Compiler Optimizationsfor Improving Data L ocality

Steve Carr

carr @cs.mtu.edu
Department of Computer Science
Michigan Technological University

Abstract

In the past decade, processor speed has become significantly faster
than memory speed. Small, fast cache memories are designed
to overcome this discrepancy, but they are only effective when
programs exhibit data locality. In this paper, we present compiler
optimizationstoimprovedatalocality based onasimpleyet accurate
cost model. The model computes both temporal and spatial reuse
of cachelines to find desirable loop organizations. The cost model
drives the application of compound transformations consisting of
loop permutation, loop fusion, loop distribution, and loop reversal.
We demonstrate that these program transformations are useful for
optimizing many programs.

To validate our optimization strategy, we implemented our al-
gorithms and ran experiments on a large collection of scientific
programs and kernels. Experiments with kernelsillustrate that our
model and algorithm can select and achieve the best performance.
For over thirty complete applications, we executed the original and
transformed versions and simulated cache hit rates. We collected
statistics about the inherent characteristics of these programs and
our ability to improve their data locality. To our knowledge, these
studies are the first of such breadth and depth. We found per-
formance improvements were difficult to achieve because bench-
mark programs typically have high hit rates even for small data
caches; however, our optimizations significantly improved several
programs.

1 Introduction

Because processor speed is increasing at a much faster rate than
memory speed, computer architects have turned increasingly to
the use of memory hierarchies with one or more levels of cache
memory. Cachestake advantageof data locality in programs. Data
locality isthe property that referencesto the same memory location
or adjacent locations are reused within a short period of time.
Cachesalso have an impact on programming; programmers sub-
stantially enhance performance by using a style that ensures more
memory references are handled by the cache. Scientific program-
mersexpend considerableeffort atimproving locality by structuring
loops so that the innermost loop iterates over the elements of a col-
umn, which are stored consecutively in Fortran. Thistask istime
consuming, tedious, and error-prone. Instead, achieving good data
locality should be the responsibility of the compiler. By placing the
burden on the compiler, programmers can get good uniprocessor
performanceevenif they originally wrotetheir program for avector

Steve Carr was supported by NSF grant CCR-9409341. Chau-Wen Tseng was
supported in part by an NSF CI SE Postdoctoral Fellowship in Experimental Science.

To appear in Proceedings of the Sixth I nternational Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VI), San Jose,
CA, October 1994.

Kathryn S. MCKinley

mckinley@cs.umass.edu
Department of Computer Science
University of Massachusetts

Chau-Wen Tseng

tseng@cs.stanford.edu
Computer Systems L aboratory
Stanford University

or parallel machine. In addition, programs will be more portable
because programmers will be able to achieve good performance
without making machine-dependent source-level transformations.

1.1 Optimization Framework

Based on our experiments and experiences, we believe that com-
piler optimizations to improve data locality should proceed in the
following order:

1. Improve order of memory accessesto exploit al levels of the
memory hierarchy through loop permutation, fusion, distribu-
tion, skewing, and reversal. This processis mostly machine-
independent, and requires knowledge only of the cache line
size.

2. Fully utilize the cache through tiling, a combination of strip-
mining and loop permutation [IT88]. Knowledge of the cache
size, associativity, and replacement policy is essential. Higher
degrees of tiling can be applied to exploit multi-level caches,
the TLB, etc.

3. Promote register reusethrough unroll-and-jam (also known as
register tiling) and scalar replacement [CCK90]. The number
and type of registers available are required to determine the
degree of unroll-and-jam and the number of array references
to replace with scalars.

In this paper, we concentrate on the first step. Our algorithms
are complementary to and in fact, improve the effectiveness of
optimizations performed in the latter two steps [Car92]. However,
the other steps and interactions between steps are beyond the scope
of this paper.

1.2 Overview

We present a compiler strategy based on an effective, yet simple,
model for estimating the cost of executing agivenloop nestinterms
of the number of cachelinereferences. Thispaper extendsprevious
work [KM92] with a slightly more accurate memory model. We
use the model to derive aloop structure which resultsin the fewest
accessesto main memory. The loop structure is achieved through
an algorithm that uses compound loop transformations. The com-
pound loop transformations are permutation, fusion, distribution,
and reversal. The algorithm is unique to this paper and is imple-
mented in a source-to-source Fortran 77 translator.

We present extensive empirical results for kernels and bench-
mark programs that validate the effectiveness of our optimization
strategy; they reveal programmers often use programming styles
with good locality. We measure both inherent data locality char-
acteristics of scientific programs and our ability to improve data
locality. When the cache miss rate for a program is non-negligible,
we show there are often opportunitiesto improve datalocality. Our
optimization algorithm takes advantage of these opportunities and
consequently improves performance. As expected, loop permuta-
tion playsthe key role; however, loop fusion and distribution may
also producesignificantimprovements. Our algorithms never found
an opportunity where loop reversal could improve locality.

2 Redated Work

Abu-Sufah first discussed applying compiler transformations based
on datadependence(e.g., loopinterchange, fusion, distribution, and
tiling) to improve paging [AS79]. In this paper, we extend and val-
idate recent research to integrate optimizations for parallelism and
memory [KM92]. We extend their original cost model to capture
more types of reuse. The only transformation they perform is loop
permutation, whereas we integrate permutation, fusion, distribu-
tion, and reversal into a comprehensive approach. Our extensive
experimental results are unique to this paper. We measure both the
effectivenessof our approach and unlike other optimization studies,
theinherent datalocality characteristics of programs and our ability
to exploit them.

Our approach has several advantages over previous research.
It is applicable to a wider range of programs because we do not
require perfect nests or nests that can be made perfect with condi-
tionals [FST91, GJG88, LP92, WL91]. It is quicker, both in the
expected and worse case. Previous work generates all loop per-
mutations [FST91, GJG88] or unimodular transformations (a com-
bination of permutation, skewing, and reversal) [LP92, WL91],
evaluates the locality of all legal permutations, and then picks the
best. This process requires the evaluation of up to ! loop permu-
tations (though = is typically small). In comparison, our approach
only performs one evaluation step because it directly determines
the best loop permutation.

Wolf and Lam use unimodular transformations and tiling with
estimates of temporal and spatial reuse to improve data local-
ity [WL91]. Their memory model is potentially more precise than
ours because it directly calculates reuse across outer loops; how-
ever, it may be less precise because it ignores loop bounds even
when they are known constants. Wolf and Lam’s evaluation is per-
formed on the Perfect Benchmarks and routines in Dnasa? in the
SPEC Benchmarks, asubset of our test suite. It isdifficult to directly
compare our experiments because their cache optimization results
includetiling and scalar replacement and are executedon adifferent
processor. We improve afew more programs/routines than they do,
but their cache optimizations degrade 6 programs/routines, in one
case by 20% [Wol92]. We degrade only one program by 2%, Applu
from the NAS Benchmarks.

In Wolf and Lam’s experiments, skewing was never needed and
reversal was seldom applied [Wol92]. We therefore chose not
to include skewing, even though it is implemented in our system
[KMT93] and our model candriveit. We did integrate reversal, but
it did not help to improve locality.

The exhaustive approach taken by previous researchers [FST91,
GJG88, LP92, WL9I1] is not practical when including transforma-
tions which create and combine loop nests (e.g., fusion, distribu-
tion). Fusion for improving reuseis by itself NP-hard [KM93]. By
driving heuristics with a cache model, our algorithms are efficient
and usually find the best transformations for data locality using
permutation, fusion and distribution.

3 Background

In this section, we characterize data reuse and present an effective
data locality cost model.

