
Compiler Optimizations for Improving Data Locality
Steve Carr Kathryn S. McKinley Chau-Wen Tseng

carr@cs.mtu.edu mckinley@cs.umass.edu tseng@cs.stanford.edu
Department of Computer Science Department of Computer Science Computer Systems Laboratory

Michigan Technological University University of Massachusetts Stanford University

Abstract
In the past decade, processor speed has become significantly faster
than memory speed. Small, fast cache memories are designed
to overcome this discrepancy, but they are only effective when
programs exhibit data locality. In this paper, we present compiler
optimizations to improve data locality based on a simple yet accurate
cost model. The model computes both temporal and spatial reuse
of cache lines to find desirable loop organizations. The cost model
drives the application of compound transformations consisting of
loop permutation, loop fusion, loop distribution, and loop reversal.
We demonstrate that these program transformations are useful for
optimizing many programs.

To validate our optimization strategy, we implemented our al-
gorithms and ran experiments on a large collection of scientific
programs and kernels. Experiments with kernels illustrate that our
model and algorithm can select and achieve the best performance.
For over thirty complete applications, we executed the original and
transformed versions and simulated cache hit rates. We collected
statistics about the inherent characteristics of these programs and
our ability to improve their data locality. To our knowledge, these
studies are the first of such breadth and depth. We found per-
formance improvements were difficult to achieve because bench-
mark programs typically have high hit rates even for small data
caches; however, our optimizations significantly improved several
programs.

1 Introduction
Because processor speed is increasing at a much faster rate than
memory speed, computer architects have turned increasingly to
the use of memory hierarchies with one or more levels of cache
memory. Caches take advantage of data locality in programs. Data
locality is the property that references to the same memory location
or adjacent locations are reused within a short period of time.

Caches also have an impact on programming; programmers sub-
stantially enhance performance by using a style that ensures more
memory references are handled by the cache. Scientific program-
mers expendconsiderable effort at improving locality by structuring
loops so that the innermost loop iterates over the elements of a col-
umn, which are stored consecutively in Fortran. This task is time
consuming, tedious, and error-prone. Instead, achieving good data
locality should be the responsibility of the compiler. By placing the
burden on the compiler, programmers can get good uniprocessor
performance even if they originally wrote their program for a vector

Steve Carr was supported by NSF grant CCR-9409341. Chau-Wen Tseng was
supported in part by an NSF CISE Postdoctoral Fellowship in Experimental Science.

To appear in Proceedings of the Sixth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VI), San Jose,
CA, October 1994.

or parallel machine. In addition, programs will be more portable
because programmers will be able to achieve good performance
without making machine-dependent source-level transformations.

1.1 Optimization Framework

Based on our experiments and experiences, we believe that com-
piler optimizations to improve data locality should proceed in the
following order:

1. Improve order of memory accesses to exploit all levels of the
memory hierarchy through loop permutation, fusion, distribu-
tion, skewing, and reversal. This process is mostly machine-
independent, and requires knowledge only of the cache line
size.

2. Fully utilize the cache through tiling, a combination of strip-
mining and loop permutation [IT88]. Knowledge of the cache
size, associativity, and replacement policy is essential. Higher
degrees of tiling can be applied to exploit multi-level caches,
the TLB, etc.

3. Promote register reuse through unroll-and-jam (also known as
register tiling) and scalar replacement [CCK90]. The number
and type of registers available are required to determine the
degree of unroll-and-jam and the number of array references
to replace with scalars.

In this paper, we concentrate on the first step. Our algorithms
are complementary to and in fact, improve the effectiveness of
optimizations performed in the latter two steps [Car92]. However,
the other steps and interactions between steps are beyond the scope
of this paper.

1.2 Overview

We present a compiler strategy based on an effective, yet simple,
model for estimating the cost of executing a given loop nest in terms
of the number of cache line references. This paper extends previous
work [KM92] with a slightly more accurate memory model. We
use the model to derive a loop structure which results in the fewest
accesses to main memory. The loop structure is achieved through
an algorithm that uses compound loop transformations. The com-
pound loop transformations are permutation, fusion, distribution,
and reversal. The algorithm is unique to this paper and is imple-
mented in a source-to-source Fortran 77 translator.

We present extensive empirical results for kernels and bench-
mark programs that validate the effectiveness of our optimization
strategy; they reveal programmers often use programming styles
with good locality. We measure both inherent data locality char-
acteristics of scientific programs and our ability to improve data
locality. When the cache miss rate for a program is non-negligible,
we show there are often opportunities to improve data locality. Our
optimization algorithm takes advantage of these opportunities and
consequently improves performance. As expected, loop permuta-
tion plays the key role; however, loop fusion and distribution may
also produce significant improvements. Our algorithms never found
an opportunity where loop reversal could improve locality.

2 Related Work
Abu-Sufah first discussed applying compiler transformations based
on data dependence(e.g., loop interchange, fusion, distribution, and
tiling) to improve paging [AS79]. In this paper, we extend and val-
idate recent research to integrate optimizations for parallelism and
memory [KM92]. We extend their original cost model to capture
more types of reuse. The only transformation they perform is loop
permutation, whereas we integrate permutation, fusion, distribu-
tion, and reversal into a comprehensive approach. Our extensive
experimental results are unique to this paper. We measure both the
effectiveness of our approach and unlike other optimization studies,
the inherent data locality characteristics of programs and our ability
to exploit them.

Our approach has several advantages over previous research.
It is applicable to a wider range of programs because we do not
require perfect nests or nests that can be made perfect with condi-
tionals [FST91, GJG88, LP92, WL91]. It is quicker, both in the
expected and worse case. Previous work generates all loop per-
mutations [FST91, GJG88] or unimodular transformations (a com-
bination of permutation, skewing, and reversal) [LP92, WL91],
evaluates the locality of all legal permutations, and then picks the
best. This process requires the evaluation of up to n! loop permu-
tations (though n is typically small). In comparison, our approach
only performs one evaluation step because it directly determines
the best loop permutation.

Wolf and Lam use unimodular transformations and tiling with
estimates of temporal and spatial reuse to improve data local-
ity [WL91]. Their memory model is potentially more precise than
ours because it directly calculates reuse across outer loops; how-
ever, it may be less precise because it ignores loop bounds even
when they are known constants. Wolf and Lam’s evaluation is per-
formed on the Perfect Benchmarks and routines in Dnasa7 in the
SPEC Benchmarks, a subsetof our test suite. It is difficult to directly
compare our experiments because their cache optimization results
include tiling and scalar replacement and are executedon a different
processor. We improve a few more programs/routines than they do,
but their cache optimizations degrade 6 programs/routines, in one
case by 20% [Wol92]. We degrade only one program by 2%, Applu
from the NAS Benchmarks.

In Wolf and Lam’s experiments, skewing was never needed and
reversal was seldom applied [Wol92]. We therefore chose not
to include skewing, even though it is implemented in our system
[KMT93] and our model can drive it. We did integrate reversal, but
it did not help to improve locality.

The exhaustive approach taken by previous researchers [FST91,
GJG88, LP92, WL91] is not practical when including transforma-
tions which create and combine loop nests (e.g., fusion, distribu-
tion). Fusion for improving reuse is by itself NP-hard [KM93]. By
driving heuristics with a cache model, our algorithms are efficient
and usually find the best transformations for data locality using
permutation, fusion and distribution.

