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SUMMARY

Java is an attractive choice for numerical, as well as other, algorithms due to the software engineering
benefits of object-oriented programming. Because numerical programs often use large arrays that do not
fit in the cache, they to suffer from poor memory performance. To hide memory latency, we describe
a new unified compile-time analysis for software prefetching arrays and linked structures in Java. Our
previous work uses data-flow analysis to discover linked data structure accesses. We generalize our prior
approach to identify loop induction variables as well, which we call recurrence analysis. Our algorithm
schedules prefetches for all array references that contain induction variables. We evaluate our technique
using a simulator of an out-of-order superscalar processor running a set of array-based Java programs.
Across all our programs, prefetching reduces execution time by a geometric mean of 23%, and the largest
improvement is 58%. We also evaluate prefetching on a PowerPC processor, and we show that prefetching
reduces execution time by a geometric mean of 17%. Because our analysis is much simpler and quicker than
previous techniques, it is suitable for including in a just-in-time compiler. Traditional software prefetching
algorithms for C and Fortran use locality analysis and sophisticated loop transformations. We further show
that the additional loop transformations and careful scheduling of prefetches from previous work are not
always necessary for modern architectures and Java programs.
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1. Introduction

The flexibility and expressiveness of object-oriented languages, such as Java, provide software
engineering benefits over traditional scientific languages. Because of these advantages, programmers
are increasingly using them to solve problems that also require high performance. Scientific and more
general purpose Java applications frequently use array data structures. Traditional approaches improve
performance in array-based applications using loop transformations, such as loop tiling and unrolling.
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2 B. CAHOON, K.S. MCKINLEY

Implementing loop transformations in Java compilers is challenging due to Java array requirements
and exceptions [4].

Memory latency is a barrier to achieving high performance in Java programs, just as it is for C
and Fortran. To solve this problem, we investigate software controlled data prefetching to improve
memory performance by tolerating cache latency. The goal of prefetching is to bring data into the cache
before the demand access to that data. Software prefetching techniques identify appropriate data access
patterns, and generate a prefetch instruction for data that will be accessed in the future. Prior research
shows that software controlled prefetching is effective in array-based Fortran programs [6, 9, 22, 26]

We describe a new data-flow analysis to identify monotonic loop induction variables, and a method
to schedule prefetches for array references that contain induction variables in the index expression.
We rely on a simplified form of common subexpression elimination to remove redundant prefetches.
Our new recurrence analysis unifies the identification of induction variables and linked data structure
traversals, and thus subsumes our previous work that discovers regular accesses to linked structures [8].
In this article, we focus on arrays.

We implement our data-flow analysis and software prefetching technique in Vortex, an optimizing
(ahead-of-time) compiler for object-oriented programs [13]. We evaluate prefetching using benchmark
programs from the Jama library [16] and the Java Grande benchmark suite [7]. We run the programs
on RSIM, a simulator for an out-of-order superscalar processor [27], and on an actual PowerPC
processor [24].

Our results show that our simple prefetching implementation is very effective on array-based
Java programs on an aggressive out-of-order processor. Prefetching improves performance by a
geometric mean of 23% on a simulated processor and by 17% on a PowerPC processor. We see even
larger improvements on several kernels, including matrix multiplication, LU factorization, SOR, and
Cholesky factorization. In SOR, prefetching eliminates all memory stalls and reduces execution time
by 46%. Performance degrades in one program, FFT, due to a large number of conflict misses caused
by a power of two data layout and access of a large 1-D array that make prefetching counterproductive.
We also include a case study of matrix multiply to explore the utility of additional loop transformations
to more carefully schedule prefetches in the spirit of Mowry et al. [26]. In matrix multiplication, we
show that locality analysis and loop transformations do improve performance on a simple, in-order
processor. On modern architectures with multiple functional units and out-of-order execution, we find
that prefetching in Java programs is less sensitive to precise scheduling via loop transformations, but
loop transformations will provide further improvements in some cases.

Our technique is much simpler and faster than existing array software prefetching techniques
because it does not require array dependence testing or loop transformations. These characteristics
make it suitable for a just-in-time (JIT) compiler, but we leave that evaluation for future work. Existing
compilers that find induction variables can implement the prefetch scheduling technique with little
effort.

We make the following contributions.

1. A new method for detecting monotonic induction variables. Our approach uses data-flow analysis
and does not require explicit def-use chains.

2. A unified analysis for discovering recurrences in linked structures and arrays. We use the same
analysis for identifying prefetch opportunities in linked structures and arrays.
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RECURRENCE ANALYSIS FOR EFFECTIVE ARRAY PREFETCHING 3

3. A new technique for prefetching arrays. We prefetch array references that contain induction
variables. We do not require array dependence analysis or loop transformations.

4. An evaluation of prefetching on scientific Java programs from the Jama library and Java Grande
benchmark suite. We obtain detailed performance statistics using a simulator and validate the
results on a PowerPC processor.

We organize the rest of the article as follows. Section 2 briefly describes the related work. In
Section 3, we present our recurrence analysis that discovers loop induction variables. Section 4
describes our algorithm for scheduling prefetch instructions for array references. We present
experiments showing the effectiveness of our prefetching algorithm in Section 5. The results include
overall performance, prefetch instruction effectiveness, and cache statistics. Section 6 presents a
case study that compares the performance effect of different loop transformations and analysis on
prefetching in matrix multiplication. We discuss how our prefetching technique works on arrays of
objects, true multidimensional arrays, and �������! �"$#�%!&�'�� types in Section 7.

2. Related Work

In this section, we describe the related work on software prefetching in array-based programs.
VanderWeil and Lilja provide a detailed survey of hardware and software data prefetching
techniques [33]. We also describe previous approaches for discovering loop induction variables.
Other researchers investigate optimizing high performance Java applications using traditional loop
optimizations [4, 10]. Their work is complimentary to our work.

2.1. Software Prefetching for Arrays

Mowry, Lam, and Gupta describe and evaluate compiler techniques for data prefetching in array-based
codes [25, 26]. Their paper is one of the first to report execution times for compiler inserted prefetching.
The algorithm works on affine array accesses, and involves several steps. First, the compiler performs
locality analysis to determine array accesses that are likely to be cache misses. The compiler uses loop
splitting to isolate references that may be cache misses, and software pipelining to schedule prefetch
instructions effectively. Bernstein, Cohen, Freund, and Maydan implement a variation of Mowry et
al.’s algorithm for the PowerPC architecture [6]. The only loop transformation they use is unrolling.
McIntosh extends Mowry et al.’s work by focusing on the compiler support necessary for software
prefetching [22]. He develops several new compiler techniques to eliminate useless prefetches and
to improve prefetch scheduling for array-based codes. Our prefetching algorithm is effective without
locality analysis and loop transformations. We focus on Java arrays that contain features that make
code and data transformations challenging compared to transforming Fortran arrays.