3.1 DataDependence

We assume the reader is familiar with concept of data dependence
[KKP'81, GKT91]. § = {6; ...8x} is ahybrid distance/direction
vector with the most precise information derivable. It represents a
data dependence between two array references, corresponding left
to right from the outermost loop to innermost loop enclosing the

references. Data dependencesare loop-independent if the accesses
to the same memory location occur in the same loop iteration; they
areloop-carried if the accessesoccur on different loop iterations.

3.2 Sourcesof Data Reuse

Thetwo sourcesof datareuse are temporal reuse, multiple accesses
to the same memory location, and spatial reuse, accessesto nearby
memory locations that share a cache line or a block of memory at
some level of the memory hierarchy (Unit-stride accessis the most
common type of spatial locality). Temporal and spatial reuse may
result from self-reuse from a single array reference or group-reuse
from multiple references. Without loss of generality, in this paper
we assume Fortran’s column-major storage.

Tosimplify analysis, we concentrate on reusethat occurs between
small numbersof innerloopiterations. Our memory model assumes
there will be no conflict or capacity cache misses in one iteration
of the innermost loop.! We use the algorithms RefGroup, RefCost
and L oopCostto determine the total number of cachelines accessed
when a candidate loop [is placed in the innermost loop position.
The result reveals the relative amounts of reuse between loops in
the same nest and across disjoint nests; it also drives permutation,
fusion, distribution, and reversal to improve datalocality.

3.3 ReferenceGroups

Our cost model first applies algorithm RefGroup to calculate
group-reuse. Two references are in the same reference group if
they exhibit group-temporal or group-spatial reuse, i.e., they ac-
cess the same cache line on the same or different iterations of
an inner loop. This formulation is more general than previous
work [KM92], but slightly more restrictive than uniformly gener-
ated references[GJG8S].

RefGroup: Two references Ref; and Ref, belong to the same
reference group with respect to loop { if:

1. 3 Ref; § Ref; , and
@ Sis aloop-independent dependence, or
(b) é; isasmall constantd (|d| < 2) and all other entries
are zero,

2. or, Ref; and Ref; refer to the same array and differ by at most
d' in the first subscript dimension, where d' is less than or
equal to the cache line size in terms of array elements. All
other subscripts must be identical.

Condition 1 accounts for group-temporal reuse and condition 2
detects most forms of group-spatial reuse.

3.4 Loop Costin Termsof CachelLines

Oncewe account for group-reuse, we can cal cul ate the reuse carried
by each loop using the functions RefCost and L oopCostin Figure 1.
To determine the cost in cache lines of areference group, we select
an arbitrary array reference with the deepest nesting from each
group. Eachloop i with trip iterations in the nest is considered as
a candidate for the innermost position. Let cls be the cache line
size in data items and stride be the step size of I multiplied by the
coefficient of the loop index variable.

In Figure 1, RefCost calculates locality for , i.e., the number of
cachelines uses: 1 for loop-invariant references, trip/(cls/stride)
for consecutive references, or trip for non-consecutive references.
L oopCostthen calcul atesthetotal number of cachelinesaccessed by
all referenceswhen! istheinnermost loop. It simply sums RefCost
for all reference groups, then multiplies the result by the trip counts

*Lam et al. confirmthis assumption [LRW91].

Figure 1: LoopCost Algorithm

INPUT: L = {l,...,l,} aloop nest with headersib, ub, step
R = {Refy,..., Ref.} representativesfrom each reference group
tripp = (uby — Ib; + step,)/step,

cls = thecachelinesize,

coeff(4;, f) = thecoefficient of the index variables; in the subscript f (it may be zero)

stride = | step; * coeff(f1, 41)|
OuTPUT: LoopCost(l) = number of cache lines accessedwith [asinnermost loop
ALGORITHM: LoopCost(l) = (RefCost(Refy(fi(i1, .- 1in)y---, filit,---,in)), 1))]] tribs
k=1 h#L
RefCost(Ref, 1) = 1 if (coeff(f1,41) =0) A...A (coeff(f;,4) =0) loop invariant

trip; if ((stride < cls) consecutive

cls/ stride A(coeff(f2,11) = 0) A ... A (coeff(£, 1) = 0)
trip; otherwise no reuse

of all the remaining loops. RefCost and LoopCost appear in Fig-
ure 1. Thismethod evaluatesimperfectly nestedloops, complicated
subscript expressions and nests with symbolic bounds [McK92].

4 Compound L oop Transformations

In this section, we show how the cost model guides loop permuta-
tion, fusion, distribution, and reversal. Each subsection describes
tests based on the cost model to determine when individual trans-
formations are profitable. Using these components, Section 4.5
presents Compound, an algorithm for discovering and applying le-
gal compound loop nest transformations that attempt to minimize
the number of cache lines accessed. All of these transformations
are implemented.

4.1 Loop Permutation

To determinetheloop permutation which accessesthe fewest cache
lines, we rely on the following observation.

If loop ! promotes more reusethan loop I’ when both are
consideredasinnermost loops, I will promote morereuse
than !’ at any outer loop position.

We therefore simply rank the loops using LoopCost, ordering the
loopsfrom outermost toinnermost (I . . . I,,) sothat LoopCost(l;—1)
> LoopCost(l;). We call this permutation of the nest with the least
cost memory order. If the bounds are symbolic, we compare the
dominating terms.

We definethe algorithm Permuteto achieve memory order when
possible on perfect nests? To determine if the order is a legal
one, we permute the corresponding entries in the distance/direction
vector. If the result is lexicographically positive the permutation is
legal and we transform the nest. If alegal permutation existswhich
positions the loop with the most reuse innermost, the algorithm is
guaranteedtofindit. If thedesired inner loop cannot be obtained, the
next most desirable inner loop is positioned innermost if possible,
and so on. Because most data reuse occurs on the innermost loop,
positioning it correctly yields the best datalocality.

Complexity. When memory order is legal, as it is in 80% of
loopsin our test suite, Permutesimply sortstheloopsin O(n log n)
time. If itisnotlegal, Permuteselectsalegal permutation ascloseto
memory order aspossible, takingworst casen(n — 1) time [KM92].
Thesestepsareinexpensive; evaluating the locality of the nestisthe
most expensivestep. Our algorithm computesthe best permutation

2|n Section 4.5, we perform imperfect interchangeswith distribution.

with one evaluation step for each loop in the nest. The complexity
of this step is therefore O(n) time, where n is in the number of
loops in the nest.

41.1 Example: Matrix Multiplication

In Figure 2, algorithm RefGroup for matrix multiply puts the two
references to C(1,J) in the same reference group and A(l,K) and
B(K,J) in separate groups for all loops. Algorithm MemoryOrder
uses LoopCost to select K1 as memory order; A(1,K) and C(1,J)
exhibit spatial locality and B(K,J) exhibits loop invariant temporal
locality, resulting in the fewest cache line accesses.

To validate our cost model, we gathered results for all possible
permutations, ranking them left to right from the least to the highest
cost (JKI, KJI, JK, 1JK, K1J, IKJ) in Figure 2. Consistent with our
model, choosing! astheinner loop resultsinthe best executiontime.
Changing the inner loop has a dramatic effect on performance.
The impact is greater on the 512 x 512 versus the 300 x 300
matrices because a larger portion of the working set stays in the
cache. Execution times vary by significant factors of up to 3.7 on
the Sparc2, 6.2 on the i860, and 23.9 on the RS/6000. The entire
ranking accurately predicts relative performance.

We performed this type of comparison on several more kernels
and a small program with the same result: memory order always
resulted in the best performance.