3 Background
In this section, we characterize data reuse and present an effective
data locality cost model.

3.1 Data Dependence

We assume the reader is familiar with concept of data dependence
[KKP+81, GKT91]. ~� = f�1 : : : �kg is a hybrid distance/direction
vector with the most precise information derivable. It represents a
data dependence between two array references, corresponding left
to right from the outermost loop to innermost loop enclosing the

references. Data dependences are loop-independent if the accesses
to the same memory location occur in the same loop iteration; they
are loop-carried if the accesses occur on different loop iterations.

3.2 Sources of Data Reuse

The two sources of data reuse are temporal reuse, multiple accesses
to the same memory location, and spatial reuse, accesses to nearby
memory locations that share a cache line or a block of memory at
some level of the memory hierarchy (Unit-stride access is the most
common type of spatial locality). Temporal and spatial reuse may
result from self-reuse from a single array reference or group-reuse
from multiple references. Without loss of generality, in this paper
we assume Fortran’s column-major storage.

To simplify analysis, we concentrate on reuse that occurs between
small numbers of inner loop iterations. Our memory modelassumes
there will be no conflict or capacity cache misses in one iteration
of the innermost loop.1 We use the algorithms RefGroup, RefCost
and LoopCost to determine the total number of cache lines accessed
when a candidate loop l is placed in the innermost loop position.
The result reveals the relative amounts of reuse between loops in
the same nest and across disjoint nests; it also drives permutation,
fusion, distribution, and reversal to improve data locality.

3.3 Reference Groups

Our cost model first applies algorithm RefGroup to calculate
group-reuse. Two references are in the same reference group if
they exhibit group-temporal or group-spatial reuse, i.e., they ac-
cess the same cache line on the same or different iterations of
an inner loop. This formulation is more general than previous
work [KM92], but slightly more restrictive than uniformly gener-
ated references [GJG88].

RefGroup: Two references Ref1 and Ref2 belong to the same
reference group with respect to loop l if:

1. 9 Ref1 ~� Ref2 , and

(a) ~� is a loop-independent dependence, or
(b) �l is a small constant d (jdj � 2) and all other entries

are zero,
2. or, Ref1 and Ref2 refer to the same array and differ by at mostd0 in the first subscript dimension, where d0 is less than or

equal to the cache line size in terms of array elements. All
other subscripts must be identical.

Condition 1 accounts for group-temporal reuse and condition 2
detects most forms of group-spatial reuse.

3.4 Loop Cost in Terms of Cache Lines

Once we account for group-reuse, we can calculate the reuse carried
by each loop using the functions RefCost and LoopCost in Figure 1.
To determine the cost in cache lines of a reference group, we select
an arbitrary array reference with the deepest nesting from each
group. Each loop l with trip iterations in the nest is considered as
a candidate for the innermost position. Let cls be the cache line
size in data items and stride be the step size of l multiplied by the
coefficient of the loop index variable.

In Figure 1, RefCost calculates locality for l, i.e., the number of
cache lines l uses: 1 for loop-invariant references, trip/(cls/stride)
for consecutive references, or trip for non-consecutive references.
LoopCost then calculates the total number of cache lines accessed by
all references when l is the innermost loop. It simply sums RefCost
for all reference groups, then multiplies the result by the trip counts1Lam et al. confirm this assumption [LRW91].

Figure 1: LoopCost Algorithm

INPUT: L = fl1; : : : ; lng a loop nest with headers lb; ub; stepR = f Ref1; : : : ; Refmg representatives from each reference grouptripl = (ubl � lbl + stepl)=stepl
cls = the cache line size,

coeff(il; f) = the coefficient of the index variable il in the subscript f (it may be zero)
stride = j stepl � coeff(f1; il)j

OUTPUT: LoopCost(l) = number of cache lines accessed with l as innermost loop

ALGORITHM: LoopCost(l) = mXk=1 (RefCost(Refk(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in)); l))Yh6=l triph
RefCost(Refk , l) = 1 if (coeff(f1; il) = 0) ^ : : : ^ (coeff(fj; il) = 0) loop invariant

tripl if ((stride < cls) consecutive
cls / stride ^(coeff(f2; il) = 0) ^ : : : ^ (coeff(fj; il) = 0)

tripl otherwise no reuse

of all the remaining loops. RefCost and LoopCost appear in Fig-
ure 1. This method evaluates imperfectly nested loops, complicated
subscript expressions and nests with symbolic bounds [McK92].

4 Compound Loop Transformations
In this section, we show how the cost model guides loop permuta-
tion, fusion, distribution, and reversal. Each subsection describes
tests based on the cost model to determine when individual trans-
formations are profitable. Using these components, Section 4.5
presents Compound, an algorithm for discovering and applying le-
gal compound loop nest transformations that attempt to minimize
the number of cache lines accessed. All of these transformations
are implemented.

4.1 Loop Permutation

To determine the loop permutation which accesses the fewest cache
lines, we rely on the following observation.

If loop l promotes more reuse than loop l0 when both are
consideredas innermost loops, l will promote more reuse
than l0 at any outer loop position.

We therefore simply rank the loops using LoopCost, ordering the
loops from outermost to innermost (l1 : : : ln) so that LoopCost(li�1)� LoopCost(li). We call this permutation of the nest with the least
cost memory order. If the bounds are symbolic, we compare the
dominating terms.

We define the algorithm Permute to achieve memory order when
possible on perfect nests.2 To determine if the order is a legal
one, we permute the corresponding entries in the distance/direction
vector. If the result is lexicographically positive the permutation is
legal and we transform the nest. If a legal permutation exists which
positions the loop with the most reuse innermost, the algorithm is
guaranteed to find it. If the desired inner loop cannot be obtained, the
next most desirable inner loop is positioned innermost if possible,
and so on. Because most data reuse occurs on the innermost loop,
positioning it correctly yields the best data locality.

Complexity. When memory order is legal, as it is in 80% of
loops in our test suite, Permute simply sorts the loops in O(n log n)
time. If it is not legal, Permute selects a legal permutation as close to
memory order as possible, taking worst casen(n�1) time [KM92].
These steps are inexpensive; evaluating the locality of the nest is the
most expensive step. Our algorithm computes the best permutation2In Section 4.5, we perform imperfect interchanges with distribution.

with one evaluation step for each loop in the nest. The complexity
of this step is therefore O(n) time, where n is in the number of
loops in the nest.

4.1.1 Example: Matrix Multiplication

In Figure 2, algorithm RefGroup for matrix multiply puts the two
references to C(I,J) in the same reference group and A(I,K) and
B(K,J) in separate groups for all loops. Algorithm MemoryOrder
uses LoopCost to select JKI as memory order; A(I,K) and C(I,J)
exhibit spatial locality and B(K,J) exhibits loop invariant temporal
locality, resulting in the fewest cache line accesses.

To validate our cost model, we gathered results for all possible
permutations, ranking them left to right from the least to the highest
cost (JKI, KJI, JIK, IJK, KIJ, IKJ) in Figure 2. Consistent with our
model, choosing I as the inner loop results in the best execution time.
Changing the inner loop has a dramatic effect on performance.
The impact is greater on the 512 � 512 versus the 300 � 300
matrices because a larger portion of the working set stays in the
cache. Execution times vary by significant factors of up to 3.7 on
the Sparc2, 6.2 on the i860, and 23.9 on the RS/6000. The entire
ranking accurately predicts relative performance.

We performed this type of comparison on several more kernels
and a small program with the same result: memory order always
resulted in the best performance.