Callahan, Kennedy, and Porterfield present and evaluate a simple algorithm for prefetching array
references one loop iteration ahead [9]. Their paper illustrates the potential for software prefetching,
but they present cache miss rate results only. Santhanam, Gornish, and Hsu evaluate software
prefetching for Fortran programs on the HP PA-8000, a 4-way superscalar processor [28]. The
compiler creates symbolic address expressions for array references that contain induction variables.
The algorithm requires analysis of the symbolic addresses to generate prefetch instructions. The
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4 B. CAHOON, K.S. MCKINLEY

compiler also performs loop optimizations. Selvidge presents profile-guided software data prefetching
as a scheduling algorithm [29]. Selvidge uses profile information to identify regular and irregular data
references. We propose a compile-time analysis for prefetching array references and linked structures.
We prefetch all array references containing loop induction variables, and we eliminate redundant
prefetches using common subexpression elimination.

2.2. Hardware Prefetching for Arrays

Hardware prefetching schemes add prefetching functionality without explicit programmer or compiler
assistance. The main benefit of hardware schemes is the ability to run existing program binaries, which
enables prefetching without recompiling the program. A simple hardware scheme prefetches the next
cache line when a program loads a cache line from memory [30]. This simple mechanism often results
in cache pollution because it is too aggressive. More sophisticated hardware prefetching mechanisms
predict and prefetch data access streams based upon past references [5, 19].

Several existing high performance architectures implement hardware prefetch mechanisms, but there
is a large variation in the functionality among these architectures. Some architectures prefetch into the
1st level cache (e.g., the POWER4 [32]), some prefetch into the 2nd level cache (e.g., the Pentium
4 [18]), others prefetch into a special buffer (e.g., the UltraSPARC III [31]), and some prefetch floating
point data only (e.g., the UltraSPARC III).

A software prefetch mechanism requires less complexity than a hardware mechanism. Software
prefetching is also more flexible by allowing the compiler to determine what and when to prefetch.
Although hardware mechanisms work well on array-based programs that access data using a
predictable unit stride, software prefetching may be able to identify different stride patterns and still
produce similar performance improvements for the simple cases. Our software prefetching technique
does not rely upon the order of the arrays in memory and is able to detect accesses to arrays of objects.

2.3. Induction Variables

The initial use for induction variable detection in compilers was operator strength reduction [1, 21].
These algorithms typically require reaching definitions and loop invariant expressions. The algorithms
are conservative and find simple linear induction variables. The PTRAN compiler uses an optimistic
approach and assumes variables in loops are induction variables until proven otherwise [2]. Gerlek,
Stoltz, and Wolfe present a demand driven static single assignment (SSA) approach for detecting
general induction variables by identifying strongly connected components in the SSA graph [14].
Gerlek et al. present a lattice for classifying different types of induction variables. Haghighat and
Polychronopoulos also categorize different types of induction variables for use in parallelizing
compilers [15]. Ammarguellat and Harrison describe an abstract interpretation technique for detecting
general recurrence relations, which includes induction variables [3]. The approach requires a set of
patterns, which they call templates, that describe the recurrences.

Wu, Cohen, and Padua describe a data-flow analysis for discovering loop induction variables [34].
The analysis computes whether a variable increases or decreases along a given execution path, and
the minimal and maximal change in a value. The authors compute closed form expressions from the
distance intervals to perform array dependence testing. We present a different data-flow analysis for
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RECURRENCE ANALYSIS FOR EFFECTIVE ARRAY PREFETCHING 5

identifying induction variables, and we use the analysis to discover both induction variables and linked
structure traversals. We use the analysis for prefetching rather than array dependence testing.

3. Detecting Loop Induction Variables

In this section, we present our data-flow analysis for discovering loop induction variables. Traditional
algorithms for finding induction variables are either loop based [1], or use static single assignment
(SSA) form [14]. Both techniques require def-use or use-def chains.

A basic type of an induction variable is one that is incremented or decremented by the same value
during each loop iteration, for example the expression &�()&�*,+ occurring in a loop. During each iteration
of the loop, the variable & is incremented by a loop invariant value, + .

Gerlek et al. define an induction variable as a specific kind of sequence variable [14]. An expression- ($ that occurs at statement . in a loop is a sequence variable if the expression  contains a reference
to variable - or the expression  contains a reference to a difference sequence variable. There are
several classifications of induction variables. A linear induction variable changes by the addition or
subtraction of a loop invariant value in every iteration. A polynomial induction variable changes by
a linear induction variable using addition or subtraction in each iteration. An exponential induction
variable changes by the multiplication of a loop invariant expression in each iteration. Our analysis
discovers each of these types of induction variables. A monotonic induction variable is one that is
conditionally executed in the loop body.

We first define our intraprocedural analysis, and we present a simple example to illustrate the
analysis. We then describe another technique for discovering induction variables that uses explicit
data flow edges [14]. Finally, we describe the similarities between the induction variable and linked
structure analysis. We propose a unified analysis, called recurence analysis, that detects both types of
traversal patterns.

3.1. Intraprocedural analysis

The intraprocedural recurrence analysis detects induction variables that are due to loops. We base
the loop induction variable detection analysis on our similar analysis that discovers linked structure
traversals [8]. We use the same analysis framework that requires only minor extensions to discover
loop induction variables.

We assume the reader is familiar with the fundamentals of a monotone data-flow analysis
framework [20]. Our data-flow analysis is a may analysis, which means if a variable is incremented
or decremented along at least one path through a loop, then we classify it as an induction variable.
The traditional induction variable analysis is a must analysis. Our analysis is pessimistic, which means
the analysis starts with a small set of facts and adds information until reaching a fixed point [11]. An
optimistic analysis starts with a large set of facts and removes information until reaching a fixed point.

We define the following sets in our data-flow analysis. Let V be the set of integer variables in a
method, E be the set of expressions, S be the set of statements in the method, and IS be the induction
status that we describe below. We restrict V to integers because we are not interested in floating point
induction variables. The analysis associates a set of tuples with each statement:

I / P 0 V 1 E 1 S 1 IS 2
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6 B. CAHOON, K.S. MCKINLEY

We define a function, IA, that maps program statements to the analysis information, IA : S 3 I.
The induction expression (E) contains the computation that the program performs during each loop
iteration. The analysis begins by creating a simple binary expression. The analysis creates larger
expressions from the smaller expressions to form complex expressions. We use the statement number
(S) to handle the case when there are multiple assignments to a variable. For example, if the sequence4 ( 4 *!576 4 ( 4 *!5 is not in a loop, we do not want to mark variable

4
as an induction variable. If the two

increment instructions are in a loop, then the analysis identifies variable
4

as an induction variable.
The induction status (IS) indicates when a program uses an induction variable. Let is 8 IS = 9:�7& ,; & , &=< . We order the elements of IS such that �7&=> ; &?>@& . We define the element values as follows:

Not induction ( �!& ). The initial value indicates a variable is not an induction variable.
Possibly induction ( ; & ). The first time we process an expression it is potentially an induction

expression.
Induction ( & ). A variable is an induction variable.

The first time we analyze a loop, a variable occurring on the left hand side of a binary expression
becomes possibly induction (e.g., %$( 4 *75 ). On the second iteration of the analysis, the variable on the
left hand side becomes induction if the variable in the expression (i.e.,

4
) is possibly induction. If the

variable is not induction, then % ’s value remains the same.
Informally, the data-flow join function is set-union except for tuples that share the same variable

name, expression, and statement number. The induction status values and the join operator define
induction ( & ) as the conservative value. Since it is a may analysis, a variable is a monotonic induction
variable if it contains the induction ( & ) status along at least one path. Our definition enables the analysis
to discover induction variables in the presence of conditional execution. Our analysis also detects if a
variable changes by different expressions along different paths through the same loop.

