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Abstract

Programmers build large-scale systems with multiple lan-
guages to reuse legacy code and leverage languages best
suited to their problems. For instance, the same program
may use Java for ease-of-programming and C to interface
with the operating system. These programs pose significant
debugging challenges, because programmers need to under-
stand and control code across languages, which may execute
in different environments. Unfortunately, traditional multi-
lingual debuggers require a single execution environment.
This paper presents a novel composition approach to
building portable mixed-environment debuggers, in which
an intermediate agent interposes on language transitions,
controlling and reusing single-environment debuggers. We
implement debugger composition in Blink, a debugger for
Java, C, and the Jeannie programming language. We show
that Blink is (1) relatively simple: it requires modest amounts
of new code; (2) portable: it supports multiple Java Virtual
Machines, C compilers, operating systems, and component
debuggers; and (3) powerful: composition eases debugging,
while supporting new mixed-language expression evalua-
tion and Java Native Interface (JNI) bug diagnostics. In real-
world case studies, we show that language-interface errors
require single-environment debuggers to restart execution
multiple times, whereas Blink directly diagnoses them with
one execution. We also describe extensions for other mixed-
environments to show debugger composition will generalize.

Categories and Subject Descriptors D.3.4 [Programming
Languages): Processors—Debuggers; D.2.5 [Software En-
gineering]: Testing and Debugging—Debugging aids

General Terms Languages, Design, Reliability

Keywords Foreign Function Interface, JNI, Composition
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1. Introduction

In an ideal world, programmers would write correct pro-
grams in a single language. In the real world, time-to-
market pressures and evolving software requirements re-
sult in mixed-language programs. Software developers re-
sort to multiple languages because (1) they can leverage
legacy code and existing libraries, and (2) they can choose
a language well-suited to their needs for new code. Large
programs are hard to get correct, even when written in a sin-
gle language, because an individual developer is typically an
expert on only a small fraction of the code. Mixed-language
programs require additional developer expertise, and lan-
guage interfaces add another source of errors. For example,
the literature reports hundreds of mixed-language interface
bugs [6, 7, 13, 29].

Unfortunately, traditional debuggers are not much help
with mixed-language programs, because they are limited to a
single execution environment. For example, native programs
and their debuggers (e.g., the gdb debugger for C, C++, and
Fortran) require language implementations to use the same
Application Binary Interface (ABI). The ABI is machine de-
pendent and thus precludes portable execution environments
for managed languages, such as Java, C#, Ruby, JavaScript,
and Python, which enforce type and memory safety. For
portability, these languages rely on virtual machine (VM)
execution, using interpretation, just-in-time compilation,
and garbage collection, while also hiding internal code,
stack, and data representations. Debuggers for managed lan-
guages, such as the standard Java debugger jdb, operate on
VM abstractions, e.g., through the Java Debug Wire Protocol
(JDWP), but do not understand native code. Current mixed-
language debuggers are limited to XDI and dbx, which sup-
port Java and C within a single JVM [18, 27], and the Visual
Studio debugger, which supports managed and native code
in the Common Language Runtime (CLR) [22]. While these
debuggers understand all environments, they are behemoths
that are not portable. The challenge when building a mixed-
environment debugger is that each environment has different
representations; managed debuggers operate at the level of
bytecodes and objects, whereas native debuggers deal with
machine instructions and memory words.



This paper presents a novel debugger composition de-
sign for building mixed-environment debuggers that uses
runtime interposition to control and reuse existing single-
environment debuggers. An intermediate agent instruments
and controls all language transitions. The result is a simple,
portable, and powerful approach to building debuggers. We
implement this approach in Blink, a debugger for Java, C,
and the Jeannie programming language [12]. Furthermore,
we identify the requirements and mechanisms for generaliz-
ing our approach to other language environments. Because
Blink reuses existing debuggers, it is simple: Blink requires
9K lines of new code, half of which implement interposition.
Blink is portable: it supports multiple Java virtual machines
(Sun and IBM), C compilers (GNU and Microsoft), and op-
erating systems (Unix and Windows). By comparison, dbx
works only with Sun’s JVM and XDI works only with the
Harmony JVM.