4.2 Loop Reversal

Loop reversal reverses the order in which the iterations of a loop
nest execute and is legal if dependences remain carried on outer
loops. Reversal does not change the pattern of reuse, but it is an
enabler; i.e., it may enable permutation to achieve better locality.
We extend Permuteto perform reversal asfollows. If memory order
isnot legal, Permute placesouter loopsin position first, building up
lexicographically positive dependencevectors[KM92]. If Permute
cannot legally position a loop in a desired position, Permute tests
if reversal is legal and enables the loop to be put in the position.
Reversal did not improved locality in our experiments, therefore we
will not discussit further.

4.3 Loop Fusion

Loop fusion takes multiple loop nests and combines their bodies
into one loop nest. It is legal only if no data dependences are
reversed [War84]. As an example of its effect, consider the scalar-
ization into Fortran 77 in Figure 3(b) of the Fortran 90 code fragment
for performing ADI integration in Figure 3(a). The Fortran 90 code

Figure 2: Matrix Multiply
{JXKI ordering}
DOJ=1,N
DOK=1,N

DOI=1,N
C(1,9) = C(1,.J) + A(1.K) * B(K,J)

L oopCost (with cls = 4)
J K

Refs I
Cc(,J n*n? 14n? inxn?
A(l,K) 14n? n*n’ inxn?
B(K,J) nxn? insn? 1% n?
total 2n3% + n? %ns +n? %ns +n?

Execution Times (in seconds)

Figure 3: Loop Fusion

(a) Sample Fortran 90 loopsfor ADI Integration
DOI=2,N
51 X(I,2:N) = X(1,1:N) - X(1-1,:N)* A(1,1:N)/B(1-1,1:N)
Sz B(I,L:N) =B(l,L:N) - A(I,LLN)*A(1,1:N)/B(1-1,1:N)

(b) § Trandationto Fortran 77 |
DOI=2,N
DOK=1,N
X(1,K) = X(1,K) - X(I-1,K)*A(1,K)/B(I-1,K)
DOK=1,N
B(I,K) = B(I,K) - A(1,K)*A(l,K)/B(I-1,K)

(c) J LoopFusion & Interchange
DOK=1,N
DOI=2,N
X(1,K) = X(1,K) - X(1-1,K)*A(l,K)/B(I-1,K)
B(I,K) = B(I,K) - A(l,K)*A(1,K)/B(I-1,K)

LoopCost (with els = 4.)

RefGroup K I
X(IK) | n¥n inxn
A(K) | nxn inxn
B(IK) | n*xn inxn

total | 3xn® | 2an?
Sytotal | 3xn?® | 2an?
Sptotal | 2%n?® | Lxn?
S1 4+ 82 | 5xn® | Bxn?

300x 300
gg_ ---- SunSparc2 @
a0 T Intel i860
—— IBM RS6000
0= S
20— ____ -l
10—...-----
(o
I I I I
JKI KJI JIK 1JK K1J IKJ
512x 512

exhibits both poor temporal and poor spatial reuse. The problem is
not the fault of the programmer; instead, it is inherent in how the
computation can be expressed in Fortran 90. Fusing the K loops
results in temporal locality for array B. In addition, the compiler
is now able to apply loop interchange, significantly improving spa-
tial locality for al the arrays. This transformation is illustrated in
Figure 3(c).

4.3.1 Profitability of Loop Fusion

Loop fusion may improve reuse directly by moving accessesto the
same cache line to the same loop iteration. Algorithm RefGroup
discoversthis reuse between two nests by treating the statements as
if they already were in the same loop body. The two loop headers
are compatible if the loops have the same number of iterations.
Two nests are compatible at level [if the loops at level 1 tol are
compatible and the headers are perfectly nested up to level I. To
determine the profitability of fusing two compatible nests, we use
the cost model as follows:

o Compute RefGroup and L oopCost asif all the statementswere
in the same nest, i.e., fused.

¢ Compute RefGroupand L oopCostindependently for each can-
didate and add the results.

e Comparethetotal LoopCosts.

If the fused L oopCostislower, fusion alonewill result in additional
locality. Asan example, fusing the two K loopsin Figure 3 lowers
the LoopCost for K from 5n? to 3n?. Candidate loops for fusion
need not be nested within a common loop. Note that the memory
order for the fused loops may differ from the individual nests.

4.3.2 Loop Fusion to enable L oop Permutation

Loop fusion may also indirectly improve reuse in imperfect loop
nests by providing a perfect nest that enables a loop permutation
with better datalocality. For instance, fusingtheK loopsin Figure3
enables permuting the loop nest, improving spatial and temporal
locality. Using the cost model, we detect that this transformation
is desirable since LoopCost of the | loop is lower than the K loops,
but memory order cannot be achieved because of the loop structure.
We then test if fusion of all inner nestsis legal and creates a perfect
nest in which memory order can be achieved.

4.3.3 Loop Fusion Algorithm

Fusion thus serves two purposes:

1. to improve temporal locality, and

2. tofuseall inner loops, creating a nest that is permutable.
Previousresearch hasshown that optimizing temporal locdlity for an
adjacent set of n loopswith compatible headersisNP-hard [KM93];
here all the headers are not necessarily compatible. We therefore
apply a greedy strategy based on the depth of compatibility. We
build abAG from the candidate loops. The edges are dependences
between the loops; the weight of an edge is the difference between
the LoopCosts of the fused and unfused versions. We partition the
nests into sets of compatible nests at the deepest levels possible.
To yield the most locality, we first fuse nests with the deepest
compatibility and temporal locality. Nestsarefused only if islegal,
i.e., no dependences are violated between the loops or in the DAG.
We update the graph, then fuse at the next level until all compatible
sets are considered. This algorithm appears in Figure 4. The
complexity of this algorithm is O(m?) time and space, wherem is
the number of candidate nests for fusion.

Figure 4: Fusion Algorithm

Fuse(L)
INPUT: L=1,...,l, neststhat are fusion candidates
ALGORITHM:

Build® = {H1,...,H;}, H; = {h:} asetof
compatible nestswith depth(H;) > depth(H;1)
Build bAG G with dependence edges and weights
foreachH; ={h1...hm},i=1t0j
for Iy = hy t0 A
for lo =hstoly
if (3 locality betweenl, andl;)
/+ 3 edge (I, I2) with weight > 0 */
& (itislegal to fusethem))
fusel; andl; and update G
endfor
endfor
endfor

434 Example: Erlebacher

The original hand-coded version of Erlebacher, a program solving
PDEs using ADI integration with 3D arrays, mostly consists of
single statement loopsin memory order. We permuted theremaining
loops into memory order, producing a distributed program version.
Sincethe loopsare fully distributed in this version, it resemblesthe
output of a Fortran 90 scalarizer. We then applied Fuseto obtain
more temporal locality. In Table 1, we measure the performance
of the original program (Hand), the transformed program without
fusion (Distributed), and the fused version (Fused).

Table 1: Performance of Erlebacher (in seconds)

Hand Memory Order
Processor Coded | Distributed Fused
Sun Sparc2 .806 .813 672
Intel 1860 547 .548 518
IBM RS/6000 .390 400 .383

Fusion is always an improvement (of up to 17%) over the hand-
coded and distributed versions. Sinceeach statementisin aseparate
loop, many variablesare shared betweenloops. Permuting theloops
into memory order increases locality in each nest, but slightly de-
gradeslocality between nests, hencethe degradationin performance
of the distributed version compared to the original. Eventhoughthe
benefits of fusion are additive rather than multiplicative asin loop
permutation, its impact can be significant. In addition, its impact
will increase as more programs are written with Fortran 90 array
syntax.