Formally, we define the data-flow join operation, I1 A I2, as follows. Let t 8 I be a tuple in the set I.
Given our ordering of the elements is 8 IS, is A �7& = is, ; & A ; & = ; & , and is A & = & . Then,

I1 A I2 B 9 t C t 8 I1 D t E8 I2 <GFH9 t C t E8 I1 D t 8 I2 <GF9 (v,e,s,is1 A is2 2
C (v,e,s,is1 2I8 I1 D (v,e,s,is2 2J8 I2 <
The data-flow equations for the induction analysis are:

IAin 0 s 2 B K
p L pred M s N IAout 0 p 2

IAout 0 s 2 B 0 IAin 0 s 2$O KILLIA 0 s P IAin 0 s 2�2Q2 A GENIA 0 s P IAin 0 s 2Q2
The functions GEN and KILL operate on the set of tuples for each statement and produce a new set of
tuples, GENIA P KILLIA : S 1 I 3 I.

At the initial statement, init(S), the value for the function IAin is 9R0 v P /0 P /0, �!&�2
C v 8 V < , which means
that the set of expressions and statements for each variable is the empty set and the status is not
induction.

We define data-flow transfer functions for binary expressions and assignments. Our intermediate
representation only requires statements that contain binary expressions and assignments. For each
statement, the representation includes the set of predecessors. Our analysis does not require that loops
be identified explicitly. We describe the details of our GEN and KILL functions for each interesting
program statement below. In the definitions below, e’ 8 E, s’ 8 S, and is’ 8 IS.
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RECURRENCE ANALYSIS FOR EFFECTIVE ARRAY PREFETCHING 7

- ( 4TSVU + k An integer binary expression op involving two variables
4

and + at statement W may
create an induction variable when it occurs in a loop. The value + is loop invariant for linear
induction variables only. For polynomial and exponential induction variables, the value + is an
induction variable. Informally, the expression is an induction variable when the value assigned to
variable - is propagated to

4
, the variable on the right hand side. The canonical example is

4 ( 4 *75
in a loop with no other assignments to

4
. The KILLIA and GENIA functions for a binary expression

are:

KILLIA X v=j op ck Y I Z\[ ] (v,j op c,k, ^�_ ) Y (v, /0 Y /0, `�_ ) a
GENIA X v=j op ck Y I Z\[ bc d ] (v,j op c,k, ^�_ ) a : if (j, /0 Y /0, `�_ ) e I] (v,j op c,k, _ ) a : if (j, j op c,k, ^�_ ) e I

/0 : otherwise

The first time we process a binary expression, we create a tuple containing variable - , the expression4 ' ; + , with the possibly induction ( ; & ) status. If the expression occurs in a loop, the analysis
processes the statements again because the data-flow information has not yet reached a fixed point.
In the next iteration of the analysis, if there exists a tuple containing variable

4
with the possibly

induction ( ; & ) status, then there is no intervening assignment to variable
4

in the loop body. In this
case, we create a tuple containing variable - , the expression

4 ' ; + , with the induction ( & ) status.

Binary expressions require an additional GEN and KILL function for the operands. Propagating
information about the operands enables the analysis to create complex induction variable
expressions, such as mutual induction variables.

KILLIA X v=j op ck Y I Zf[ ] (v,e’ op c,l,is’) g l h[ k a
GENIA X v=j op ck Y I Zf[ ] (v,e’ op c,l,is’) g (j,e’,l,is’) e I i l h[ k a

The analysis only creates a complex induction variable  kj once at a statement W . If the analysis
evaluates the statement again, the complex induction expression is not changed. Otherwise, the
analysis would add the variable + to the expression  Ij each time it processes the statement so the
analysis would never terminate.- (�� A variable assignment expression copies the induction information associated with variable �
to variable - . For each tuple containing a variable � , we create a new tuple containing variable -
with the same expression, statement, and induction status as variable � . We kill the old information
associated with variable - . The KILLIA and GENIA functions for an assignment are:

KILLIA X v=u Y I Zf[ ] (v,e’,s’,is’) a
GENIA X v=u Y I Zf[ ] (v,e’,s’,is’) g (u,e’,s’,is’) e I a- (Gl�m Uon Any other assignment of an expression expr to a variable - kills the analysis information for

variable - . Our analysis sets the induction status of any tuple containing variable - to not induction
( �7& ). The KILLIA and GENIA functions for all other assignments are:

KILLIA X v=expr Y I Zf[ ] (v,e’,s’,is’) a
GENIA X v=expr Y I Zf[ ] (v, /0 Y /0 Y `�_ ) g (v,e’,s’,is’) e I a
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8 B. CAHOON, K.S. MCKINLEY

3.1.1. Object Fields

The analysis tracks the data-flow information for variables assigned to object fields. An example of an
induction variable that is stored in an object field is 'qp�r�($'sptr�*75 when occurring in a loop. For example,
an induction variable in an object field occurs when using the �R�R���! �"u#�%!&�'�� class for a vu w+�%u'�" object
as we show in Figure 16.

For object fields, we associate the analysis information with the field name, and we ignore the base
object. The implication of ignoring the base object is that all objects of the same class are aliases. We
prepend the name with its class name to avoid ambiguity between fields from different classes. We
could improve the precision by tracking the aliases between base objects, which would increase the
analysis complexity cost. Our definition also ignores the effects of other threads, which means that we
may indicate that a field contains an induction variable when another thread assigns a different value
to the field.

We define GENIA and KILLIA for object field assignments.'sptrx( - Create data-flow information for a field definition. The GENIA and KILLIA functions are
similar to a variable assignment.

KILLIA X o.f=v Y I Zf[ ] (f,e’,s’,is’) a
GENIA X o.f=v Y I Zf[ ] (f,e’,s’,is’) g (v,e’,s’,is’) e I a- (y'sptr For any tuple containing 'sp�r , we create a new tuple containing - , which includes the

field, statement, and induction status. The GENIA and KILLIA functions are similar to a variable
assignment.

KILLIA X v=o.f Y I Zf[ ] (v,e’,s’,is’) a
GENIA X v=o.f Y I Zf[ ] (v,e’,s’,is’) g (f,e’,s’,is’) e I a

'sptrx(zl�m Uon Any other assignment to a field kills the data-flow information for 'sp�r . The GENIA and
KILLIA functions are:

KILLIA X o.f=expr Y I Z\[ ] (f,e’,s’,is’) a
GENIA X o.f=expr Y I Z\[ ] (f, /0 Y /0 Y `�_ ) g (f,e’,s’,is’) e I a

3.1.2. Analysis example: Mutual induction variables

Figure 1 illustrates the how the data-flow analysis processes mutual induction variables. In the example,
the value for variable

4
depends upon variable & , and the value for variable & depends upon variable

4
.

Since the loop increments each variable by one, both variables increase by two in each iteration. Our
induction analysis detects the mutual induction variables, and correctly computes the increment value.
The analysis would also identify the variables as induction variables if two increment statements were
conditionally executed.

