
An Efficient, Incremental,

Automatic Garbage CollectorAutomatic Garbage Collector

By L. Peter Deutsch & Daniel Bobrow

Presented by Sam Harwell

Outline

• State of computing

• Reference counting

• Deferred reference counting

– Basic implementation– Basic implementation

– Further improvements

• Supplemental garbage collection

• Discussion

State of Computing: 1976

• Floppy disk recently invented (1974)

• Intel 8080 dominates the PC market

• Hard drives and tapes provide larger storage

Reference Counting

• Fundamental idea

– Unreachable objects cannot be live

– Objects with no external references are

unreachableunreachable

• Every object stores the total count of external

references to itself

Reference Counting

• Advantages

– Unreferenced structures are reclaimed
immediately

– Relatively easy to implement, even in “difficult
environments”environments”

• Disadvantages

– Circular structures are not reclaimed

– Computation overhead to keep track of references

– Space overhead to store reference counts

Reference Counting: Efficiency

• Overhead is proportional to amount of work

done by the mutator

• Garbage collection overhead is proportional to

the amount of allocated spacethe amount of allocated space

Reference Counting: Optimize Singly

Referenced Objects

• Claim: the majority of objects have a

reference count of 1

• Store the reference count for objects with 2 or

more references in a multireference tablemore references in a multireference table

(MRT)

• When a pointer is destroyed and the object is

not in the MRT, its count just dropped to 0

Deferred Reference Counting

• Problem: updating reference counts is a slow

process

• Solution: record transactions that may affect

accessibility in a temporary transaction fileaccessibility in a temporary transaction file

– Allocation of a new cell

– Creation of a pointer to a cell

– Destruction of a pointer to a cell

Deferred RC: Optimize Local Variables

• Simply ignore references from local variables

• Keep a zero count table (ZCT) for objects with

reference counts of 0 but may be referenced

from localsfrom locals

Deferred RC: Transaction File

Processing
void Process() {

for (Transaction* t = FirstTransaction(); t; t = Next(t)) {

if (IsAllocate(t)) {

AddToZCT(t); // Upon allocation, simply add to ZCT

} else if (IsCreatePtr(t)) {

if (!RemoveFromZCT(t)) { // Remove from ZCT if present

if (IsInMRT(t))

IncrementMRTReference(t); // Add reference to MRT or increment its ref count

else

SetMRTReferenceCount(t,2);

}

} else if (IsDestroyPtr(t)) {

if (IsInMRT(t)) { // If present, decrement or remove its entry from MRT

if (GetMRTCount(t) == 2)

RemoveFromMRT(t);

else

DecrementMRTReference(t);

} else {

AddToZCT(t); // Add to ZCT if this was the last reference

}

}

}

}

Deferred GC: Improvements

• Store transaction file as a hash table

– Accumulates combined adjustments in constant

time

– Detect objects that were created but never stored– Detect objects that were created but never stored

Supplemental Garbage Collection

• Collects circular structures

• Compacts memory

• Authors suggested a copying collector to

provide localityprovide locality

• Authors suggested allowing the programmer

to initiate the supplemental collection

Discussion: Modern Examples

• Boost Smart Ptr library

• Component Object Model (COM)

• PHP

• Python• Python

Discussion: Supplemental GC

• The author claimed that a supplemental GC
method is required for all reference counting
schemes. Is this valid?

• The author described a copying collector for • The author described a copying collector for
the supplemental GC. Would any other
collectors work in its place?

• Should programmers be required to initiate
the collection cycles? Is the answer different
when the collector is the primary collector?

Discussion: Flexibility (1)

void Foo()

{

shared_ptr<Bar> b(new Bar());

// Memory automatically freed

// when shared_ptr goes out of

// scope

}

void Foo()

{

Bar* b = new Bar();

// Must explicitly free the

// pointer:

delete b;

}} }

Discussion: Flexibility (2)

void Foo()

{

shared_ptr<Bar> b1(new Bar());

shared_ptr<Bar> b2(new Bar());

}

void Foo() {

Bar* b1 = new Bar();

try {

Bar* b2 = new Bar();

try {

// do work here

// clean up local allocations

delete b2; delete b1; return;

}

catch (...) {

delete b2; throw;

}

}

catch (...) {

delete b1; throw;

}

}