4.4 Loop Distribution

L oop distribution separatesindependent statementsin a single loop
into multiple loopswith identical headers. To maintain the meaning
of the original loop, statementsin arecurrence (acyclein the depen-
dencegraph) must be placedin the sameloop. Groupsof statements
that must bein the sameloop are called partitions. In our systemwe
only use loop distribution to indirectly improve reuse by enabling
loop permutation on a nest that is not permutable®. Statements
in different partitions may prefer different memory orders that are
achievable after distribution. The algorithm Distribute appearsin

3Distribution could also be effective if there is no temporal locality between par-
titions and the accessed arrays are too numerous to fit in cache at once, or register
pressureis aconcern. We do not addressthese issues here.

Figure 5: Distribution Algorithm
Distribute(Z, S)

INPUT: L ={ly,...,ln}, aloop nest containing
8 ={s1,..., sk} Statements
ALGORITHM:

forj=m—-1tol
Restrict the dependencegraph to § carried at
level j or deeper and loop independent §
Divide § into finest partitions P = {p1,...,pm}
st. if s, s¢ € arecurrence, s, s; € p;.
compute MemoryOrder; for each p;
if (34| MemoryOrder; is achievablewith
distribution and permutation)
perform distribution and permutation
return
endfor

Figure 5. It divides the statements into the finest granularity par-
titions and tests if that enables loop permutation. It performs the
smallest amount of distribution that still enables permutation. For
anest of depth m, it starts with the loop at level m — 1 and works
out to the outermost loop, stopping if successful.

We only call Distributeif memory order cannot be achieved on a
nest and not all the inner nests can be fused (see Section 4.5). Dis-
tributetestsif distribution will enable memory order to be achieved
for any of the partitions. The dependence structure required to
test for loop permutation is created by restricting its test to depen-
dences on statements in the partition of interest. We thus perform
distribution only if it combines with permutation to improve the
actual LoopCost. The algorithm’s complexity is dominated by the
time to determine the LoopCost of the individual partitions. See
Section 4.5.1 for an example.

45 Compound Transformation Algorithm

The driving force behind our application of compound loop trans-
formations is to minimize actual LoopCost by achieving memory
order for as many statementsin the nest as possible. The algorithm
Compound uses permutation, fusion, distribution, and reversal as
needed to place the loop that provides the most reuse at the inner-
most position for each statement.

Algorithm Compoundin Figure 6 considers adjacent loop nests.
It first optimizes each nest independently, then applies fusion be-
tween the resulting nests when legal and temporal locality is im-
proved. To optimize a nest, the algorithm begins by computing
memory order and determining if the loop containing the most
reuse can be placed innermost. If it can, the algorithm does so and
goes on to the next loop. Otherwise, it tries to enable permutation
into memory order by fusing all inner loops to form a perfect nest.
If fusion cannot enable memory order, the algorithm tries distribu-
tion. If distribution succeedsin enabling memory order, several
new nests may be formed. Since the distribution algorithm divides
the statements into the finest partitions, these nests are candidates
for fusion to recover temporal locality.

Complexity. Ignoring distribution for amoment, the complexity
of the compound algorithmis O(n) + O(n?) 4+ O(m?) time, where
n isthe maximum number of loopsin anest, and m isthe maximum
number of adjacent nestsin the original program. O(n) non-trivial
steps are needed to evaluate the locality of the statements in each
nest. O(n?) simple steps result in the worst case when finding a

Figure 6: Compound Loop Transformation Algorithm

Compound(N)
INPUT: N ={ni,...n:}, adjacent loop nests
ALGORITHM:
fore=1tok
Compute MemoryOrder (r;)
if (Permute(n;) placesinner loop in memory order)
continue
elseif (n; isnot aperfect nest & containsonly
adjacent loops m;)
if (FuseAll(m;,l) and Permute(l)
placesinner loop in memory order)
continue
elseif (Distribute(n;)
Fusg(l)
end for
Fusg(N)

legal permutation and O(m?) stepsresult from building the fusion
problem. However, because distribution produces more adjacent
nests that are candidates for fusion, m includes the additional ad-
jacent nests created by distribution. In practice, this increase was
negligible; a single application of distribution never created more
than 3 new nests.

45.1 Example: Cholesky Factorization

Consider optimizing the Cholesky Factorization kernel in Fig-
ure 7(a) with algorithm Compound. LoopCost determines that
memory order for the nest is KJI, ranking the nests from lowest
cost to highest (KJI, XKiI, KIJ, IKJ, JK, IJK). Because KJ cannot
be achieved with permutation alone and fusion is of no help here,
Compound calls Distribute. Sincetheloop isof depth 3, Distribute
startsby testing distribution at depth 2, the | loop. S2 and S3 gointo
separate partitions (there is no recurrence between them at level 2
or deeper). Memory order of S3 is also KJI. Distribution of the |
loop places S3 aonein alJnest wherel and J may be legally inter-
changed into memory order, as shown in Figure 7(b). Note that our
system handles the permutation of both triangular and rectangular
nests.

To gather performance results for Cholesky, we generated all
possible loop permutations; they are all legal. For each permuta-
tion, we applied the minimal amount of loop distribution necessary.
(Wolfe enumerates these loop organizations [Wol91].) Compared
to matrix multiply, there are more variations in observed and pre-
dicted behavior. These variations are due to the triangular loop
structure; however, Compound still attains the loop structure with
the best performance.

5 Experimental Results

To validate our optimization strategy, we implemented our algo-
rithms, executed the original and transformed program versions on
our test suite and simulated cache hit rates. To measure our abil-
ity to improve locality, we determined the best locality possible if
correctness could be ignored. We collected statistics on the data
locality in the original, transformed, and ideal programs.

5.1 Methodology
We implemented the cost model, the transformations, and the algo-

rithms described above in Memoria, the Memory Compiler in the
ParaScope Programming Environment [Car92, CHH* 93, CK94,

Figure 7: Cholesky Factorization

(&) {KIJform}
DO K=1,N
51 A(KK)=SQRT(A(K,K))
DO I=K+1,N
S A(1,K) =A(,K)AKK)
DO FK+1,1
Ss A1) =A,I-A(K)*AK)

(b) J {KJ form}LoopDistribution & Triangular Interchange {}
DO K=1,N
A(K,K) = SQRT(A(K,K))
DO I=K+1,N
A(1LK)=A(I,K)/A(KK)
DO FK,N
DO I=}1N
A(1,J3+1) = A(1,H+1)-A(L K)*A(I+1K)

LoopCost
Refs K J |
A(K,K) nxn — 1xn
A(l,K) n*n’ 14n? inxn?
Al 1% n? nxn? insn?
A(JK) n*n’ inxn? 14n?

total 2n® + 2n? %ns +n? %ns +n2+n
So total 2n? — %nz +n

Sg total 2n% +n? %ns +n? %ns +n?

Execution times (in seconds)
300 x 300

KJI JKI K1J 1KJ JIK 1IK

KMT93]. Memoria is a source-to-source translator that analyzes
Fortran programs and transforms them to improve their cache per-
formance. To increase the precision of dependence analysis, the
compiler performs auxiliary induction variable substitution, con-
stant propagation, forward expression propagation, and dead code
elimination. It also determinesif scalar expansion will further en-
able distribution. Since scalar expansion is not integrated in the
current version of the transformer, we applied it by hand when
directed by the compiler. Memoria then used the resulting code
and dependencegraph to gather statistics and perform datalocality
optimizations using the algorithm Compound.

For our test suite, we used 35 programs from the Perfect Bench-
marks, the SPEC benchmarks, the NAS kernels, and some miscel-
laneous programs. They ranged in size from 195 to 7608 non-
comment lines. Their execution times on the IBM RS6000 ranged
from secondsto a couple of hours.