3.2. Using SSA form to identify induction variables

Although we propose a new data-flow technique, which does not require an explicit data-flow graph,
many compilers explicitly compute the relationships between definitions and uses of variables to
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RECURRENCE ANALYSIS FOR EFFECTIVE ARRAY PREFETCHING 9

1 _�`u{}|�~��s�$�k�y_�`u{�_)�$�k��_�`u{��)�$�k�
2 �u�!_$�u����_���`I�x�
3 |�~����$���R�$�=��_$�k�
4 ����_����G�
5 _T�������G�
6 �

stmt IA Iteration 1 Iteration 2 Iteration 3
(i, /0, /0,nr), (j, /0, /0,nr) (i,j+1,5,pr), (j,i+1,4,pr) (i,j+1,5,r), (j,i+1,4,r)in

(i,i+2,4,pr) (i,i+2,4,r), (j,j+2,5,pr)2
(i, /0, /0,nr), (j, /0, /0,nr) (i,j+1,5,pr), (j,i+1,4,pr) (i,j+1,5,r), (j,i+1,4,r)out

(i,i+2,4,pr) (i,i+2,4,r), (j,j+2,5,pr)
(i, /0, /0,nr), (j, /0, /0,nr) (i,j+1,5,pr), (j,i+1,4,pr) (i,j+1,5,r), (j,i+1,4,r)in

(i,i+2,4,pr) (i,i+2,4,r), (j,j+2,5,pr)4
(i, /0, /0,nr), (j,i+1,4,pr) (i,j+1,5,pr), (j,i+1,4,r) (i,j+1,5,r), (j,i+1,4,r)out

(i,i+2,4,pr),(j,j+2,5,pr) (i,i+2,4,r), (j,j+2,5,r)
(i, /0, /0,nr), (j,i+1,4,pr) (i,j+1,5,pr), (j,i+1,4,r) (i,j+1,5,r), (j,i+1,4,r)in

(i,i+2,4,pr), (j,j+2,5,pr) (i,i+2,4,r), (j,j+2,5,r)5
(i,j+1,5,pr), (j,i+1,4,pr) (i,j+1,5,r), (j,i+1,4,r) (i,j+1,5,r), (j,i+1,4,r)out

(i,i+2,4,pr) (i,i+2,4,r), (j,j+2,5,pr) (i,i+2,4,r), (j,j+2,5,r)

Figure 1. Detecting mutual induction variables. The interesting points occur at lines 4 and 5. For example, in the
first iteration, at line 5, the analysis creates two new tuples. The first tuple, ��_,�����R�$�t�,� ^��R� , indicates that variable_ is assigned the value ����� . Since IAin X 5 Z contains a tuple for variable � , the analysis creates a second tuple,��_,��_
��¡)��¢7�£^��R� , which builds a complex expression using the expression from variable � ’s tuple. At line 5, the
analysis represents variable _ as ���R� and _���¡ . After reaching a fixed point, the analysis indicates that variables _

and � are induction variables and they increase by two in each iteration.

perform optimizations. Instead of using our data-flow analysis, compilers that represent data flow
explicitly can discover induction variables by identifying the strongly connected components (SCCs)
in the data-flow graph.

One popular representation that many compilers use is static single assignment (SSA) form [12]. The
key feature of SSA form is that each use of a variable has a single definition. SSA form introduces a
special φ operator to combine definitions at merge points and produce a new definition. A main benefit
of SSA form is that it is a sparse representation of the definitions and uses of variables.

Gerlek et al. describe an efficient algorithm for discovering different types of induction variables
using SSA form [14]. They introduce a variant of SSA form that uses use-def chains exclusively. The
algorithm works by computing the SCCs in the SSA data flow edges. Finding the SCCs in the use-def
chains is not enough to classify the induction variables appropriately. The compiler must analyze the
statements in the SCCs to determine how the induction variables change during each loop iteration.
To aid the analysis, Gerlek et al. distinguish data merges at the beginning of loops using a µ operator
rather than a φ operator. The µ operator provides a convenient mechanism to classify the loop induction
variables. For example, a SCC that contains one µ, no φ, and an addition of a loop invariant value is a
linear induction variable.
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Figure 2. Similarity between induction variables and list traversals

Although SSA form provides explicit data flow edges, Gerlek et al. show that finding induction
variables requires more than just identifying SCCs in the flow edges. An induction variable detection
algorithm must process the statements in the SCC to classify the induction variables. A compiler that
uses SSA form may choose the approach that Gerlek et al. describe, but our approach also works and
does not require a specialized intermediate representation.

3.3. Relationship to linked structure analysis

An induction variable and a linked structure traversal are examples of general recurrences. Figure 2
illustrates the similarities between discovering induction variables and linked structure traversals. The
first loop in Figure 2 updates variable

4
by incrementing the value by 1. The second loop in Figure 2

updates object ' by referencing the next element in the list. We propose a unified recurrence analysis
that detects both of these traversal patterns.

In the linked structure analysis, the data-flow information is a set of tuples R / P 0 PV 1 F 1 S 1 RS 2 ,
where PV includes pointer variables and field references, F is a set of field objects, S is a statement,
and RS is the recurrent status. RS is a value from the partially ordered set 9²�$" , ; " , "H< , which denote
not recurrent, possibly recurrent, and recurrent, respectively [8].

Although we use different names, the RS values are equivalent to the IS values in the induction
analysis. In the unified analysis, �$" = �7& , ; " = ; & , and �$" = �7& . The ordering of the elements in RS
and IS are the same, and the join operator A produces equivalent results.

A unified recurrence analysis combines the information in the tuples for the induction variable
analysis and the linked structure analysis. The data-flow information in the unified analysis is a set
of tuples, R / P 0 V 1 FE 1 S 1 RS 2 , where V is the set of variables and object fields, FE is the set
of object fields and binary expressions, S is a statement number, and RS is the recurrence status. The
unified analysis requires the GEN and KILL functions from the induction variable analysis in Section 3.1
and from the linked structure analysis in our prior work [8].

We implement the unified recurrence analysis in our compiler to identify prefetching opportunities
in array references and linked structures. In prior work, we implemented and evaluated compile-time
methods for prefetching linked structures. Although Java programs frequently allocate objects and
create linked structures, we find that many Java programs also use arrays. In this article, we focus on
evaluating array prefetching in Java.
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(a) Simple index expression
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(b) Complex index expression
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���G�����7® ¯����
~��!�»
(c) Array of Objects

Figure 3. Examples of prefetching arrays

4. Array Prefetching

In this section, we describe our algorithm to insert array prefetch instructions. The prefetch algorithm
must identify an array access pattern, and generate a prefetch for an element that will be accessed in
the future. We illustrate a simple array prefetching example in Figure 3(a). During each iteration, the
program references the

4 th element, and we prefetch element
4 *�¿ , where ¿ is the prefetch distance.

Prefetching is most effective when the prefetch distance value, ¿ , is large enough to move the
4 *�¿ th

array element into the L1 cache prior to completing ¿ iterations of the loop.
We propose a prefetch algorithm that does not require array locality analysis or loop transformations.

Our compiler generates a prefetch instruction for array references that contain a linear induction
variable in the index expression. The compiler generates the prefetch only if the array reference is
enclosed in the loop that creates the induction variable.