4.2 Loop Reversal

Loop reversal reverses the order in which the iterations of a loop
nest execute and is legal if dependences remain carried on outer
loops. Reversal does not change the pattern of reuse, but it is an
enabler; i.e., it may enable permutation to achieve better locality.
We extend Permute to perform reversal as follows. If memory order
is not legal, Permute places outer loops in position first, building up
lexicographically positive dependence vectors [KM92]. If Permute
cannot legally position a loop in a desired position, Permute tests
if reversal is legal and enables the loop to be put in the position.
Reversal did not improved locality in our experiments, therefore we
will not discuss it further.

4.3 Loop Fusion

Loop fusion takes multiple loop nests and combines their bodies
into one loop nest. It is legal only if no data dependences are
reversed [War84]. As an example of its effect, consider the scalar-
ization into Fortran 77 in Figure 3(b) of the Fortran 90 code fragment
for performing ADI integration in Figure 3(a). The Fortran 90 code

Figure 2: Matrix Multiply

{JKI ordering }
DO J = 1, N

DO K = 1, N
DO I = 1, N

C(I,J) = C(I,J) + A(I,K) * B(K,J)

LoopCost (with cls = 4)
Refs J K I

C(I,J) n � n2 1 � n2 14n � n2
A(I,K) 1 � n2 n � n2 14n � n2
B(K,J) n � n2 14n � n2 1 � n2

total 2n3 + n2 54n3 + n2 12n3 + n2
Execution Times (in seconds)

300 x 300

JKI KJI JIK IJK KIJ IKJ

0
10
20
30
40
50
60

Sun Sparc2
Intel i860
IBM RS6000

512 x 512

JKI KJI JIK IJK KIJ IKJ

0

100

200

300

400

exhibits both poor temporal and poor spatial reuse. The problem is
not the fault of the programmer; instead, it is inherent in how the
computation can be expressed in Fortran 90. Fusing the K loops
results in temporal locality for array B. In addition, the compiler
is now able to apply loop interchange, significantly improving spa-
tial locality for all the arrays. This transformation is illustrated in
Figure 3(c).

4.3.1 Profitability of Loop Fusion

Loop fusion may improve reuse directly by moving accesses to the
same cache line to the same loop iteration. Algorithm RefGroup
discovers this reuse between two nests by treating the statements as
if they already were in the same loop body. The two loop headers
are compatible if the loops have the same number of iterations.
Two nests are compatible at level l if the loops at level 1 to l are
compatible and the headers are perfectly nested up to level l. To
determine the profitability of fusing two compatible nests, we use
the cost model as follows:� Compute RefGroup and LoopCost as if all the statements were

in the same nest, i.e., fused.� Compute RefGroup and LoopCost independently for each can-
didate and add the results.� Compare the total LoopCosts.

Figure 3: Loop Fusion

(a) Sample Fortran 90 loops for ADI Integration
DO I = 2, NS1 X(I,1:N) = X(I,1:N) - X(I-1,1:N)*A(I,1:N)/B(I-1,1:N)S2 B(I,1:N) = B(I,1:N) - A(I,1:N)*A(I,1:N)/B(I-1,1:N)

(b) + Translation to Fortran 77 +
DO I = 2, N

DO K = 1, N
X(I,K) = X(I,K) - X(I-1,K)*A(I,K)/B(I-1,K)

DO K = 1, N
B(I,K) = B(I,K) - A(I,K)*A(I,K)/B(I-1,K)

(c) + Loop Fusion & Interchange +
DO K = 1, N

DO I = 2, N
X(I,K) = X(I,K) - X(I-1,K)*A(I,K)/B(I-1,K)
B(I,K) = B(I,K) - A(I,K)*A(I,K)/B(I-1,K)

LoopCost (with cls = 4.)
RefGroup K I

X(I,K) n � n 14n � n
A(I,K) n � n 14n � n
B(I,K) n � n 14n � n

total 3 � n2 34 � n2S1 total 3 � n2 34 � n2S2 total 2 � n2 12 � n2S1 + S2 5 � n2 54 � n2
If the fused LoopCost is lower, fusion alone will result in additional
locality. As an example, fusing the two K loops in Figure 3 lowers
the LoopCost for K from 5n2 to 3n2 . Candidate loops for fusion
need not be nested within a common loop. Note that the memory
order for the fused loops may differ from the individual nests.

4.3.2 Loop Fusion to enable Loop Permutation

Loop fusion may also indirectly improve reuse in imperfect loop
nests by providing a perfect nest that enables a loop permutation
with better data locality. For instance, fusing the K loops in Figure 3
enables permuting the loop nest, improving spatial and temporal
locality. Using the cost model, we detect that this transformation
is desirable since LoopCost of the I loop is lower than the K loops,
but memory order cannot be achieved because of the loop structure.
We then test if fusion of all inner nests is legal and creates a perfect
nest in which memory order can be achieved.

4.3.3 Loop Fusion Algorithm

Fusion thus serves two purposes:
1. to improve temporal locality, and
2. to fuse all inner loops, creating a nest that is permutable.

Previous research has shown that optimizing temporal locality for an
adjacent set ofn loops with compatible headers is NP-hard [KM93];
here all the headers are not necessarily compatible. We therefore
apply a greedy strategy based on the depth of compatibility. We
build a DAG from the candidate loops. The edges are dependences
between the loops; the weight of an edge is the difference between
the LoopCosts of the fused and unfused versions. We partition the
nests into sets of compatible nests at the deepest levels possible.
To yield the most locality, we first fuse nests with the deepest
compatibility and temporal locality. Nests are fused only if is legal,
i.e., no dependences are violated between the loops or in the DAG.
We update the graph, then fuse at the next level until all compatible
sets are considered. This algorithm appears in Figure 4. The
complexity of this algorithm is O(m2) time and space, where m is
the number of candidate nests for fusion.

Figure 4: Fusion Algorithm

Fuse(L)
INPUT: L = l1; : : : ; lk , nests that are fusion candidates

ALGORITHM:
Build H = fH1; : : : ;Hjg, Hi = fhkg a set of

compatible nests with depth(Hi) � depth(Hi+1)
Build DAG G with dependence edges and weights
for each Hi = fh1 : : : hmg, i = 1 to j

for l1 = h1 to hm
for l2 = h2 to l1

if ((9 locality between l1 and l2)
/� 9 edge (l1 , l2) with weight > 0 �/& (it is legal to fuse them))

fuse l1 and l2 and update G
endfor

endfor
endfor

4.3.4 Example: Erlebacher

The original hand-coded version of Erlebacher, a program solving
PDEs using ADI integration with 3D arrays, mostly consists of
single statement loops in memory order. We permuted the remaining
loops into memory order, producing a distributed program version.
Since the loops are fully distributed in this version, it resembles the
output of a Fortran 90 scalarizer. We then applied Fuse to obtain
more temporal locality. In Table 1, we measure the performance
of the original program (Hand), the transformed program without
fusion (Distributed), and the fused version (Fused).

Table 1: Performance of Erlebacher (in seconds)
Hand Memory Order

Processor Coded Distributed Fused
Sun Sparc2 .806 .813 .672
Intel i860 .547 .548 .518

IBM RS/6000 .390 .400 .383

Fusion is always an improvement (of up to 17%) over the hand-
coded and distributed versions. Since each statement is in a separate
loop, many variables are shared between loops. Permuting the loops
into memory order increases locality in each nest, but slightly de-
grades locality between nests, hence the degradation in performance
of the distributed version compared to the original. Even though the
benefits of fusion are additive rather than multiplicative as in loop
permutation, its impact can be significant. In addition, its impact
will increase as more programs are written with Fortran 90 array
syntax.