5.2 Transformation Results

In Table 2, we report the results of transforming the loop nests
of each program. Table 2 first lists the number of non-comment
lines (Lines), the number of loops (Loops), and the number of loop
nests (Nests) for each program. Only loop nests of depth 2 or
more are considered for transformation. MemoryOrder and I nner
Loop entries reflect the percentage of loop nests and inner loops,

Table 2: Memory Order Statistics

MemoryOr der Inner Loop Loop Loop LoopCost
COrig | Perm | Fail || Orig | Perm | Fail Fusion Distribution Ratio

Program | Lines | Loops | Nests % percentages % C |A D| R Final | Ideal

Perfect Benchmarks
adm 6105 219 106 52 16 32 53 16 31 0 0 1 2 254 6.10
arc2d 3965 152 75 55 28 17 65 34 1 35 | 12 1 2 221 414
bdna 3980 104 56 75 18 7 75 18 7 4 2 3 6 231 251
dyfesm 7608 164 80 63 15 22 65 19 16 2 1 0 0 3.08 8.62
flo52 1986 149 76 83 17 0 95 5 0 4 1 0 0 172 1.79
mdg 1238 25 12 83 8 8 83 8 8 0 0 0 0 111 1.70
mg3d 2812 88 40 95 3 3 98 0 2 0 0 1 2 1.00 113
ocean 4343 115 56 82 13 5 84 13 4 2 1 3 6 2.05 2.20
gcd 2327 94 45 53 11 36 58 16 15 0 0 0 0 4.98 6.10
spec77 3885 255 162 64 7 29 66 7 27 0 0 0 0 2.32 558
track 3735 57 32 50 16 34 56 19 25 2 1 1 2 1.99 7.95
trfd 485 67 29 52 0 48 66 0 34 0 0 0 0 1.00 | 1481

SPEC Benchmarks
dnasa’ 1105 111 50 64 14 22 74 16 10 5 2 1 2 2.08 2.95
doduc 5334 60 33 6 6 88 6 6 88 0 0 4 12 189 | 1425
fpppp 2718 23 8 88 12 0 88 12 0 0 0 0 0 1.03 1.03
hydro2d 4461 110 55 100 0 0 100 0 0 4 | 11 0 0 1.00 1.00
matrix300 439 4 2 50 50 0 50 50 0 0 0 1 2 450 450
mdljdp2 4316 4 1 0 0 | 100 0 0 | 100 0 0 0 0 1.00 1.05
mdljsp2 3885 4 1 0 0 | 100 0 0 | 100 0 0 0 0 1.00 1.02
ora 453 6 3 100 0 0 100 0 0 0 0 0 0 1.00 1.00
su2cor 2514 84 36 42 19 39 42 19 39 0 0 4 8 351 5.30
swm256 487 16 8 88 12 0 88 12 0 0 0 0 0 491 491
tomcatv 195 12 6 100 0 0 100 0 0 7 2 0 0 1.00 1.00

NAS Benchmarks
appbt 4457 181 87 98 0 2 100 0 0 3 1 0 0 1.00 1.26
applu 3285 155 71 73 3 24 79 6 15 3 1 2 6 1.35 8.03
appsp 3516 184 84 73 12 15 80 12 8 8 4 0 0 1.25 434
buk 305 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.00
cgm 855 11 6 0 0 | 100 0 0 | 100 0 0 0 0 1.00 2.75
embar 265 3 2 50 0 50 50 0 50 0 0 0 0 1.00 112
fftpde 773 40 18 89 0 11 100 0 0 0 0 0 0 1.00 1.00
mgrid 676 43 19 89 11 0 100 0 0 3 1 1 2 1.00 1.00

Miscellaneous Programs
erlebacher 870 75 30 83 13 4 100 0 0 28 | 11 0 0 1.00 1.00
linpackd 797 8 4 75 0 25 75 0 25 3 1 0 0 1.00 1.10
simple 1892 39 22 86 9 5 86 9 5 6 2 0 0 248 272
wave 7519 180 85 58 29 13 65 29 6 70 | 26 0 0 4.26 4.30
[totals | — [2644] 1400] 69] 11] 20| 74 11| 15 22980] 23] 2] — 1 — |

respectively, that are:

Orig: originally in memory order,
Perm: permuted into memory order, or
Fail: fail to achieve memory order.

The percentage of loop nests in the program that are in memory
order after transformation isthe sum of the original and the permuted
entries. Similarly for the inner loop, the sum of the original and the
permuted entries is the percent of nests where the most desirable
innermost loop is positioned correctly.

Table 2 also lists the number of times that fusion and distribution
were applied by the compound algorithm. Either fusion, distribu-
tion, or both were applied to 22 out of the 35 programs.

In the L oop Fusion column,
C isthe number of candidate nests for fusion, and
A isthe number of neststhat were actually fused.

Candidate nests for fusion were adjacent nests, where at least one
pair of nests were compatible. Fusion improved group-temporal
locality for these programs; it did not find any opportunities to

enable interchange. There were 229 adjacent loop nests that were
candidates for fusion and of these, 80 were fused with one or more
other neststo improvereuse. Fusion wasapplicablein 17 programs
and completely fused nests of depth 2 and 3. In Wave and Arc2d,
Compound fused 26 and 12 nests respectively.

In the L oop Distribution column,
D isthe number of loop nests distributed to achieve
a better loop permutation, and
R isthe number of neststhat resulted.

The Compoundalgorithm only applied distribution whenit enabled
permutation to attain memory order in a nest or in the innermost
loop for at least one of the resultant nests. Compound applied
distribution in 12 of the 35 programs. On 23 nests, distribution
enabled loop permutation to position the inner loop or the entire
nest correctly, creating 29 additional nests. In Bdna, Ocean, Applu
and Su2cor 6 or more nests resulted.

LoopCost Ratio in Table 2 estimates the potential reduction in
LoopCost for the final transformed program (Final) and the ideal

program (Ideal). The ideal program achieves memory order for
every nest without regard to dependence constraints or limitations
in the implementation. By ignoring correctness, it isin some sense
the best data locality one could achieve. For the final and ideal
versions, the average ratio of original LoopCost to transformed
LoopCost is listed. These values reveal the potential for locality
improvement.

Memoriamay not obtain memory order dueto thefollowing: (1)
loop permutationisillegal dueto dependences; (2) loop distribution
followed by permutation isillegal dueto dependences; (3) theloop
bounds are too complex, i.e., not rectangular or triangular. For the
20% of nests where the compiler could not achieve memory or-
der, 87% were because permutation and then distribution followed
by permutation could not be applied because of dependence con-
straints. The rest were because the loop bounds were too complex.
More sophisticated dependence testing techniques may enable the
algorithms to transform a few more nests.

5.3 Coding Styles

Imprecisedependenceanalysisisafactor inlimiting the potential for
improvements in our application suite. For example, dependence
analysisfor the program Cgm cannot expose potential datalocality
for our algorithm because of imprecision due to the use of index
arrays. The program Mg3d is written with linearized arrays. This
coding style introduces symbolics into the subscript expressions
and again makes dependence analysis imprecise. The inability to
analyzethe use of index arrays and linearized arrays prevents many
optimizations and is not a deficiency specific to our system.

Other coding styles may also inhibit optimization in our system.
For example, Linpackd and Matrix300 arewritten in amodular style
with singly nested loops enclosing function calls to routines which
also contain singly nested loops. To improve programs written in
this style requiresinterprocedural optimization [CHK 93, HKM91];
these optimizations are not currently implemented in our translator.

Many loop nests (69%) in the original programs are already
in memory order, and even more (74%) have the loop carrying
the most reuse in the innermost position. This result indicates that
scientific programmers often pay attention to datalocality; however,
there are many opportunities for improvement. Our compiler was
able to permute an additional 11% of the loop nests into memory
order, resulting in a total 80% of the nests in memory order and a
total of 85% of the inner loops in memory order position. Memoria
improved datalocality for oneor more nestsin 66% of the programs.