Figure 4 summarizes the pseudo-code for the prefetch scheduling process. We restrict the algorithm
to linear induction variables only because they generate arithmetic sequences. Since the induction
variable value changes by the same constant expression each time it is executed, the prefetch distance
remains the same during each iteration. Polynomial and exponential induction variables generate
geometric progressions, which require a new prefetch distance to be computed during each iteration,
and the distance depends upon the loop index value. We also allow conditional expressions to guard the
execution of the induction variables and array accesses. In this case, the variable must monotonically
increase or decrease by the same loop invariant value. The compiler generates the prefetch instruction
immediately prior to the array reference. If the array reference is conditionally executed then so is the
prefetch instruction.

An array index expression may contain other terms besides the induction variable. For example, in
Figure 3(b), the array index expression is ÀuÁ 4 , and the induction variable is

4
. We generate a prefetch in

this example because the induction variable is linear. The compiler generates code to add the prefetch
distance to

4
before the multiplication.

Our compiler generates prefetches for array elements and objects referenced by array elements, as
appropriate. We generate multiple prefetch instructions if the size of the referent object is greater than
a cache line. Prior prefetching algorithms focus on Fortran arrays and prefetch array elements only. In
Java, arrays may contain object references as well as primitive types. For an array of objects, we want
to hide the latency of accessing the array element and the referent object. Figure 3(c) illustrates array
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12 B. CAHOON, K.S. MCKINLEY

I = ISout(exit(S)); exit(S) is the last statement
for each assignment, {º�Â�����G�Ã¯��

if (v, e, s, _ ) e I
lp = set of statements in current loop
if s e lp and e is linear

c = increment/decrement value of e
d = prefetch distance Ä c
generate ^���� ³ ��{�¶�����·��
���G�£¯´�Å��¸�½�¡��Æ�R�
if array of objects

generate ^���� ³ ��{�¶����t�
���G�£¯¼�Ç¸��R�
Figure 4. Pseudo-code for scheduling prefetch instructions

object prefetching. The first prefetch instruction is for the array element, and the second prefetch is for
the referent object. The second prefetch must load the array element to get the address of the object.
The prefetch distance for the array element is twice the distance of the prefetch distance for the referent
object to ensure the array element is in the cache.

We use common subexpression (CSE) analysis to eliminate redundant prefetches. A prefetch is
redundant if the compiler has already generated a prefetch for the cache line that contains the data. For
example, if a loop accesses the same array element multiple times in the same iteration of a loop, our
algorithm generates a prefetch instruction for each of the references. The CSE phase eliminates all but
the first prefetch because the others are redundant. We leverage an existing implementation of CSE, but
eliminating redundant prefetches is simpler than a complete CSE analysis. A very simple redundant
prefetch elimination algorithm needs to analyze prefetch statements only, and eliminate prefetches that
are redundant in the same loop iteration only. Using a CSE algorithm may eliminate more redundant
prefetches by considering loads as well as prefetch instructions.

Generating prefetch instructions requires several steps using the algorithm by Mowry et al. [26].
First, the compiler uses array data dependences to perform locality analysis on the array references in
a loop to approximate the cache misses. Then, the compiler performs loop unrolling and loop peeling
to prefetch the references causing cache misses. Finally, the compiler attempts to improve prefetch
effectiveness by software pipelining loops.

Mowry et al. use loop transformations to improve prefetch effectiveness by prefetching the first array
elements prior to starting the loop, eliminating prefetches that hit in the L1 cache, and eliminating
useless prefetches past the end of the last array element. Figure 5 shows a transformed version of
the code in Figure 3(a). The prefetch distance is ten array elements. Software pipelining generates
prefetches for the initial ten array elements, and loop unrolling improves prefetch effectiveness by
prefetching whole cache lines instead of individual array elements.

Our prefetch algorithm does not perform loop transformations, which reduces the complexity of our
approach. Our experimental results suggest that loop transformations are useful but, in the benchmarks
that we use, they are not required to achieve significant performance improvements. We take advantage
of available instruction level parallelism (ILP) in modern processors to reduce the effect of unnecessary
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Figure 5. Traditional loop transformations for improving prefetch effectiveness on the code in Figure 3(a)

prefetches that hit in the L1 cache. When a processor has available ILP, an unnecessary prefetch
instruction is very cheap, and the cost is much less than the benefit from prefetching useful data.

5. Experiments

In this section, we evaluate the effectiveness of our array prefetching technique. We first describe
our experimental methodology. We present simulation results that show the benefits of compile-time
prefetching. We use the simulator to understand the overall results better by evaluating the effectiveness
of the dynamic prefetch instructions and the effect on cache performance. We also discuss the negative
impact of conflict misses on prefetching. Finally, we validate the simulation results with execution
times on a PowerPC processor.

5.1. Methodology

We implement the induction variable analysis and prefetching algorithm in Vortex, an optimizing
compiler for object-oriented languages [13]. We use Vortex to compile our Java programs, perform
object-oriented and traditional optimizations, and generate Sparc assembly code. We specify a prefetch
distance of twenty elements as a compile-time option. We use a twenty element prefetch distance since
it is small enough to cover the latency of accessing memory in loops that contain a reasonable amount
of work.

We use RSIM to perform a detailed cycle level simulation of our programs [27]. RSIM simulates
an out-of-order processor that issues up to four instructions per cycle and has a 64 entry instruction
window. The functional units include two ALU, two FP, one branch, and two address units. Table I
lists the memory hierarchy parameters. We use the default values for other simulation parameters. In
RSIM, a prefetch instruction causes one cache line to be brought into the L1 cache. We have also
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14 B. CAHOON, K.S. MCKINLEY

Table I. Simulation parameters

L1 cache 32KB, 32B line
direct, write through, 2 ports

L2 cache 256KB, 32B line
4-way, write back, 1 port

Write buffer size 8 entries
L1 hit time 1 cycle
L2 hit time 12 cycles
Memory hit time 60 cycles
Miss handlers (MSHR) 8 L1, 8 L2
Memory bandwidth 32B/cycle

Table II. PowerPC configuration

L1 cache 32KB, 32B line
8-way, split

L2 cache 256KB, 64B line
8-way, unified

L3 cache 1MB, 64B line
8-way, unified

L1 hit time 3 cycles
L2 hit time 9 cycles
L3 hit time 38 cycles
Miss handlers 5 L1

Table III. Array-based benchmark programs

Inst.Name Description Inputs
Issued

Jama library
cholesky Cholesky decomposition 300x300 matrix 1381 M
eigen Eigenvalue decomposition 250x250 matrix 1675 M
lufact1 LU decomposition 300x300 matrix 1570 M
matmult Matrix multiply 400x400 matrix 1744 M
qrd QR factorization 400x400 matrix 1811 M
svd Singular value decomposition 300x300 matrix 5733 M

Java Grande
crypt IDEA Encryption 250000 elements 2500 M
fft FFT 262144 elements 1828 M
heapsort Sorting 1000000 integers 2916 M
lufact2 LU factorization 500x500 matrix 1167 M
sor SOR relaxation 1000x1000 matrix 6972 M
sparse Sparse matrix multiply 12500x12500 matrix 815 M

run a limited set of experiments with larger cache configurations. In general, changing the cache size
and associativity parameters does not significantly affect the relative performance results. When we
increase the cache size or set associatively, our prefetching results often improve slightly, until the
cache grows large enough to eliminate most capacity misses.

To validate our simulation results, we run experiments on a PowerMac G4 running Yellow Dog
Linux. The processor is a PowerPC MPC7450 running at 733MHz [24]. The MPC7450 is a superscalar
out-of-order processor. Table II lists the important characteristics of the memory hierarchy.