4.4 Loop Distribution

Loop distribution separates independent statements in a single loop
into multiple loops with identical headers. To maintain the meaning
of the original loop, statements in a recurrence (a cycle in the depen-
dence graph) must be placed in the same loop. Groups of statements
that must be in the same loop are called partitions. In our system we
only use loop distribution to indirectly improve reuse by enabling
loop permutation on a nest that is not permutable3. Statements
in different partitions may prefer different memory orders that are
achievable after distribution. The algorithm Distribute appears in3Distribution could also be effective if there is no temporal locality between par-
titions and the accessed arrays are too numerous to fit in cache at once, or register
pressure is a concern. We do not address these issues here.

Figure 5: Distribution Algorithm

Distribute(L, S)
INPUT: L = fl1; : : : ; lmg, a loop nest containingS = fs1; : : : ; skg statements

ALGORITHM:
for j = m� 1 to 1

Restrict the dependence graph to � carried at
level j or deeper and loop independent �

Divide S into finest partitions P = fp1; : : : ; pmg
s.t. if sr , st 2 a recurrence, sr , st 2 pi.

compute MemoryOrderi for each pi
if (9 i j MemoryOrderi is achievable with

distribution and permutation)
perform distribution and permutation
return

endfor

Figure 5. It divides the statements into the finest granularity par-
titions and tests if that enables loop permutation. It performs the
smallest amount of distribution that still enables permutation. For
a nest of depth m, it starts with the loop at level m� 1 and works
out to the outermost loop, stopping if successful.

We only call Distribute if memory order cannot be achieved on a
nest and not all the inner nests can be fused (see Section 4.5). Dis-
tribute tests if distribution will enable memory order to be achieved
for any of the partitions. The dependence structure required to
test for loop permutation is created by restricting its test to depen-
dences on statements in the partition of interest. We thus perform
distribution only if it combines with permutation to improve the
actual LoopCost. The algorithm’s complexity is dominated by the
time to determine the LoopCost of the individual partitions. See
Section 4.5.1 for an example.

4.5 Compound Transformation Algorithm

The driving force behind our application of compound loop trans-
formations is to minimize actual LoopCost by achieving memory
order for as many statements in the nest as possible. The algorithm
Compound uses permutation, fusion, distribution, and reversal as
needed to place the loop that provides the most reuse at the inner-
most position for each statement.

Algorithm Compound in Figure 6 considers adjacent loop nests.
It first optimizes each nest independently, then applies fusion be-
tween the resulting nests when legal and temporal locality is im-
proved. To optimize a nest, the algorithm begins by computing
memory order and determining if the loop containing the most
reuse can be placed innermost. If it can, the algorithm does so and
goes on to the next loop. Otherwise, it tries to enable permutation
into memory order by fusing all inner loops to form a perfect nest.
If fusion cannot enable memory order, the algorithm tries distribu-
tion. If distribution succeeds in enabling memory order, several
new nests may be formed. Since the distribution algorithm divides
the statements into the finest partitions, these nests are candidates
for fusion to recover temporal locality.

Complexity. Ignoring distribution for a moment, the complexity
of the compound algorithm is O(n)+O(n2)+O(m2) time, wheren is the maximum number of loops in a nest, andm is the maximum
number of adjacent nests in the original program. O(n) non-trivial
steps are needed to evaluate the locality of the statements in each
nest. O(n2) simple steps result in the worst case when finding a

Figure 6: Compound Loop Transformation Algorithm

Compound(N)
INPUT: N = fn1; : : : nkg, adjacent loop nests

ALGORITHM:
for i = 1 to k

Compute MemoryOrder (ni)
if (Permute(ni) places inner loop in memory order)

continue
else if (ni is not a perfect nest & contains only

adjacent loops mj)
if (FuseAll(mj ,l) and Permute(l)

places inner loop in memory order)
continue

else if (Distribute(ni ,l))
Fuse(l)

end for
Fuse(N)

legal permutation and O(m2) steps result from building the fusion
problem. However, because distribution produces more adjacent
nests that are candidates for fusion, m includes the additional ad-
jacent nests created by distribution. In practice, this increase was
negligible; a single application of distribution never created more
than 3 new nests.

4.5.1 Example: Cholesky Factorization

Consider optimizing the Cholesky Factorization kernel in Fig-
ure 7(a) with algorithm Compound. LoopCost determines that
memory order for the nest is KJI, ranking the nests from lowest
cost to highest (KJI, JKI, KIJ, IKJ, JIK, IJK). Because KJI cannot
be achieved with permutation alone and fusion is of no help here,
Compound calls Distribute. Since the loop is of depth 3, Distribute
starts by testing distribution at depth 2, the I loop. S2 and S3 go into
separate partitions (there is no recurrence between them at level 2
or deeper). Memory order of S3 is also KJI. Distribution of the I
loop places S3 alone in a IJ nest where I and J may be legally inter-
changed into memory order, as shown in Figure 7(b). Note that our
system handles the permutation of both triangular and rectangular
nests.

To gather performance results for Cholesky, we generated all
possible loop permutations; they are all legal. For each permuta-
tion, we applied the minimal amount of loop distribution necessary.
(Wolfe enumerates these loop organizations [Wol91].) Compared
to matrix multiply, there are more variations in observed and pre-
dicted behavior. These variations are due to the triangular loop
structure; however, Compound still attains the loop structure with
the best performance.

5 Experimental Results
To validate our optimization strategy, we implemented our algo-
rithms, executed the original and transformed program versions on
our test suite and simulated cache hit rates. To measure our abil-
ity to improve locality, we determined the best locality possible if
correctness could be ignored. We collected statistics on the data
locality in the original, transformed, and ideal programs.

5.1 Methodology

We implemented the cost model, the transformations, and the algo-
rithms described above in Memoria, the Memory Compiler in the
ParaScope Programming Environment [Car92, CHH+93, CK94,

Figure 7: Cholesky Factorization

(a) {KIJ form}
DO K=1,NS1 A(K,K) = SQRT(A(K,K))

DO I=K+1,NS2 A(I,K) = A(I,K)/A(K,K)
DO J=K+1,IS3 A(I,J) = A(I,J)-A(I,K)*A(J,K)

(b) + {KJI form}Loop Distribution & Triangular Interchange +
DO K=1,N

A(K,K) = SQRT(A(K,K))
DO I=K+1,N

A(I,K)=A(I,K)/A(K,K)
DO J=K,N

DO I=J+1,N
A(I,J+1) = A(I,J+1)-A(I,K)*A(J+1,K)

LoopCost
Refs K J I

A(K,K) n � n — 1 � n
A(I,K) n � n2 1 � n2 14n � n2
A(I,J) 1 � n2 n � n2 14n � n2

A(J,K) n � n2 14n � n2 1 � n2
total 2n3 + 2n2 54n3 + n2 12n3 + n2 + nS2 total 2n2 — 14n2 + nS3 total 2n3 + n2 54n3 + n2 12n3 + n2

Execution times (in seconds)
300 x 300

KJI JKI KIJ IKJ JIK IJK

0

3

6

9

12

RS6000
Sparc2
i860

KMT93]. Memoria is a source-to-source translator that analyzes
Fortran programs and transforms them to improve their cache per-
formance. To increase the precision of dependence analysis, the
compiler performs auxiliary induction variable substitution, con-
stant propagation, forward expression propagation, and dead code
elimination. It also determines if scalar expansion will further en-
able distribution. Since scalar expansion is not integrated in the
current version of the transformer, we applied it by hand when
directed by the compiler. Memoria then used the resulting code
and dependence graph to gather statistics and perform data locality
optimizations using the algorithm Compound.