5.4 Successful Transfor mation

We illustrate our ability to transform for data locality by program
in Figures 8 and 9. The figures characterize the programs by
the percentage of their nests and inner loops that are originally in
memory order and that are transformed into memory order. In
Figure 8, half of the original programs have fewer than 70% of their
nestsin memory order. In the transformed version, 29% havefewer
than 70% of their nestsin memory order. Over half now have 80%
or more of their nests in memory order. The results in Figure 9
are more dramatic. The majority of programs can be transformed
such that 90% or more of their inner loops are positioned correctly
for the best locality. Our transformation algorithms determine and
achieve memory order in the majority of nests and programs.

Unfortunately, our ability to successfully transform programs
may not result in run-time improvements for several reasons: data
sets for benchmark programs tend to be small enough to fit in
cache, the transformed loop nests may be cpu-bound instead of
memory-bound, and the optimized portions of the program may not
significantly contribute to the overall execution time.

Figure 8: Achieving Memory Order for Loop Nests

16T

12 L
" 1 Original
& M Fina
Dol
o8
x
B
Eat
[S
=}
z

0
<=20 >=40 >=60 >=70 >=80 >=90

Percentage of Loop Nestsin Memory Order

Figure 9: Achieving Memory Order for the Inner Loop

20T
16+ |:| orlglnal
2]
g B Fina
2
g 12
B
o}
2 8t
=
=z
1 |—. |_L
0

<=20 >=40 >=60 >=70 >=80 >=90
Percent of Inner Loopsin Memory Order

5.5 PerformanceResults

In Table 3, we present the performance of our test suite running
on an IBM RS6000 model 540 with a 64KB cache, 4-way set as-
sociative replacement policy, and 128 byte cache lines. We used
the standard IBM RS/6000 Fortran 77 compiler with the-O option to
compile both the original program and the version produced by our
automatic source-to-source transformer. All applications success-
fully compiled and executed on the R§/6000. For those applications
not listed in Table 3, no performance improvement or degradation
occurred.

Table 3 shows a number of applications with significant perfor-
mance improvements (Arc2d, Dnasa7, and Smple). These results
indicate that datalocality optimizationsare particularly effectivefor
scalarized vector programs, since these programs are structured to
emphasizevector operationsrather than cachelinereuse. However,
the predicted improvements did not materialize for many of the
programs. To explore these results, we simulated cache behavior to
determine cache hit rates for out test suite.

We simulated cachel, an RS/6000 cache (64KB, 4-way set as-
sociative, 128 byte cache lines), and cache2, an i860 cache (8K B,
2-way set associative, 32 byte cache lines). We determined the
change in the hit rates both for just the optimized procedures and
for the entire program. The resulting measured rates are presented
in Table 4. Places where the compiler affected cache hit rates
by > .1% are emboldened for greater emphasis. For the Final
columns we chose the better of the fused and unfused versionsfor
each program.

Table 3: Performance Results (in seconds)

RS/6000 with 64K B, 4-way set associative cache and
cacheline size of 128 byte.

Progran [Original | Transformed | Speedup
Perfect Benchmarks
arc2d | 410.13 190.69 215
dyfesm 25.42 25.37 1.00
flo52 62.06 61.62 1.01
SPEC Benchmarks
dnasa7 (btrix) 36.18 30.27 1.20
dnasa7 (emit) 16.46 16.39 1.00
dnasa7 (gmtry) | 155.30 17.89 8.68
dnasa7(vpenta) | 149.68 115.62 1.29
NAS Benchmarks
applu | 146.61 149.49 0.98
appsp | 361.43 337.84 1.07
Misc Programs
simple | 963.20 850.18 113
linpackd | 159.04 157.48 1.01
wave | 44594 414.60 1.08

Asillustrated in Table 4, the reason more programs did not im-
proveonthe RS/6000is dueto high hit ratiosin theoriginal programs
caused by small data set sizes. When the cacheis reduced to 8K,
the optimized portions have more significant improvements. For
instance, whole program hit rates for Dnasa7 and Appsp show sig-
nificant improvements after optimization for the smaller cacheeven
though they barely changed in the larger cache. Our optimizations
obtained improvementsin whole program hit rates for Adm, Arc2d,
Dnasa7, Hydro2d, Appsp, Erlebacher, Smple, and Wave. Improve-
ments in the optimized loop nests were more dramatic, but did not
always carry over to the entire program because of the presence of
unoptimized loops.

We measured hit ratios both with and without applying loop
fusion. For the 8K cache, fusion improved whole program hit
rates for Hydro2d, Appsp, and Erlebacher by 0.51%, 0.24%, and
0.95%, respectively. We were surprised to improve Linpackd's
performance with fusion by 5.3% on the subroutine matgen and by
0.02% for the entire program. Matgen is an initialization routine
whose performance is not usually measured. Unfortunately, fusion
also lowered hit rates Track, Dnasa7, and Wave; the degradation
may be due to added cache conflict and capacity misses after loop
fusion. To recognize and avoid these situations requires cache
capacity and interference analysis similar to that performed for
evaluating loop tiling [LRW91]. Because our fusion algorithm
only attempts to optimize reuse at the innermost loop level, it may
sometimes merge array references that interfere or overflow cache.
We intend to correct this deficiency in the future.

Our results are very favorable when compared to Wolf's resullts,
though direct comparisons are difficult because he combinestiling
with cache optimizations and reportsimprovements only relative to
programs with scalar replacement [Wol92]. Wolf applied permu-
tation, skewing, reversal and tiling to the Perfect Benchmarks and
Dnasa7 on a DECstation 5000 with a 64KB direct-map cache. His
results show performance degradationsor no changein all but Adm,
which showed a small (1%) improvement in execution time. Our
transformations did not degrade performance on any of the Perfect
programs and performance of Arc2d was significantly improved.

Our results on the routines in Dnasa? are similar to Wolf's, both
showing improvements on Btrix, Gmtry, and Vpenta. Wolf im-
proved Mxm by about 10% on the DECstation, but slightly degraded
performance on the i860. Wolf slowed Cholesky by about 10%

Table 4: Simulated Cache Hit Rates

Cachel: 64K cache, 4-way, 128 byte cache line (RS/6000)
Cache2: 8K cache, 2-way, 32 byte cacheline (i860)
Cold misses are not included
Optimized Procedures Whole Program
Cache 1 Cache2 Cachel Cache2
Program || Orig|Final|| Orig|Final || Orig | Final || Orig |Final