We evaluate array prefetching using scientific library routines in the Jama package [16], and
programs from section 2 of the Java Grande benchmark suite [7]. Table III lists the benchmarks we
use in our experiments, along with characteristics about each program. We use input sizes that enable
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Figure 6. Overall prefetching performance

our simulations to complete in a reasonable time. We exclude .� �"!&� u. because it does not use an array
as a main data structure.

We made a change to our garbage collector to reduce the occurrence of conflict misses in two of
the programs. Vortex uses the UMass Garbage Collector toolkit for memory management [17]. The
generational collector allocates memory in fixed sized 64KB blocks. Each generation may contain
multiple blocks. The collector contains a large object space for objects larger than 512 bytes. The
initial large object space implementation allocated very large arrays in new blocks aligned on a 64KB
boundary. This allocation strategy results in many unnecessary conflict misses when programs access
multiple large arrays at the same time. We fix the problem by adding a small number of pad bytes to the
beginning of each large object. The pad bytes eliminate conflict misses and improve the performance
of . ; #�").� and ÍR"$¿ with and without prefetching. Without the pad bytes, prefetching actually degrades
performance in these programs by a few percent. The pad bytes do not help in r�rR% because r�rR%
allocates a single array.

5.2. Overall performance

Figure 6 presents the results of array prefetching (P) on our programs. We normalize the results to those
without prefetching (N). The six programs on the left side are part of the Jama library, and the other six
programs are Java Grande benchmarks. We divide run time into the number of cycles spent waiting for
memory requests, and the number of cycles the processor is busy. The memory requests include both
read and write instructions, but almost all of the memory stall time is due to read instructions. The busy
time includes all other execution cycles, including branches and multi-cycle arithmetic operations. In
a processor with ILP, dividing the run time is not straightforward because instructions may overlap.
RSIM counts a cycle as a memory stall if the first instruction that the processor cannot retire in a cycle
is a load or store.
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Figure 7. Prefetch effectiveness

Figure 6 shows that the programs spend a large fraction of time waiting for memory requests. Seven
of the twelve programs spend at least 50% of run time stalling for memory requests. Clearly, these
programs have substantial room for improvement. We see substantial improvements in six of the twelve
programs. Across all programs, prefetching reduces the run time by a geometric mean of 23%.

The largest improvement occurs in Î��ur$#w+�%$À where prefetching reduces the run time by 58%. In
five of the programs, prefetching reduces the run time by more than 30%. Prefetching either slightly
degrades performance by less than 1% or has little effect on five programs. Prefetching increases run
time in r�r�% by 13%. In Section 5.5, we show that prefetching improves the performance of a different
FFT implementation, which is faster than the Java Grande version on our architecture model.

Prefetching contributes to large improvements in +�Ïw'$ÎR u.�W�Ð , Î��ur$#w+�%o5 , �!#�%��w�,Î�% , Î��ur$#w+�%uÀ , and.�'�" . The performance improvement is due to memory stall reduction. In the programs that improve
significantly, the amount of time spent stalling due to memory requests decreases substantially.
Prefetching eliminates almost all the memory stalls in .�'�" .

Prefetching does not have any effect in +�"�Ð ; % or Ïw �# ; .�'�"�% . The time spent on memory operations
in +�"�Ð ; % is less than 1% of total run time, so we do not expect to see any performance improvement.
The access pattern in Ïw �# ; .�'�"�% is not regular and is data dependent, so it is difficult to improve using
prefetching.

Software prefetching increases the number of executed instructions. The amount of busy time in the
programs tends to increase slightly in Figure 6, although the increases are difficult to see because they
are so small. The additional functional units in a superscalar processor are able to hide most of the cost
of the additional instructions.
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Table IV. Static and dynamic prefetch statistics

Dynamic Bus Util.Program Static
total pfs pfs/reads N P

cholesky 32 97 374 473 10 % 13 % 28 %
eigen 153 47 214 494 10 % 8 % 8 %
lufact1 36 48 721 596 12 % 13 % 24 %
matmult 22 77 693 667 38 % 21 % 31 %
qrd 20 40 771 107 9 % 9 % 9 %
svd 74 134 700 673 9 % 10 % 10 %
crypt 31 500 794 3 % 0.1 % 0.1 %
fft 37 7 159 698 12 % 16 % 16 %
heapsort 27 1 442 004 0.3 % 9 % 9 %
lufact2 50 55 797 568 25 % 17 % 39 %
sor 30 224 896 104 16 % 11 % 20 %
sparse 29 24 234 710 19 % 20 % 24 %

5.3. Prefetch effectiveness

Figure 7 divides the L1 dynamic prefetches into several categories. A useful prefetch arrives on time
and is accessed. The latency of a late prefetch is partially hidden because a demand request occurs
while the memory system is retrieving the cache line. The cache replaces an early prefetch before the
cache line is used, or when the line is never used. An unnecessary prefetch hits in the cache, or is
coalesced into an outstanding miss. Useful, late, and early prefetches require accesses to the second
level cache at least.

Figure 7 shows that the percentage of useful prefetches does not need to be large to improve
performance. The number of useful prefetches is less than 16% in each program, except for r�rR% . In the
program with the largest improvement, Î��ur$#w+�%uÀ , the number of useful prefetches is just 13%.

Only �!#�%��u�,Î�% has a noticeable number of late prefetches. We can slightly improve performance in�!#�%��u�,Î�% by increasing the prefetch distance, which reduces the late prefetches. The program with the
largest number of useful prefetches, rRrR% , is also the program with the worst overall performance. The
large number of early prefetches results in poor performance. The early prefetches are due to conflict
misses, which we discuss in more detail in Section 5.5. Another potential source of early prefetches is
a prefetch distance that is too large, but we do not see this effect in our programs.

Figure 7 shows that a twenty element compile-time prefetch distance is effective in achieving most
of the performance gains. The prefetch distance is large enough to bring data into the cache when
needed, and small enough so that the data is not evicted prior to the demand request, which our results
illustrate since the number of late prefetches is small. We also vary the prefetch distance to examine
the impact on the results. Using a prefetch distance of five, ten, and thirty elements reduces the run
time by a geometric mean of 20%, 23%, and 23%, respectively. The only noticeable difference occurs
when the prefetch distance is five elements. Although the performance is stable when we aggregate the
run times, we see some small differences among the individual programs. We do not see a compelling
reason to use more sophisticated analysis to determine the appropriate prefetch distance automatically.
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Figure 8. L1 cache miss rate
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Figure 9. L2 cache miss rate

Table IV lists statistics about the static and dynamic prefetches. The static prefetch value is the
number of prefetch instructions that the compiler generates. We present the number of dynamic
prefetch instruction executed, and the percentage of dynamic prefetches relative to the number of
dynamic load instructions. The largest percentage of dynamic prefetches occurs in �!#�%��w�,Î�% because
most of the run time is spent in a short inner loop. The small number of prefetches in Ïw �# ; .�'�"�% is one
reason that prefetching is ineffective.