For our test suite, we used 35 programs from the Perfect Bench-
marks, the SPEC benchmarks, the NAS kernels, and some miscel-
laneous programs. They ranged in size from 195 to 7608 non-
comment lines. Their execution times on the IBM RS/6000 ranged
from seconds to a couple of hours.

5.2 Transformation Results

In Table 2, we report the results of transforming the loop nests
of each program. Table 2 first lists the number of non-comment
lines (Lines), the number of loops (Loops), and the number of loop
nests (Nests) for each program. Only loop nests of depth 2 or
more are considered for transformation. MemoryOrder and Inner
Loop entries reflect the percentage of loop nests and inner loops,

Table 2: Memory Order Statistics

MemoryOrder Inner Loop Loop Loop LoopCost
Orig Perm Fail Orig Perm Fail Fusion Distribution Ratio

Program Lines Loops Nests % percentages % C A D R Final Ideal
Perfect Benchmarks

adm 6105 219 106 52 16 32 53 16 31 0 0 1 2 2.54 6.10
arc2d 3965 152 75 55 28 17 65 34 1 35 12 1 2 2.21 4.14
bdna 3980 104 56 75 18 7 75 18 7 4 2 3 6 2.31 2.51
dyfesm 7608 164 80 63 15 22 65 19 16 2 1 0 0 3.08 8.62
flo52 1986 149 76 83 17 0 95 5 0 4 1 0 0 1.72 1.79
mdg 1238 25 12 83 8 8 83 8 8 0 0 0 0 1.11 1.70
mg3d 2812 88 40 95 3 3 98 0 2 0 0 1 2 1.00 1.13
ocean 4343 115 56 82 13 5 84 13 4 2 1 3 6 2.05 2.20
qcd 2327 94 45 53 11 36 58 16 15 0 0 0 0 4.98 6.10
spec77 3885 255 162 64 7 29 66 7 27 0 0 0 0 2.32 5.58
track 3735 57 32 50 16 34 56 19 25 2 1 1 2 1.99 7.95
trfd 485 67 29 52 0 48 66 0 34 0 0 0 0 1.00 14.81

SPEC Benchmarks
dnasa7 1105 111 50 64 14 22 74 16 10 5 2 1 2 2.08 2.95
doduc 5334 60 33 6 6 88 6 6 88 0 0 4 12 1.89 14.25
fpppp 2718 23 8 88 12 0 88 12 0 0 0 0 0 1.03 1.03
hydro2d 4461 110 55 100 0 0 100 0 0 44 11 0 0 1.00 1.00
matrix300 439 4 2 50 50 0 50 50 0 0 0 1 2 4.50 4.50
mdljdp2 4316 4 1 0 0 100 0 0 100 0 0 0 0 1.00 1.05
mdljsp2 3885 4 1 0 0 100 0 0 100 0 0 0 0 1.00 1.02
ora 453 6 3 100 0 0 100 0 0 0 0 0 0 1.00 1.00
su2cor 2514 84 36 42 19 39 42 19 39 0 0 4 8 3.51 5.30
swm256 487 16 8 88 12 0 88 12 0 0 0 0 0 4.91 4.91
tomcatv 195 12 6 100 0 0 100 0 0 7 2 0 0 1.00 1.00

NAS Benchmarks
appbt 4457 181 87 98 0 2 100 0 0 3 1 0 0 1.00 1.26
applu 3285 155 71 73 3 24 79 6 15 3 1 2 6 1.35 8.03
appsp 3516 184 84 73 12 15 80 12 8 8 4 0 0 1.25 4.34
buk 305 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.00
cgm 855 11 6 0 0 100 0 0 100 0 0 0 0 1.00 2.75
embar 265 3 2 50 0 50 50 0 50 0 0 0 0 1.00 1.12
fftpde 773 40 18 89 0 11 100 0 0 0 0 0 0 1.00 1.00
mgrid 676 43 19 89 11 0 100 0 0 3 1 1 2 1.00 1.00

Miscellaneous Programs
erlebacher 870 75 30 83 13 4 100 0 0 28 11 0 0 1.00 1.00
linpackd 797 8 4 75 0 25 75 0 25 3 1 0 0 1.00 1.10
simple 1892 39 22 86 9 5 86 9 5 6 2 0 0 2.48 2.72
wave 7519 180 85 58 29 13 65 29 6 70 26 0 0 4.26 4.30

totals — 2644 1400 69 11 20 74 11 15 229 80 23 52 — —

respectively, that are:
Orig: originally in memory order,
Perm: permuted into memory order, or
Fail: fail to achieve memory order.

The percentage of loop nests in the program that are in memory
order after transformation is the sum of the original and the permuted
entries. Similarly for the inner loop, the sum of the original and the
permuted entries is the percent of nests where the most desirable
innermost loop is positioned correctly.

Table 2 also lists the number of times that fusion and distribution
were applied by the compound algorithm. Either fusion, distribu-
tion, or both were applied to 22 out of the 35 programs.

In the Loop Fusion column,
C is the number of candidate nests for fusion, and
A is the number of nests that were actually fused.

Candidate nests for fusion were adjacent nests, where at least one
pair of nests were compatible. Fusion improved group-temporal
locality for these programs; it did not find any opportunities to

enable interchange. There were 229 adjacent loop nests that were
candidates for fusion and of these, 80 were fused with one or more
other nests to improve reuse. Fusion was applicable in 17 programs
and completely fused nests of depth 2 and 3. In Wave and Arc2d,
Compound fused 26 and 12 nests respectively.

In the Loop Distribution column,
D is the number of loop nests distributed to achieve

a better loop permutation, and
R is the number of nests that resulted.

The Compound algorithm only applied distribution when it enabled
permutation to attain memory order in a nest or in the innermost
loop for at least one of the resultant nests. Compound applied
distribution in 12 of the 35 programs. On 23 nests, distribution
enabled loop permutation to position the inner loop or the entire
nest correctly, creating 29 additional nests. In Bdna, Ocean, Applu
and Su2cor 6 or more nests resulted.

LoopCost Ratio in Table 2 estimates the potential reduction in
LoopCost for the final transformed program (Final) and the ideal

program (Ideal). The ideal program achieves memory order for
every nest without regard to dependence constraints or limitations
in the implementation. By ignoring correctness, it is in some sense
the best data locality one could achieve. For the final and ideal
versions, the average ratio of original LoopCost to transformed
LoopCost is listed. These values reveal the potential for locality
improvement.

Memoria may not obtain memory order due to the following: (1)
loop permutation is illegal due to dependences; (2) loop distribution
followed by permutation is illegal due to dependences; (3) the loop
bounds are too complex, i.e., not rectangular or triangular. For the
20% of nests where the compiler could not achieve memory or-
der, 87% were because permutation and then distribution followed
by permutation could not be applied because of dependence con-
straints. The rest were because the loop bounds were too complex.
More sophisticated dependence testing techniques may enable the
algorithms to transform a few more nests.

5.3 Coding Styles

Imprecise dependence analysis is a factor in limiting the potential for
improvements in our application suite. For example, dependence
analysis for the program Cgm cannot expose potential data locality
for our algorithm because of imprecision due to the use of index
arrays. The program Mg3d is written with linearized arrays. This
coding style introduces symbolics into the subscript expressions
and again makes dependence analysis imprecise. The inability to
analyze the use of index arrays and linearized arrays prevents many
optimizations and is not a deficiency specific to our system.