Perfect Benchmarks

adm 100 [100 |[|97.7 |97.8 [|99.95 [99.95(/98.48 |98.58
arc2d 89.0 {98.5 |{68.3 |91.9 |[95.30 |98.66||88.58 |93.61
bdna 100 [100 ({100 (100 [|99.45 (99.45((97.32 |97.32
dyfesm 100 [100 ({100 [100 [/ 99.98 [99.97(/97.02 |96.95
flo52 99.6 [99.6 ||96.7 |96.3 ||98.77 | 98.77|(93.84 |93.80
mdg 100 (100 |(|87.4 (874 || — |— ||— |—
mg3d 98.8(99.7 ||95.3 |98.7 || — |— ||[—— |—
ocean 100 [100 [|93.0[92.8 [|99.36 [99.36(|93.71 {93.72

qcd 100 [100 ({100 [100 [/ 99.83 [99.83(/98.85 |98.79

spec77 100 [100 ({100 [100 [|99.28 [99.28(|93.79 {93.78

track 100 [100 ({100 ({100 [/ 99.81 (99.81((97.49 |97.54

trfd 99.9 (99.9 {{93.7 {93.7 {|99.92 {99.92|(96.43 |96.40
SPEC Benchmarks

dnasa’ 83.2 [92.7 ||54.5|73.9 |[99.26 |99.27||85.45 |88.76
doduc 100 |100 |{95.5[95.5 [|99.77 |99.77(|95.92 |95.92
fpppp 100 [100 [{100 {100 {{99.99 {99.99(|98.34 |98.34
hydro2d {|97.9 |98.3 {{90.2 {91.9 (|98.36 |98.48(|92.77 |93.28
matrix300{|99.7 |99.7 |{91.6 |92.1 || 93.26 | 93.26||81.66 |81.67
su2cor 100 |100 |{99.2 [99.8 [|98.83 |98.83(|70.41 |70.41
swm256 |[{100 (100 [[{100 |100 || 98.83|98.84((81.00 [81.11
tomcatv ||97.8 {97.8 [|87.3 |87.3 |[99.20 [99.20||95.26 |95.25
NAS Benchmarks
applu 99.9 (99.9 ([99.4 {99.4 ||99.38 |99.36|(97.22 [97.14
appsp 90.5 (92.9 ||88.5{89.0 ||99.33|99.39(96.04 [96.43
mgrid 99.3 (99.8 [[91.6 |92.1 ||99.65 |99.65|96.04 [96.04
Miscellaneous Programs
erlebacher|[99.4 [99.8 [|94.0 |96.8 ||98.00 |98.25|(92.11 {93.36
linpackd {|98.7 |100 |{94.7 [100 ([98.93 |98.94(|95.58 |95.60
simple 91.0 (99.1 (|84.393.7 ||97.3599.34|/93.33 [95.65
wave 98.2 (99.9 ([82.9 {95.9 ||99.74 |99.82||87.31 |88.09

on the DECstation and by a slight amount on the i860. We neither
improve or degrade either kernel. More direct comparisons are
not possible because Wolf does not present cache hit rates and the
execution times were measured on different architectures.

5.6 Data AccessProperties

To further interpret our results, we measured the data access prop-
erties for our test suite. For the applications that we significantly
improved on theRS/6000 (Arc2d, Dnasa7, Appsp, Smpleand Wave),
we present the data access properties in Table 5.4 We report the
locality statistics for the original, ideal memory order, and final
versions of the programs. L ocality of Reference Group classifies
the percentage of RefGroups displaying each form of self reuse as
invariant (Inv), unit-stride (Unit), or none (None). (Group) con-
tains the percentage of RefGroups constructed partly or completely
using group-spatial reuse. The amount of group reuse is indicated
by measuring the average number of references in each RefGroup
(Refs/Group), where a RefGroup size greater than 1 implies group-
temporal reuse and occasionally group-spatial reuse. The amount
of group reuseis presented for each type of self reuse and their av-
erage (Avg). The LoopCost Ratio column estimates the potential
improvement as an average (Avg) over all the nests and aweighted

*The data access propertiesfor all the programsare presented elsewhere[CMT94].

Table 5: Data Access Properties

L ocality of Reference Groups L oopCost
% Groups Refs/Group Ratios
Program Inv | Unit | None | Group | Inv | Unit | None | Avg | Avg | Wt
arc2d original 3 53 44 1 153 | 1.23 | 126 | 1.25
final 3 77 20 0 212 | 134 | 100 | 129 | 221 | 216
ideal | 14 66 20 0 172 | 1.31 | 100 | 1.30 | 414 | 473
dnasa? original 5 48 47 0 141 | 148 | 116 | 1.33
final 8 57 35 0 133 | 148 | 110 | 1.34 | 208 | 2.27
ideal | 35 37 28 0 161 | 1.27 | 1.07 | 1.34 | 295 | 333
appsp original 0 38 62 0 0 104 | 1.08 | 1.06
final 0 49 51 0 0 103 | 109 | 1.06 | 1.25 | 1.24
ideal 8 44 48 0 149 | 1.03 | 1.02 | 1.06 | 434 | 443
simple original 0 93 7 0 0 225 | 185 | 222
final 0 98 2 0 0 226 | 1.00 | 223 | 248 | 248
ideal 1 97 2 0 150 | 227 | 100 | 223 | 272 | 272
wave original 6 47 47 1 195 | 148 | 127 | 141
final 1 71 28 0 200 | 155 | 102 | 141 | 426 | 425
ideal 3 70 27 0 163 | 1.55 | 1.01 | 141 | 430 | 428
all programs original 3 37 60 0 153 | 126 | 115 | 1.23
final 3 44 53 0 152 | 127 | 1.05 | 123 | — —
ideal 8 41 51 0 123 | 126 | 1.03 | 123 | — —

average (Wt) uses nesting depth. The last row contains the totals
for all the programs.

Table 5 also reveals that each of these applications had a sig-
nificant gain in self-spatial reuse (Unit) over the original program.
Because of the relatively long cache lines on the RS/6000, spatial
locality was the key to getting good cache performance. Although
programmers can make the effort to ensure unit-stride access on
RS/6000 applications, we have shown that our optimization strat-
egy makes this unnecessary. By having the compiler compute the
machine-dependent loop ordering, avariety of coding styles can be
run efficiently without additional programmer effort.

The all programsrow in Table 5 reveals that on average fewer
than two references exhibited group-temporal reuse in the inner
loop, and no references displayed group-spatial reuse. Instead,
most programs exhibit self-spatial reuse. The ideal program ex-
hibits significantly more invariant reuse than the original or final.
Invariant reuse typically occurs on loopswith reductions and time-
step loops that are often involved in recurrences and cannot be
permuted. However, tiling may be able to exploit some of the
invariant reuse carried by outer loops.

5.7 Analysisof Individual Programs

Below, we examine Arc2d, Smple, Gmtry (three of the applications
that we improved) and Applu (the only application with a degrada-
tion in performance. We note specific coding stylesthat our system
effectively ported to the RS/6000.

Arc2d is afluid-flow solver from the Perfect benchmarks. The
main computational routines exhibit poor cache performance due
to non-unit stride accesses. The main computational loop is an
imperfect loop nest with four inner loops, two with nesting depth 2
and two with nesting depth 3. Our algorithm is able to achieve a
factor of 6 improvement on the main loop nest by attaining unit-
stride accesses to memory in the two loops with nesting depth 3.
Thisimprovement alone accounted for a factor of 1.9 on the whole
application. The additional improvement illustrated in Table 3
is attained similarly by improving less time-critical routines. Our
optimization strategy obviated the need for the programmer to select
the “correct” loop order for performance.

Simple is a two-dimensional hydrodynamics code. It contains
two loopsthat are written in a“ vectorizable” form (i.e., arecurrence
is carried by the outer loop rather than the innermost loop). These

loops exhibited poor cache performance. Compoundreordersthese
loopsfor datalocality (both spatial andtemporal) rather than vector-
ization to achieve the improvements shownin Table 3. In this case,
the improvements in cache performance far outweigh the potential
loss in low-level parallelism when the recurrenceis carried by the
innermost loop. To regain any lost parallelism, unroll-and-jam can
be applied to the outermost loop [CCK 88, Car92]. Finally, itisim-
portant to note that the programmer was allowed to write thecodein
aform for one type of machineand still attain machine-independent
performance through the use of compiler optimization.

Gmtry, a SPEC benchmark kernel from Dnasa?, performs Gaus-
sian elimination across rows, resulting in no spatial locality. Al-
though this may have been how the author viewed Gaussian elimi-
nation conceptually, it translated to poor performance. Distribution
and permutation are ableto achieve unit-stride accessesin theinner-
most loop. The programmer is therefore allowed to write the code
in aform that she or he understands, while the compiler handlesthe
machine-dependent performance details.