Table IV also shows the bus utilization values with (P) and without prefetching (N). Prefetching
does increase the bus utilization. In some cases, the utilization percentages double (e.g., +�Ïw'$Î� w.�W�Ð ,Î��ur$#u+�%o5 , Î��$r$#w+�%uÀ , and .�'�" ), but the bus utilization in these programs remains under 40% even with
prefetching. The main reason for the utilization increase is that the run time decreases substantially.
Except for rRrR% , prefetching uses the data brought into the cache effectively.

5.4. Cache statistics

The cache miss rate is also a useful metric to illustrate the benefits of prefetching. Figures 8 and 9 show
the L1 and L2 cache miss rates, respectively. Effective prefetching improves the miss rate by moving
data into the cache prior to the demand request.

The miss rates vary considerably in our benchmark programs. The L1 miss rates are much better than
the L2 miss rates for most programs. When computing the L2 miss rate we count only the references
that miss in the L1 cache. The number of references to the L2 cache is far less than the number of
references to the L1 cache.

The L1 miss rate varies from almost 0% to just under 50%. The L2 miss rate varies from 6% to 98%.
Over 50% of the references miss in the L2 cache in 8 programs. It is possible to increase the cache
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Figure 10. Comparing FFT implementations

sizes to improve the miss rates. We find that increasing the cache size tends to improve prefetching
slightly, until the data fits in cache.

Prefetching effectiveness does not correspond to high or low miss rates. Prefetching improves or
does not affect the L1 miss rate in each program. In the programs with the largest execution time
improvements, we see significant miss rate reductions. Prefetching almost completely eliminates L1
cache misses in .�'�" by reducing the miss rate from 38% to 1%. Prefetching improves the L1 miss rate
in each program, and the L2 miss rate in most programs. The L2 miss rate is slightly worse in several
programs because there are fewer L2 references, but the percentage of references that miss is higher.

Improving the miss rate, however, does not always correspond to run time improvements. We see a
significant improvement in the L1 and L2 miss rate for r�rR% even though prefetching increases the run
time. The problem is due to conflict misses, which we discuss in the next section.

5.5. Conflict misses

Performance degrades by 13% in rRrR% due to a large number of cache conflict misses. The conflict
misses in the L2 cache cause the biggest problem, and increasing the set associatively to eight or sixteen
does not eliminate the problem. The implementation uses the radix-2 algorithm, which computes results
in-place using a single dimension array. The size of the array and the strides through the array are
powers of two. For large arrays, the power of two stride values cause the conflict misses. Without
prefetching, 7% of the read references cause conflict misses in the L1 cache, and 37% of the read
references in the L2 cache cause conflict misses. Prefetching exacerbates the problem by increasing
the number of conflict misses. With prefetching, 8% and 34% of the read references cause conflict
misses in the L1 and L2 cache, respectively. Due to a power of two prefetch distance, the prefetches
evict data that are prefetched in prior iterations. Although it might be possible for a compiler to detect
this situation using sophisticated and expensive array dependence analysis, a more effective solution is
to use a better FFT algorithm.
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Figure 11. Prefetching on the PowerPC

We evaluate prefetching using a mixed radix implementation of FFT and compare the performance
to the radix-2 implementation. The mixed radix version is a more complex algorithm, which requires
additional storage. We compare the two versions of FFT in Figure 10. We present results with and
without prefetching for the two implementation. The "u#R¿,&�ÑwÒRÀ bars on the left side are the same results
from Figure 6. The �G&�Ñu R¿ FFT version is 34% faster than the "$#R¿)&�ÑwÒ�À version, and prefetching further
improves the performance of �Ó&�Ñu R¿ by 10%.

5.6. Prefetching on the PowerPC

In this section, we evaluate the effectiveness of prefetching on a PowerPC processor in order to validate
our simulation results. We use Vortex to generate C code instead of SPARC assembly code, and
we compile the C code using gcc. Vortex inserts a prefetch instruction using gcc’s inline assembly
mechanism. Table II describes the PowerPC memory hierarchy configuration.

Figure 11 shows the results for prefetching on the PowerPC. We normalize the run times to those
without prefetching. Since we run the programs on the machine instead of the simulator, we are unable
to divide the run time into memory and busy time. The figure presents results using two inputs sizes.
The regular inputs are from Table III. For the large inputs, we increase the input sizes. For the Jama
programs, we double the array sizes in Table III. For the Java Grande programs, we use the size C
(large) input values.

Prefetching reduces the run time by a geometric mean of 14% for the regular inputs and 17% for
the large inputs. Prefetching reduces the run time of �!#�%��w�wÎ�% by 52%. One reason that the PowerPC
improvements are not as large as the simulation improvements is that the simulated processor uses
larger cache access latencies, which future processors will certainly experience and they will continue
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Figure 12. Applying different loop transformations matrix multiplication

to increase. Even with the fast cache access on the PowerPC, prefetching improves several programs
significantly including �!#�%��w�wÎ�% , Î��ur$#w+�%uÀ , and .�'�" .

In summary, compile-time data prefetching is effective on array-based programs, even without loop
transformations and array dependence information. Our results show that generating prefetches for
array references that contain induction variables improves performance substantially. We now explore
in more detail how prefetching achieves its improvements.

6. Case Study: Matrix Multiplication

In this section, we show the effects of loop transformations and additional analysis on performance by
applying loop unrolling and software pipelining on matrix multiplication. We use a case study to help
explain why our simple prefetch algorithm is effective on a modern processor.

Figure 12 presents results for three versions of matrix multiplication with different code and data
transformations on an in-order and out-of-order processor. We provide results for each version with
and without prefetching. We normalize all times to '�"!&�Ô!&��u#$Î , the Jama library version from Section 5,
without prefetching on either an in-order or out-of-order processor. We perform the transformations by
hand starting with the code in '�")&�Ô!&��w#�Î .

We obtain the out-of-order results using the processor configuration from Section 5. To obtain the in-
order results, we simulate a single issue processor with blocking reads. The in-order processor allows
the prefetch instructions to complete independently of reads. We apply Mowry et al.’s [26] prefetch
algorithm to matrix multiplication in ÎR'w+�#$Îw&�%�Ð�*����$"u'�Î�Î�* ; & ;  . We present results for loop unrolling
only in �R�$"u'$Î�Î .

Transforming ÎR'w+�#�Îw&�%�Ð$*����$"u'$ÎRÎ�* ; & ;  requires several steps. We unroll the innermost loop four
times to generate a single prefetch instruction for an entire cache line. We perform software pipelining
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on the innermost loop to begin prefetching the array data prior to the loop. We generate a prefetch for
one of the arrays only. Matrix multiplication operates on the same portion of the second array during
the two innermost loops. Prefetching the second array results in many unnecessary prefetches.

Figure 12 shows that a state of the art prefetching algorithm does not provide much benefit for matrix
multiplication on the out-of-order processor. Without prefetching, both ÎR'u+�#$Îw&�%RÐ$*����$"$'$Î�Î�* ; & ;  
and ����"u'$Î�Î improve performance by 5%. The run time of '�"!&�Ô!&��u#$Î with prefetching is the same
as the run time after applying loop transformations, locality analysis, and prefetching. But, the
transformations and locality analysis do improve prefetch effectiveness. Only 3% of prefetches inÎR'w+�#�Îw&�%�Ð$*����$"u'$ÎRÎ�* ; & ;  are unnecessary compared to 86% in '�"!&�Ô!&��w#$Î .