Debugger composition also facilitates powerful new de-
bugging features: (1) a read-eval-print loop (REPL) that, in
Blink, evaluates mixed Java and C expressions in the context
of a running program, and (2) a dynamic bug checker for two
common Java Native Interface (JNI) problems. We demon-
strate this functionality using several case studies, which re-
produce bugs found in real programs and compare debug-
ging with other tools to debugging with Blink. Whereas the
other tools crash, silently ignore errors, or require multiple
program invocations to diagnose a bug, Blink typically iden-
tifies the bug right away in a single program invocation. The
result is a debugger that helps users effectively find bugs in
mixed-language programs.

To summarize, the contributions of this work are:

1. A new approach to building mixed-environment debug-
gers that composes single-environment debuggers. Prior
debuggers either support only a single environment or re-
implement functionality instead of reusing it.

2. Blink, an implementation of this approach for Java, C,
and Jeannie, which is simple, portable, powerful, and
open source [9].

3. Two advanced new debugger features: a mixed-environ-
ment interpreter and a dynamic checker for detecting JNI
misuse.

4. A description of the requirements and mechanisms for
composing language execution environments that lays
the groundwork for generalizing debugger composition.

2. Motivation: A Language Interface Bug

This section illustrates that debugging across language in-
terfaces with current tools is at best painful and that Blink
significantly improves the debugging experience.

Consider the code in Figure 1, which distills fragments
from the Eclipse SWT windowing toolkit and the java-
gnome Java binding for the GNOME desktop to illustrate a

EventHandlerBug.java

1. public class EventHandlerBug {

2 static { System.loadLibrary("NativeLib"); }

3 static final String[] EVENT_NAMES

4 = { "mouse", "keyboard" };

5. public static void main(String[] args) {

6 int idx = Integer.parselnt(args[0]);

7 assert (0 <= idx && idx < EVENT_NAMES.length);

8. dispatch (EVENT_NAMES[idx] + "Event");

9. }

10. static native void dispatch(String ml);

11. static void mouseEvent () {

12. System.out.println("mouse clicked");

13. }

14. /* cause: ‘keyboard’ vs. ‘keyBoard’ mismatch */
15. static void keyBoardEvent () {

16. System.out.println("key pressed");

17. }

18. }

EventHandlerBug.c

19. #include <jni.h>
20.\ void EventHandlerBug dispatch (JNIEnv* env,
21 jclass cls, Jjstring ml) {
22. call java wrapper(env, cls, ml);
23./}
24 ( static void call java wrapper (JNIEnv* env,
25. jclass cls, Jjstring jstr) {
26. const char* estr = (*env)->GetStringUTFChars (
27. env, jstr, NULL);
28. jmethodID mid = (*env)->GetStaticMethodID (
29. env, cls, estr, "()V");

30. /* effect: attempted call with invalid ‘mid’ */
31. (*env)->CallStaticVoidMethod (env, cls, mid);
32. (*env) ->ReleaseStringUTFChars (env, jstr, cstr);
33. }

Figure 1. Example bug: a typo in Java code (Line 15)
causes a crash in C code (Line 31).

common class of JNI bugs that is due to JNI’s reflection-like
API [8]. Execution starts at Line 6 in Java code. Line 8 calls
the dispatch method, passing either "mouseEvent" or
"keyboardEvent" as a parameter. The dispatch method
is declared in Java (Line 10) but defined in C (Line 20).
Line 22 calls another C function, call_java_wrapper, de-
fined in Line 24. Line 28 looks up the Java method identi-
fier (mid) based on the parameter string. This lookup fails
for "keyboardEvent" because of the capitalization error
(Line 15 expects "keyBoardEvent"). With the current state
of the art, this bug is difficult to diagnose. For example, exe-
cuting Sun’s JVM with the -Xcheck: jni flag results in the
following output:

FATAL ERROR in native method:
JNI call made with exception pending
at EventHandlerBug.dispatch(Native Method)
at EventHandlerBug.main(EventHandlerBug.java:8)

This call stack shows only Java line numbers, and does
not mention the C function call_java_wrapper where the
error occurs. The user would at best inspect the code to
find JNI calls, and then re-execute the program with break-
points potentially on all JNI operations. Existing static bug-
detectors do not find this problem either, because they do not
currently handle the array lookup and string manipulation on
Line 8, which are difficult to analyze statically [7, 13, 30].



Blink improves over both approaches—it detects the in-
valid JNI usage, automatically inserts a breakpoint, and
prints the following diagnostic message:

JNI warning:

Missing Error Checking: CallStaticVoidMethod

[1] call_by_name_wrapper
(EventHandlerBug.c:31)

[2] Java_EventHandlerBug_dispatch
(EventHandlerBug.c:22)

[3] EventHandlerBug.main
(EventHandlerBug. java:8)

blink> _

This message shows the mixed C and Java stack, and iden-
tifies the call at Line 31 as erroneous. Since mid is invalid,
the user would next determine that mid is derived from the
string cstr and print cstr:

blink> print cstr
"keyboardEvent"

Variable cstr holds "keyboardEvent" instead of "key-
BoardEvent", but where does that value come from? Line 8,
mentioned in the original stack trace, contains the expression
EVENT_NAMES [idx]+"Event". To examine the Java array
from the C breakpoint, the user employs Blink’s mixed-
language expression evaluation as follows:

blink> print ‘EventHandlerBug.EVENT_NAMES[1]
"keyboard"

To fix the bug, the user would either change the string in
EVENT_NAMES [1] or the method name in Line 15.

3. Debugger Composition Approach

This section describes our approach to building mixed-
environment debuggers by composing them out of single-
environment debuggers. We use our implementation of Blink
for Java and C as our running example. Section 6 presents
requirements and mechanisms for generalizing composition
to other mixed-language environments.

3.1 Debugger Features

Our goal is to provide all the standard debugging features in
a mixed environment. When a user debugs a program, she
wants to find and correct a defect that results in erroneous
data or control flow, which leads to erroneous output or a
crash [37]. Rosenberg identifies three essential features in
support of this quest [20]:

Execution control: The debugger controls the execution of
the debuggee process by starting it, halting it at break-
points, single-stepping through it, and eventually tearing
it down. Typical interactive commands are run, break,
step, continue, and exit.

Context management: The debugger keeps track of where
in the code the debuggee process is, and, on demand,
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Figure 2. Agent-based debugger composition approach.

reports source code listings and call stack traces. Typical
interactive commands are 1ist and backtrace.

Data inspection: Users query the debugger to inspect data
with source language expressions, such as print or
eval.

3.2 Intermediate Agent

Our approach to implementing these standard debugger
features for a mixed environment is to compose single-
environment debuggers through an intermediate agent. The
mixed-environment debugger consists of a controller and
one driver for each single-environment component debug-
ger. Figure 2 illustrates this structure for the case of Java
and C using jdb for Java, and gdb or cdb for C (depending
on whether we run on Linux or Windows). The debuggee
process runs both Java and C, and the intermediate agent
coordinates the debuggers. The intermediate agent has two
complementary responsibilities:

Language transition interposition: When the debuggee
switches environments on its own, the agent alerts the
corresponding single-environment debugger, so this de-
bugger can track context or take over if necessary.

Debugger context switching: When an interactive user com-
mand requires the debugger to switch environments,
the agent transitions the debuggee into the appropriate
state, and issues the command to the appropriate single-
environment debugger.

The following subsections detail the agent responsibilities
and how to satisfy them.