Other coding styles may also inhibit optimization in our system.
For example, Linpackdand Matrix300 are written in a modular style
with singly nested loops enclosing function calls to routines which
also contain singly nested loops. To improve programs written in
this style requires interprocedural optimization [CHK93, HKM91];
these optimizations are not currently implemented in our translator.

Many loop nests (69%) in the original programs are already
in memory order, and even more (74%) have the loop carrying
the most reuse in the innermost position. This result indicates that
scientific programmers often pay attention to data locality; however,
there are many opportunities for improvement. Our compiler was
able to permute an additional 11% of the loop nests into memory
order, resulting in a total 80% of the nests in memory order and a
total of 85% of the inner loops in memory order position. Memoria
improved data locality for one or more nests in 66% of the programs.

5.4 Successful Transformation

We illustrate our ability to transform for data locality by program
in Figures 8 and 9. The figures characterize the programs by
the percentage of their nests and inner loops that are originally in
memory order and that are transformed into memory order. In
Figure 8, half of the original programs have fewer than 70% of their
nests in memory order. In the transformed version, 29% have fewer
than 70% of their nests in memory order. Over half now have 80%
or more of their nests in memory order. The results in Figure 9
are more dramatic. The majority of programs can be transformed
such that 90% or more of their inner loops are positioned correctly
for the best locality. Our transformation algorithms determine and
achieve memory order in the majority of nests and programs.

Unfortunately, our ability to successfully transform programs
may not result in run-time improvements for several reasons: data
sets for benchmark programs tend to be small enough to fit in
cache, the transformed loop nests may be cpu-bound instead of
memory-bound, and the optimized portions of the program may not
significantly contribute to the overall execution time.

Figure 8: Achieving Memory Order for Loop Nests

<= 20

Original

Final

Percentage of Loop Nests in Memory Order

12

8

4

0

N
um

be
r

of
 P

ro
gr

am
s

>=40 >= 60 >= 70 >=80 >= 90

16

Figure 9: Achieving Memory Order for the Inner Loop

<= 20

Original

Final

Percent of Inner Loops in Memory Order

0

4

8

12

16

20

N
um

be
r

of
 P

ro
gr

am
s

>=40 >= 60 >= 70 >=80 >= 90

5.5 Performance Results

In Table 3, we present the performance of our test suite running
on an IBM RS/6000 model 540 with a 64KB cache, 4-way set as-
sociative replacement policy, and 128 byte cache lines. We used
the standard IBM RS/6000 Fortran 77 compiler with the -O option to
compile both the original program and the version produced by our
automatic source-to-source transformer. All applications success-
fully compiled and executed on the RS/6000. For those applications
not listed in Table 3, no performance improvement or degradation
occurred.

Table 3 shows a number of applications with significant perfor-
mance improvements (Arc2d, Dnasa7, and Simple). These results
indicate that data locality optimizations are particularly effective for
scalarized vector programs, since these programs are structured to
emphasize vector operations rather than cache line reuse. However,
the predicted improvements did not materialize for many of the
programs. To explore these results, we simulated cache behavior to
determine cache hit rates for out test suite.

We simulated cache1, an RS/6000 cache (64KB, 4-way set as-
sociative, 128 byte cache lines), and cache2, an i860 cache (8KB,
2-way set associative, 32 byte cache lines). We determined the
change in the hit rates both for just the optimized procedures and
for the entire program. The resulting measured rates are presented
in Table 4. Places where the compiler affected cache hit rates
by � :1% are emboldened for greater emphasis. For the Final
columns we chose the better of the fused and unfused versions for
each program.

Table 3: Performance Results (in seconds)

RS/6000 with 64KB, 4-way set associative cache and
cache line size of 128 byte.

Program Original Transformed Speedup
Perfect Benchmarks

arc2d 410.13 190.69 2.15
dyfesm 25.42 25.37 1.00

flo52 62.06 61.62 1.01
SPEC Benchmarks

dnasa7 (btrix) 36.18 30.27 1.20
dnasa7 (emit) 16.46 16.39 1.00
dnasa7 (gmtry) 155.30 17.89 8.68
dnasa7(vpenta) 149.68 115.62 1.29

NAS Benchmarks
applu 146.61 149.49 0.98
appsp 361.43 337.84 1.07

Misc Programs
simple 963.20 850.18 1.13

linpackd 159.04 157.48 1.01
wave 445.94 414.60 1.08

As illustrated in Table 4, the reason more programs did not im-
prove on the RS/6000 is due to high hit ratios in the original programs
caused by small data set sizes. When the cache is reduced to 8K,
the optimized portions have more significant improvements. For
instance, whole program hit rates for Dnasa7 and Appsp show sig-
nificant improvements after optimization for the smaller cache even
though they barely changed in the larger cache. Our optimizations
obtained improvements in whole program hit rates for Adm, Arc2d,
Dnasa7, Hydro2d, Appsp, Erlebacher,Simple, and Wave. Improve-
ments in the optimized loop nests were more dramatic, but did not
always carry over to the entire program because of the presence of
unoptimized loops.

We measured hit ratios both with and without applying loop
fusion. For the 8K cache, fusion improved whole program hit
rates for Hydro2d, Appsp, and Erlebacher by 0.51%, 0.24%, and
0.95%, respectively. We were surprised to improve Linpackd’s
performance with fusion by 5.3% on the subroutine matgen and by
0.02% for the entire program. Matgen is an initialization routine
whose performance is not usually measured. Unfortunately, fusion
also lowered hit rates Track, Dnasa7, and Wave; the degradation
may be due to added cache conflict and capacity misses after loop
fusion. To recognize and avoid these situations requires cache
capacity and interference analysis similar to that performed for
evaluating loop tiling [LRW91]. Because our fusion algorithm
only attempts to optimize reuse at the innermost loop level, it may
sometimes merge array references that interfere or overflow cache.
We intend to correct this deficiency in the future.

Our results are very favorable when compared to Wolf’s results,
though direct comparisons are difficult because he combines tiling
with cache optimizations and reports improvements only relative to
programs with scalar replacement [Wol92]. Wolf applied permu-
tation, skewing, reversal and tiling to the Perfect Benchmarks and
Dnasa7 on a DECstation 5000 with a 64KB direct-map cache. His
results show performance degradations or no change in all but Adm,
which showed a small (1%) improvement in execution time. Our
transformations did not degrade performance on any of the Perfect
programs and performance of Arc2d was significantly improved.