Applu suffers from a tiny degradation in performance (2%).
The two leading dimensions of the main data arrays are very small
(5 x 5). While our model predictsbetter performancefor unit-stride
access to the arrays, the small array dimensions give the original
reductions better performance on the RS/6000. Locality within the
two innermost loopsis not a problem.

6 Tiling

Permuting loops into memory order maximizes estimated short-
term cache-line reuse across iterations of inner loops. Assuming
that the cache size is relatively large, the compiler can apply loop
tiling, a combination of strip-mining and loop interchange, to cap-
ture long-term reuse at outer loops [1T88, LRW91, WL 91, Wol87].
Tiling must be applied judiciously because it affects scalar opti-
mizations, increases|oop overhead, and may decreasespatial reuse
at tile boundaries. Our cost model provides us with the key in-
sight to guide tiling—the primary criterion for tiling is to create
loop-invariant references with respect to the target loop. Theseref-
erences accesssignificantly fewer cachelinesthan both consecutive
and non-consecutive references, making tiling worthwhile despite
the potential loss of spatial reuse at tile boundaries. For machines
with long cachelines, it may also be advantageousto tile outer loops
if they carry many unit-stride references, such as when transposing

a matrix. In the future, we intend to study the cumulative effects
of optimizations presented in this paper with tiling, unroll-and-jam,
and scalar replacement.

7 Conclusion

This paper presents a comprehensive approach to improving data
locality and is the first to combine loop permutation, fusion, distri-
bution, and reversal into anintegrated algorithm. Becausewe accept
some imprecision in the cost model, our algorithms are simple and
inexpensive in practice, making them ideal for use in a compiler.
More importantly, the imprecision in our model is not a factor in
the compiler’s ability to exploit datalocality. The empirical results
presented in this paper validate the accuracy of our cost model and
algorithms for selecting the best loop structure for datalocality. In
addition, they show this approach has wide applicability for exist-
ing Fortran programsregardless of their original target architecture,
but particularly for vector and Fortran 90 programs. We believe
this is a significant step towards achieving good performance with
machine-independent programming.

Acknowledgments

We wish to thank Ken Kennedy for providing theimpetus and guid-
ance for much of thisresearch, and Peter Craig at Digital for inspir-
ing the addition of loop reversal. We are grateful to the ParaScope
research group at Rice University for the software infrastructure on
which this work depends. In particular, we appreciate the assis-
tance of Nathaniel Mclntosh on simulations. We acknowledge the
Center for Research on Parallel Computation at Rice University for
supplying most of the computing resourcesfor our experimentsand
simulations.

References

[AS79] W. Abu-Sufah. Improving the Performance of Virtual Memory
Computers. PhD thesis, Dept. of Computer Science, University

of Illinois at Urbana-Champaign, 1979.

[Car92] S. Carr. Memory-Hierarchy Management. PhD thesis, Dept. of
Computer Science, Rice University, September 1992.

[CCK88] D. Cdlahan, J. Cocke, and K. Kennedy. Estimating interlock
and improving balancefor pipelined machines. Journal of Par-
allel and Distributed Computing, 5(4):334-358, August 1988.

[CCK90] D. Callahan, S. Carr, and K. Kennedy. Improving register

alocation for subscripted variables. In Proceedingsof the S G-
PLAN ’90 Conference on Program Language Desigh and Im-
plementation, White Plains, N, June 1990.

[CHH*93] K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKin-
ley, J. M. Méellor-Crummey, L. Torczon, and S. K. Warren. The
ParaScope parallel programming environment. Proceedings of
the |IEEE, 81(2):244-263, February 1993.

K. Cooper, M. W. Hall, and K. Kennedy. A methodology
for procedure cloning. Computer Languages, 19(2):105-117,
February 1993.

[CHK93]

[CK94] S. Carr and K. Kennedy. Scalar replacement in the presence of
conditional control flow. Software—Practice and Experience,

24(1):51-77, January 1994,

[CMT94] S Carr, K. S.MCKinley, and C. Tseng. Compiler optimizations
for improving data locality. Technical Report TR94-, Dept. of

Computer Science, Rice University, July 1994.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating and en-
hancing cache effectiveness. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers
for Parallel Computing, Fourth International Workshop, Santa
Clara, CA, August 1991. Springer-Verlag.

[FSTO1]

[GJG88]

[GKT91]

[HKM91]

[IT88]

[KKP*81]

[KM92]

[KM93]

[KMT93]

[LP92]

[LRWO1]

[McK92]

[Wars4]

[WL91]

[Wol87]

[Wol91]

[Wol92]

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cacheand
local memory management by global program transformation.
Journal of Parallel and Distributed Computing, 5(5):587-616,
October 1988.

G. Goff, K. Kennedy, and C. Tseng. Practical dependencetest-
ing. In Proceedings of the SSIGPLAN ’'91 Conference on Pro-
gram Language Design and mplementation, Toronto, Canada,
June 1991.

M. W. Hall, K. Kennedy, and K. S. MCKinley. Interprocedural
transformationsfor parallel code generation. In Proceedingsof
Supercomputing’ 91, Albuquerque, NM, November 1991.

F. Irigoin and R. Triolet. Supernode partitioning. In Proceed-
ings of the Fifteenth Annual ACM Symposiumon the Principles
of Programming Languages, San Diego, CA, January 1988.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe.
Dependencegraphsand compiler optimizations. In Conference
Record of the Eighth Annual ACM Symposiumon the Principles
of Programming Languages, Williamsburg, VA, January 1981.

K. Kennedy and K. S. MCKinley. Optimizing for parallelism
and datalocality. In Proceedingsof the 1992 ACM International
Conference on Supercomputing, Washington, DC, July 1992.

K. Kennedy and K. S. MCKinley. Maximizing loop parallelism
and improving datalocality vialoop fusion and distribution. In
Languages and Compilers for Parallel Computing, Portland,
OR, August 1993.

K. Kennedy, K. S. MCKinley, and C. Tseng. Analysisand trans-
formation in aninteractive parallel programmingtool. Concur-
rency: Practice & Experience, 5(7):575-602, October 1993.

W. Li and K. Pingali. Accessnormalization: Loop restructur-
ing for NUMA compilers. In Proceedingsof the Fifth Interna-
tional Conference on Architectural Support for Programming
Languagesand Operating Systems, Boston, MA, October 1992.

M. Lam, E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In Proceedingsof the
Fourth International Conference on Architectural Support for
Programming Languagesand Operating Systems, SantaClara,
CA, April 1991.

K. S. McKinley. Automatic and Interactive Parall€lization.
PhD thesis, Dept. of Computer Science, Rice University, April
1992.

J. Warren. A hierachical basis for reordering transformations.
In Conference Record of the Eleventh Annual ACM Symposium
on the Principles of Programming Languages, Salt Lake City,
UT, January 1984.

M. E. Wolf and M. Lam. A datalocality optimizing algorithm.
In Proceedings of the SSIGPLAN '91 Conference on Program
Language Design and I mplementation, Toronto, Canada, June
1991.

M. J. Wolfe. Iteration spacetiling for memory hierarchies, De-
cember 1987. Extended version of a paper which appeared in
Proceedings of the Third SSAM Conference on Parallel Pro-
cessing.

M. J. Wolfe. The Tiny loop restructuring research tool. In
Proceedings of the 1991 International Conference on Parallel
Processing, St. Charles, IL, August 1991.

M. E. Wolf. Improving Locality and Parallelism in Nested
Loops. PhD thesis, Dept. of Computer Science, Stanford Uni-
versity, August 1992.