3.3 Language Transition Interposition

Language transition interposition is required for execution
control, because otherwise single-stepping is incomplete.
Consider a Java and C debuggee suspended at a Java break-
point: the Java debugger is in charge and the C debugger is
dormant. A single-step on a return statement to C causes a
language transition to C. The agent must detect this transi-
tion, because otherwise the Java debugger waits for control
to return to Java code while the C debugger remains dor-
mant.

Language transition interposition is also required for con-
text management, because otherwise stack traces are incom-
plete. Language transitions result in different portions of the
stack belonging to different environments, but each single-
environment debugger understands only the portions corre-
sponding to its own language. To prepare for reporting the
entire mixed-language stack, the agent must track all the
seams.

Therefore, the agent must capture all environment transi-
tions, whether they are debuggee- or user-initiated. With two
languages, there are four kinds of local transitions: mixed-
language calls and returns (e.g., Java call to C, C call to Java,
Java return to C, and C return to Java). The agent must also
capture non-local control flow such as exceptions.

Our approach instruments all environment transitions to
call agent code. For instance, in Figure 2, we interpose on
transitions between Java and C code, instrumenting them to
call the agent. One option for realizing this instrumentation
is to modify the compiler or interpreter. However, to achieve
portability across different JVMs and C compilers, we do
not want to modify them. Instead, we leverage the fact that
Java’s foreign function interface (FFI) is wrapper-based and
instrument the wrappers.

3.4 Debugger Context Switching

When one single-environment debugger is active and the
user issues a command that only the other debugger can
perform, the agent must assist in debugger context switch-
ing. For example, when the program is at a breakpoint in
Java and the user wants to set a breakpoint in C, the agent
must suspend the Java debugger and issue the command to
the C debugger. Similarly, commands such as backtrace
and print require one or more context switches to tap into
functionality from both single-environment debuggers. We
switch debugger contexts with the following steps:

1. Set a breakpoint in a helper function in the other environ-
ment.

2. Call the helper function using expression evaluation.
3. At the breakpoint, activate the other debugger.

4. When the other debugger completes, return from the
helper function, which returns control back to the original
debugger.
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Figure 3. Debugger context switching example, using j2c
helper function to switch from jdb to gdb/cdb. Blink also
has a c2j helper function for switching in the other direction.

Figure 3 illustrates context switching on the example of
switching from jdb to gdb. Each vertical line represents an
execution context, with the currently active context marked
by a box overlaying the line. Horizontal arrows show control
transfers between execution contexts. From top to bottom,
the application starts out executing Java code and hits a
Java breakpoint, thus suspending itself and activating jdb.
Now, suppose the user requests a gdb debug action. At the
moment, gdb is inactive and cannot accept user commands.
Blink therefore initiates a debugger context switch by using
the jdb function evaluation feature to call the debugger
agent method j2c. The method j2c is a Java method that
uses JNI to call C and has a breakpoint in the C part of
the code. When execution hits the C breakpoint, gdb is
activated, and can perform the debug action requested by the
user. When complete, gdb’s continue returns from the C
code and Java method, at which point jdb wakes up again
and is ready to accept commands. The user can either request
additional debugging actions in Java or C, or resume normal
application execution with continue.

3.5 Soft-Mode Debugging

Debugger composition requires soft-mode debugging, in
which the debuggee process executes basic commands, such
as break, step, and backtrace, on behalf of the debugger.
In contrast, hard-mode debugging does not require the de-
buggee to run code on the debugger’s behalf, except when
users explicitly request it, for example, with a command to
evaluate a function call. Debuggers for C, including gdb and
cdb, are typically hard-mode. Java debuggers are typically
soft-mode because Java’s JDWP (Java Debugger Wire Pro-



tocol) expects an agent in the JVM that issues commands to
the debuggee.