Our results on the routines in Dnasa7 are similar to Wolf’s, both
showing improvements on Btrix, Gmtry, and Vpenta. Wolf im-
proved Mxm by about 10% on the DECstation, but slightly degraded
performance on the i860. Wolf slowed Cholesky by about 10%

Table 4: Simulated Cache Hit Rates

Cache1: 64K cache, 4-way, 128 byte cache line (RS/6000)
Cache2: 8K cache, 2-way, 32 byte cache line (i860)

Cold misses are not included
Optimized Procedures Whole Program
Cache 1 Cache 2 Cache 1 Cache 2

Program Orig Final Orig Final Orig Final Orig Final
Perfect Benchmarks

adm 100 100 97.7 97.8 99.95 99.95 98.48 98.58
arc2d 89.0 98.5 68.3 91.9 95.30 98.66 88.58 93.61
bdna 100 100 100 100 99.45 99.45 97.32 97.32
dyfesm 100 100 100 100 99.98 99.97 97.02 96.95
flo52 99.6 99.6 96.7 96.3 98.77 98.77 93.84 93.80
mdg 100 100 87.4 87.4 —— —— —— ——
mg3d 98.8 99.7 95.3 98.7 —— —— —— ——
ocean 100 100 93.0 92.8 99.36 99.36 93.71 93.72
qcd 100 100 100 100 99.83 99.83 98.85 98.79
spec77 100 100 100 100 99.28 99.28 93.79 93.78
track 100 100 100 100 99.81 99.81 97.49 97.54
trfd 99.9 99.9 93.7 93.7 99.92 99.92 96.43 96.40

SPEC Benchmarks
dnasa7 83.2 92.7 54.5 73.9 99.26 99.27 85.45 88.76
doduc 100 100 95.5 95.5 99.77 99.77 95.92 95.92
fpppp 100 100 100 100 99.99 99.99 98.34 98.34
hydro2d 97.9 98.3 90.2 91.9 98.36 98.48 92.77 93.28
matrix300 99.7 99.7 91.6 92.1 93.26 93.26 81.66 81.67
su2cor 100 100 99.2 99.8 98.83 98.83 70.41 70.41
swm256 100 100 100 100 98.83 98.84 81.00 81.11
tomcatv 97.8 97.8 87.3 87.3 99.20 99.20 95.26 95.25

NAS Benchmarks
applu 99.9 99.9 99.4 99.4 99.38 99.36 97.22 97.14
appsp 90.5 92.9 88.5 89.0 99.33 99.39 96.04 96.43
mgrid 99.3 99.8 91.6 92.1 99.65 99.65 96.04 96.04

Miscellaneous Programs
erlebacher 99.4 99.8 94.0 96.8 98.00 98.25 92.11 93.36
linpackd 98.7 100 94.7 100 98.93 98.94 95.58 95.60
simple 91.0 99.1 84.3 93.7 97.35 99.34 93.33 95.65
wave 98.2 99.9 82.9 95.9 99.74 99.82 87.31 88.09

on the DECstation and by a slight amount on the i860. We neither
improve or degrade either kernel. More direct comparisons are
not possible because Wolf does not present cache hit rates and the
execution times were measured on different architectures.

5.6 Data Access Properties

To further interpret our results, we measured the data access prop-
erties for our test suite. For the applications that we significantly
improved on the RS/6000 (Arc2d, Dnasa7,Appsp, Simple and Wave),
we present the data access properties in Table 5.4 We report the
locality statistics for the original, ideal memory order, and final
versions of the programs. Locality of Reference Group classifies
the percentage of RefGroups displaying each form of self reuse as
invariant (Inv), unit-stride (Unit), or none (None). (Group) con-
tains the percentage of RefGroups constructed partly or completely
using group-spatial reuse. The amount of group reuse is indicated
by measuring the average number of references in each RefGroup
(Refs/Group), where a RefGroup size greater than 1 implies group-
temporal reuse and occasionally group-spatial reuse. The amount
of group reuse is presented for each type of self reuse and their av-
erage (Avg). The LoopCost Ratio column estimates the potential
improvement as an average (Avg) over all the nests and a weighted4The data access properties for all the programs are presented elsewhere [CMT94].

Table 5: Data Access Properties

Locality of Reference Groups LoopCost
% Groups Refs/Group Ratios

Program Inv Unit None Group Inv Unit None Avg Avg Wt
arc2d original 3 53 44 1 1.53 1.23 1.26 1.25

final 3 77 20 0 2.12 1.34 1.00 1.29 2.21 2.16
ideal 14 66 20 0 1.72 1.31 1.00 1.30 4.14 4.73

dnasa7 original 5 48 47 0 1.41 1.48 1.16 1.33
final 8 57 35 0 1.33 1.48 1.10 1.34 2.08 2.27
ideal 35 37 28 0 1.61 1.27 1.07 1.34 2.95 3.33

appsp original 0 38 62 0 0 1.04 1.08 1.06
final 0 49 51 0 0 1.03 1.09 1.06 1.25 1.24
ideal 8 44 48 0 1.49 1.03 1.02 1.06 4.34 4.43

simple original 0 93 7 0 0 2.25 1.85 2.22
final 0 98 2 0 0 2.26 1.00 2.23 2.48 2.48
ideal 1 97 2 0 1.50 2.27 1.00 2.23 2.72 2.72

wave original 6 47 47 1 1.95 1.48 1.27 1.41
final 1 71 28 0 2.00 1.55 1.02 1.41 4.26 4.25
ideal 3 70 27 0 1.63 1.55 1.01 1.41 4.30 4.28

all programs original 3 37 60 0 1.53 1.26 1.15 1.23
final 3 44 53 0 1.52 1.27 1.05 1.23 — —
ideal 8 41 51 0 1.23 1.26 1.03 1.23 — —

average (Wt) uses nesting depth. The last row contains the totals
for all the programs.

Table 5 also reveals that each of these applications had a sig-
nificant gain in self-spatial reuse (Unit) over the original program.
Because of the relatively long cache lines on the RS/6000, spatial
locality was the key to getting good cache performance. Although
programmers can make the effort to ensure unit-stride access on
RS/6000 applications, we have shown that our optimization strat-
egy makes this unnecessary. By having the compiler compute the
machine-dependent loop ordering, a variety of coding styles can be
run efficiently without additional programmer effort.

The all programs row in Table 5 reveals that on average fewer
than two references exhibited group-temporal reuse in the inner
loop, and no references displayed group-spatial reuse. Instead,
most programs exhibit self-spatial reuse. The ideal program ex-
hibits significantly more invariant reuse than the original or final.
Invariant reuse typically occurs on loops with reductions and time-
step loops that are often involved in recurrences and cannot be
permuted. However, tiling may be able to exploit some of the
invariant reuse carried by outer loops.

5.7 Analysis of Individual Programs

Below, we examine Arc2d, Simple, Gmtry (three of the applications
that we improved) and Applu (the only application with a degrada-
tion in performance. We note specific coding styles that our system
effectively ported to the RS/6000.

Arc2d is a fluid-flow solver from the Perfect benchmarks. The
main computational routines exhibit poor cache performance due
to non-unit stride accesses. The main computational loop is an
imperfect loop nest with four inner loops, two with nesting depth 2
and two with nesting depth 3. Our algorithm is able to achieve a
factor of 6 improvement on the main loop nest by attaining unit-
stride accesses to memory in the two loops with nesting depth 3.
This improvement alone accounted for a factor of 1.9 on the whole
application. The additional improvement illustrated in Table 3
is attained similarly by improving less time-critical routines. Our
optimization strategy obviated the need for the programmer to select
the “correct” loop order for performance.

Simple is a two-dimensional hydrodynamics code. It contains
two loops that are written in a “vectorizable” form (i.e., a recurrence
is carried by the outer loop rather than the innermost loop). These

loops exhibited poor cache performance. Compound reorders these
loops for data locality (both spatial and temporal) rather than vector-
ization to achieve the improvements shown in Table 3. In this case,
the improvements in cache performance far outweigh the potential
loss in low-level parallelism when the recurrence is carried by the
innermost loop. To regain any lost parallelism, unroll-and-jam can
be applied to the outermost loop [CCK88, Car92]. Finally, it is im-
portant to note that the programmer was allowed to write the code in
a form for one type of machine and still attain machine-independent
performance through the use of compiler optimization.