The loop transformations do have an impact on the in-order processor. In '�"!&�Ô!&��w#$Î , prefetching
improves performance by 43%, which is larger than the performance improvement on the out-of-order
processor. The better scheduling methods improve performance by an additional 18% over '�"!&�Ô!&��w#$Î
with prefetching on the in-order processor. The improvement occurs because the locality analysis
and loop transformations reduce the number of dynamic instructions. These results show that careful
scheduling is more important on the in-order processor than the out-of-order processor for matrix
multiplication.

The overall results in Section 5 suggest that advanced prefetch algorithms are not necessary
to achieve benefits from prefetching on modern processors. This case study argues that the
loop transformations and additional analysis may not provide benefits on modern processors.
In a superscalar out-of-order processor, the cost of checking if data is already in the cache
is cheap. The additional functional units and out-of-order execution hide the effects of issuing
unnecessary prefetches that hit in the L1 cache. Loop transformations can reduce the num-
ber of unnecessary prefetches, but the resulting performance gain may be negligible. Further-
more, transformations may not be possible due to exceptions or inexact array analysis informa-
tion.

7. Additional Prefetching Opportunities

In this section, we illustrate that our analysis and prefetching technique work on other program idioms.
Although these idioms do not appear in any of our benchmarks, we believe they are used in other Java
programs.

7.1. Arrays of objects

Java allows arrays of references as well as arrays of primitive types such as ¿$'���ÕwÎR . In an array
of references, the array element contains a pointer to another object instead of the actual data. As
we describe in Section 4, our compiler generates prefetches for the array element value and referent
object. The prefetch distance for the array element is twice as long as the prefetch distance for the array
element referent object.

Since none of our benchmarks use arrays of objects, we change the Jama version of matrix
multiplication to use Ö$'�� ; ÎR �Ñ objects instead of ¿�'���Õ,ÎR values. The Ö$'�� ; Î� �Ñ object contains two
fields, which contain the real and imaginary parts of a complex number. The class implements methods
to operate on complex numbers.
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Figure 13. Prefetching arrays of objects

Figure 13 shows the results for matrix multiplication with complex numbers. We generate results for
no prefetching, prefetching just the element values, and prefetching both the element and the referent
object. Prefetching just the array elements reduces run time by just 10%. When we prefetch both
the array elements and the referent objects, prefetching reduces run time by almost 38%. The large
improvement occurs even though we increase the number of instructions by generating two prefetches
and an additional load for each array reference.

7.2. True multidimensional arrays

Java implements multidimensional arrays as arrays-of-arrays, unlike languages such as Fortran that
implement true multidimensional arrays. Java allocates each array dimension separately, so there is
no guarantee that the memory allocator allocates a contiguous region of memory for the entire array.
True multidimensional arrays allocate a single contiguous region of memory for the entire array. Using
a single contiguous region of memory simplifies compile-time analysis and optimization because the
compiler can compute the address of any element relative the start of the array. The array specification
in Java makes it challenging to apply existing array analysis and loop transformations.

In this section, we examine the performance of prefetching on true multidimensional arrays. We
simulate true multidimensional arrays using a single array with explicit index expressions. We also
use the multiarray package from IBM, which is a Java class that contains an implementation of
true multidimensional arrays [23]. The underlying structure is a one dimensional array, and the
class provides methods that mimic Fortran style array operations. We compare the performance of
standard Java arrays, simulated true multidimensional arrays, and the IBM multiarrays using matrix
multiplication.

We can simulate a true multidimensional array by allocating a single array and using explicit index
expressions to treat the array as a multidimensional array. Figure 14 shows the implementation of
matrix multiplication when we implement a two-dimensional array using a single dimension. The
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Figure 14. Matrix multiplication with a single array
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Figure 15. Performance of prefetching on true multidimensional arrays

code multiplies array �I5 by array �)À and places the result in array �!Ý . The array index expression�I5ÓÞÆ&�Á�+�'$Îu.�*RW$ß is equivalent to the expression �J5ÓÞÆ&�ßàÞ�W$ß .
Figure 15 shows the results of prefetching on the standard array representation, the simulated true

multidimensional array representation, and the multiarray representation for matrix multiplication. We
normalize all times to á�"!&�Ô!&��u#$Î , the Jama library version from Figure 6. The â,&���ÔwÎR version uses a
single array with explicit addressing to simulate a two dimensional array, and the ãR�,Î�%)&�#�"�"u#�Ð version
uses IBM’s multiarray package. The performance of âw&��$ÔwÎR and ã��,Î�%!&�#�"�"u#�Ð without prefetching is
46% and 59% worse than the performance of á�"!&�Ô!&��w#$Î without prefetching. One reason is that the
programmer is able to hoist the loop invariant address expressions out of the inner loop in á�"!&�Ô!&��u#$Î .ãR�,Î�%)&�#�"�"u#�Ð has an additional cost because of more method calls and object allocations. Figure 15
shows that our array prefetching algorithm is able to discover the complex loop induction expression
and insert effective prefetch instructions. The performance of âw&��$ÔwÎR with prefetching is slightly better
than the performance of á�"!&�Ô)&��w#$Î with prefetching by 1%. Prefetching improves the performance ofãR�,Î�%)&�#�"�"u#�Ð further. The performance of â,&���ÔwÎR and ãR�,Î�%)&�#�"�"u#�Ð with prefetching is better than
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á�"!&�Ô)&��w#$Î with prefetching because there are fewer late prefetches. Since â,&��$ÔwÎR and ãR�,Î�%)&�#�"�"u#�Ð
perform more work in the inner loop, there is more time for the prefetches to bring data into the L1
cache.

7.3. Enumeration class

The �R�R���! �"u#�%!&�'�� class is a convenient mechanism for encapsulating iteration over a data structure.
Figure 16 illustrates code that uses the �R�����) �"u#�%!&�'�� class to iterate over elements in a vu w+�%$'�" .
Figure 16 also shows the version after the compiler performs inlining.

Our induction variable algorithm detects that  qpÆ+�'�����% is an induction variable even though  qpÆ+�'�����%
is an object field and not just a simple variable. We discuss the analysis extensions for object fields in
Section 3.1.1. Once the analysis detects the induction variable in an object field, the array prefetch
algorithm generates a prefetch for a reference that contains the object field in the index expression.

8. Conclusion

Compile-time data prefetching is effective in improving the memory performance of array-based Java
programs. Traditional prefetch algorithms focus on Fortran arrays, use sophisticated locality analysis,
and transform loops to generate prefetches. We propose a prefetch technique that does not require
locality analysis or loop transformations. Our algorithm generates prefetches for all array references
containing loop induction variables. We also generate an additional prefetch for array object references.
Compilers that detect induction variables can implement our prefetch algorithm easily. We present
a new, unified data-flow analysis to detect general recurrences in programs, including induction
variables and linked structure traversals. We present results showing the effectiveness of software
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prefetching on a set of array-based Java programs. Although hardware prefetching is successful on
similar programs, compiler analysis enables prefetching on a larger set of access patterns. Our results
show that loop transformations and array analysis are not necessary to achieve large performance gains
with prefetching in Java programs. Prefetching improves performance in six of the twelve programs by
a geometric mean of 23% on a simulated architecture and 17% on a PowerPC processor. The largest
improvement is 58%, which occurs in LU factorization.
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