i>
. C1.4: <shade node nr.m2>
. C1.5: <make node nr.i black>

. We can simplify C1.1 - C1.4 with two rules
. C1.1a: <shade the left-hand successor of node nr.i>
. C1.3a: <shard the right-hand successor of node nr.i>

Remember:

M2: <shade the target of the previously redirected edge and redirect an outgoing edge of a
reachable node towards a reachable node>

Fine Grained Solution

. Thus, we can replace C1 with the final fine grained set of atomic
actions
. In the fine grained solution we must split C1
. C1.1a: <shade the left-hand successor of node nr.i>
. C1.3a: <shard the right-hand successor of node nr.i>
. C1.5: <make node nr.i black>

. Also to prove correctness of the fine-grained solution we
must prove that P2 and P3 are still invariants

. We prove P2 and P3, by proving the invariance of a stronger
relation.

Remember:

C1: <shade the successors of node nr.i and make node nr.i black>

P2 “for each white reachable node, there is a propagation path leading to it’

P3 only the last edge placed by the mutator may lead from a black node to a white one

Fine Grained Solution

. To prove P2 and P3, we must first define a notion called C-edges
whose sources have been detected gray by the marking cycle.

. P2a: “every root is gray or black and for each white reachable node
there is a propagation path leading to it, containing no C-edges”

. P3a: “there exists at most one edge ‘E’ satisfying

. pr: “(E is a black-to-white edge) or
(E is a C-edge with a white target);”

. Proof:
. P2a holds from corollary 1 and the set of C-edges is empty at the start of the
mark cycle.
. Discussion: Why is this valid?
. P3a trivially holds at start of mark cycle because no E edges exist because

no C-edges and no black nodes.

Remember:

Corollary 1: If each root is gray or black, the absence of edges from black to white implies that P2
is satisfied

C1: <shade the successors of node nr.i and make node nr.i black>

P2 “for each white reachable node, there is a propagation path leading to it’

P3 only the last edge placed by the mutator may lead from a black node to a white one

Fine Grained Solution

To prove P2 and P3, we must first define a notion called C-edges whose sources
have been detected gray by the marking cycle.

P2a: “every root is gray or black and for each white reachable node there is a
propagation path leading to it, containing no C-edges”
. P3a: “there exists at most one edge ‘E’ satisfying
. pr: “(E is a black-to-white edge) or
(E is a C-edge with a white target);”

. Proof:
. P2a holds from corollary 1 and the set of C-edges is empty at the start of the
mark cycle. Discussion: Why is this valid?
. P3a trivially holds at start of mark cycle because no E edges exist because no

C-edges and no black nodes.

. If M2.1, C1.1a, C1.3a, C1.5 are executed, any propagation path that exists before
the operation will exist after. So P2a holds.

. Additionally, the operations in question do not add a black to white edge or a C-
edge with white target, so P3a holds. (note: C1.5 may introduce a black to white
edge, but that edge was already a C-edge with a white target)

Remember:

Corollary 1: If each root is gray or black, the absence of edges from black to white implies that P2 is satisfied
M2.1 <shade the target of the previous redirected edge>

C1.1a: <shade the left-hand successor of node nr.i>

C1.3a: <shard the right-hand successor of node nr.i>

C1.5: <make node nr.i black>

P2 “for each white reachable node, there is a propagation path leading to it”

P3 only the last edge placed by the mutator may lead from a black node to a white one

Fine Grained Solution

. Proof of P2a and P3a (cont.):
. P3a holds because if it held before M2.2 it will hold after
. Also P2a holds because

. M2.2 does not create C-edges

. if C-edge or black source existed before M2.2, it does not belong to
propagation path without C-edges.

. Since P2a and P3a hold for both mutator and collector, we have
proven our fine grained solution.
. Since we prove our fined grain solution, this means that CC1

and CC2 hold and that we have successfully forced our two
processors to cooperate with each other 1!

Remember:

Corollary 1: If each root is gray or black, the absence of edges from black to white implies that P2 is satisfied

M2.1 <shade the target of the previous redirected edge>

M2.2 <redirect an outgoing edge of a reachable node towards a reachable node>

P3a: “there exists at most one edge ‘E’ satisfying pr: “(E is a black-to-white edge) or (E is a C-edge with a white target);”

P2a: “every root is gray or black and for each white reachable node there is a propagation path leading to it, containing no
C-edges”

C-edges whose sources have been detected gray by the marking cycle