Gmtry, a SPEC benchmark kernel from Dnasa7, performs Gaus-
sian elimination across rows, resulting in no spatial locality. Al-
though this may have been how the author viewed Gaussian elimi-
nation conceptually, it translated to poor performance. Distribution
and permutation are able to achieve unit-stride accessesin the inner-
most loop. The programmer is therefore allowed to write the code
in a form that she or he understands, while the compiler handles the
machine-dependent performance details.

Applu suffers from a tiny degradation in performance (2%).
The two leading dimensions of the main data arrays are very small
(5� 5). While our model predicts better performance for unit-stride
access to the arrays, the small array dimensions give the original
reductions better performance on the RS/6000. Locality within the
two innermost loops is not a problem.

6 Tiling
Permuting loops into memory order maximizes estimated short-
term cache-line reuse across iterations of inner loops. Assuming
that the cache size is relatively large, the compiler can apply loop
tiling, a combination of strip-mining and loop interchange, to cap-
ture long-term reuse at outer loops [IT88, LRW91, WL91, Wol87].
Tiling must be applied judiciously because it affects scalar opti-
mizations, increases loop overhead, and may decrease spatial reuse
at tile boundaries. Our cost model provides us with the key in-
sight to guide tiling—the primary criterion for tiling is to create
loop-invariant references with respect to the target loop. These ref-
erences accesssignificantly fewer cache lines than both consecutive
and non-consecutive references, making tiling worthwhile despite
the potential loss of spatial reuse at tile boundaries. For machines
with long cache lines, it may also be advantageousto tile outer loops
if they carry many unit-stride references, such as when transposing

a matrix. In the future, we intend to study the cumulative effects
of optimizations presented in this paper with tiling, unroll-and-jam,
and scalar replacement.

7 Conclusion
This paper presents a comprehensive approach to improving data
locality and is the first to combine loop permutation, fusion, distri-
bution, and reversal into an integrated algorithm. Because we accept
some imprecision in the cost model, our algorithms are simple and
inexpensive in practice, making them ideal for use in a compiler.
More importantly, the imprecision in our model is not a factor in
the compiler’s ability to exploit data locality. The empirical results
presented in this paper validate the accuracy of our cost model and
algorithms for selecting the best loop structure for data locality. In
addition, they show this approach has wide applicability for exist-
ing Fortran programs regardless of their original target architecture,
but particularly for vector and Fortran 90 programs. We believe
this is a significant step towards achieving good performance with
machine-independent programming.

Acknowledgments
We wish to thank Ken Kennedy for providing the impetus and guid-
ance for much of this research, and Peter Craig at Digital for inspir-
ing the addition of loop reversal. We are grateful to the ParaScope
research group at Rice University for the software infrastructure on
which this work depends. In particular, we appreciate the assis-
tance of Nathaniel McIntosh on simulations. We acknowledge the
Center for Research on Parallel Computation at Rice University for
supplying most of the computing resources for our experiments and
simulations.

References
[AS79] W. Abu-Sufah. Improving the Performance of Virtual Memory

Computers. PhD thesis, Dept. of Computer Science, University
of Illinois at Urbana-Champaign, 1979.

[Car92] S. Carr. Memory-Hierarchy Management. PhD thesis, Dept. of
Computer Science, Rice University, September 1992.

[CCK88] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock
and improving balance for pipelined machines. Journal of Par-
allel and Distributed Computing, 5(4):334–358, August 1988.

[CCK90] D. Callahan, S. Carr, and K. Kennedy. Improving register
allocation for subscripted variables. In Proceedingsof the SIG-
PLAN ’90 Conference on Program Language Design and Im-
plementation, White Plains, NY, June 1990.

[CHH+93] K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKin-
ley, J. M. Mellor-Crummey, L. Torczon, and S. K. Warren. The
ParaScope parallel programming environment. Proceedings of
the IEEE, 81(2):244–263, February 1993.

[CHK93] K. Cooper, M. W. Hall, and K. Kennedy. A methodology
for procedure cloning. Computer Languages, 19(2):105–117,
February 1993.

[CK94] S. Carr and K. Kennedy. Scalar replacement in the presence of
conditional control flow. Software—Practice and Experience,
24(1):51–77, January 1994.

[CMT94] S. Carr, K. S. McKinley, and C. Tseng. Compiler optimizations
for improving data locality. Technical Report TR94-, Dept. of
Computer Science, Rice University, July 1994.

[FST91] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and en-
hancing cache effectiveness. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers
for Parallel Computing, Fourth International Workshop, Santa
Clara, CA, August 1991. Springer-Verlag.

[GJG88] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and
local memory management by global program transformation.
Journal of Parallel and Distributed Computing, 5(5):587–616,
October 1988.

[GKT91] G. Goff, K. Kennedy, and C. Tseng. Practical dependence test-
ing. In Proceedings of the SIGPLAN ’91 Conference on Pro-
gram Language Design and Implementation, Toronto, Canada,
June 1991.

[HKM91] M. W. Hall, K. Kennedy, and K. S. McKinley. Interprocedural
transformations for parallel code generation. In Proceedings of
Supercomputing ’91, Albuquerque, NM, November 1991.

[IT88] F. Irigoin and R. Triolet. Supernode partitioning. In Proceed-
ings of the Fifteenth Annual ACM Symposium on the Principles
of Programming Languages, San Diego, CA, January 1988.

[KKP+81] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe.
Dependence graphs and compiler optimizations. In Conference
Record of the Eighth Annual ACM Symposiumon the Principles
of Programming Languages, Williamsburg, VA, January 1981.

[KM92] K. Kennedy and K. S. McKinley. Optimizing for parallelism
and data locality. In Proceedings of the 1992 ACM International
Conference on Supercomputing, Washington, DC, July 1992.

[KM93] K. Kennedy and K. S. McKinley. Maximizing loop parallelism
and improving data locality via loop fusion and distribution. In
Languages and Compilers for Parallel Computing, Portland,
OR, August 1993.

[KMT93] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and trans-
formation in an interactive parallel programming tool. Concur-
rency: Practice & Experience, 5(7):575–602, October 1993.

[LP92] W. Li and K. Pingali. Access normalization: Loop restructur-
ing for NUMA compilers. In Proceedings of the Fifth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems,Boston, MA, October 1992.

[LRW91] M. Lam, E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In Proceedings of the
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, Santa Clara,
CA, April 1991.

[McK92] K. S. McKinley. Automatic and Interactive Parallelization.
PhD thesis, Dept. of Computer Science, Rice University, April
1992.

[War84] J. Warren. A hierachical basis for reordering transformations.
In Conference Record of the Eleventh Annual ACM Symposium
on the Principles of Programming Languages, Salt Lake City,
UT, January 1984.

[WL91] M. E. Wolf and M. Lam. A data locality optimizing algorithm.
In Proceedings of the SIGPLAN ’91 Conference on Program
Language Design and Implementation, Toronto, Canada, June
1991.

[Wol87] M. J. Wolfe. Iteration space tiling for memory hierarchies, De-
cember 1987. Extended version of a paper which appeared in
Proceedings of the Third SIAM Conference on Parallel Pro-
cessing.

[Wol91] M. J. Wolfe. The Tiny loop restructuring research tool. In
Proceedings of the 1991 International Conference on Parallel
Processing, St. Charles, IL, August 1991.

[Wol92] M. E. Wolf. Improving Locality and Parallelism in Nested
Loops. PhD thesis, Dept. of Computer Science, Stanford Uni-
versity, August 1992.