Soft-mode debugging is less desirable than hard-mode
because running code in the debuggee changes debuggee
state and behavior, and may thus lead to Heisenberg effects.
The very act of debugging may change the behavior of the
bug. Notably, the user may set a breakpoint in a C library
shared by the application and JVM. The user expects to
reach the breakpoint through a JNI call, but JVM code may
instead reach the breakpoint through internal service code.
Since the JVM is typically not reentrant (i.e., it assumes that
no user code runs in the middle of a JVM service), debugger
actions may now crash the JVM. For example, the JVM’s
allocator may temporarily leave a data structure in an in-
consistent state, thus making it unsafe for the agent to al-
locate objects. Furthermore, even if the native breakpoint is
not reachable from the JVM, JNI disallows JNI operations
when exceptions are pending or garbage collection is dis-
abled. Reentering the JVM without first clearing the excep-
tion or re-enabling garbage collection may crash or deadlock
the system [13, 14].

Blink mitigates its use of soft-mode debugging by warn-
ing users on actions that might trigger a soft-mode incon-
sistency. Debugging actions in C are safe as long as the
program entered native code through JNI, exceptions are
cleared, and garbage collection is enabled. Since we already
rely on language interposition, we detect whether the JVM is
in a safe state. If the debugger is about to perform an action
in C, but the JVM is in an unsafe state, the debugger warns
the user. Instead of just warning the user, we could refuse to
perform debug actions altogether. We chose a warning over
refusal since unreliable information is better than no infor-
mation.

4. Advanced Features

This section shows how interposition for composition fa-
cilitates two advanced debugging features: (1) identifying
mixed-language interface errors, and (2) mixed-language ex-
pression evaluation, which helps users manipulate and ex-
amine state across multiple languages.

4.1 Environmental Transition Checker

Interposition makes it easy to control and compose debug-
gers, and it also makes it easy to add dynamic checks that
find language interface bugs. This section demonstrates how
to build a powerful Environmental Transition Checker that
detects two common language interface bug classes: (1) un-
caught exceptions, and (2) unexpected null values. We leave
to future work the exploration of more powerful bug finders.

Dynamic checking is complementary to static analysis:
dynamic checking misses true bugs if code is not executed,
whereas static analyses report some false bugs that can never
occur. At the same time, dynamic checking has the advan-
tage that it does not need to access the whole program’s

source code, unlike static analysis [13, 29]. At failure points,
our dynamic checker prints the mixed-environment calling
context and local variables, which are important clues to
finding the root cause.

In the case of Java and C, the boundary is defined by the
Java Native Interface (JNI), and we classify bugs as either
Java-to-C or C-to-Java. We focus here on C-to-Java bugs.
JNTI’s API is complex and brittle; consequently, it is a major
source of bugs [8, 13, 29, 30]. Programmers tend to make
mistakes with respect to the Java type system and do not
carefully follow the JNI rules [14]. For instance, C code
must correctly name fields or methods of Java objects, which
cannot be easily checked statically because of dynamic class
loading. Programmers must also ensure that the JVM has no
pending exception when the program calls a JNI function.
The JNI function specification exposes the Java type system
and low-level JVM details, such as the exception model
and the garbage collector, which many programmers do not
understand and have no interest in.

We now motivate our choice of bug classes and describe
the extensions to the intermediate agent to dynamically
check for missing exception checks and unexpected null
values.

4.1.1 Exception Checking

The JNI specification disallows JNI calls when an exception
is pending. Since C does not support exceptions, users must
handle them by hand. In particular, when an exception is
raised, the C code must clean up resources such as acquired
locks, and unwind call frames until it finds an exception han-
dler or exit. C macros and nested function calls complicate
the task of writing C code that unwinds the stack and re-
leases resources. Furthermore, since exceptions are rare, this
code is hard to exercise and test, which leads to bugs. Pre-
vious work shows that programmers tend to write JNI code
that incorrectly propagates exceptions [13, 29]. We thus add
code to Blink that automatically detects missing error check-
ing, which is key to integrating languages with and without
automatic exception handling.

To detect missing error-checking, Blink adds to the inter-
mediate agent, which instruments and interposes on all JNI
function calls. For example, Blink wraps CallStaticInt-
Method as follows:

int

wrapped_CallStaticIntMethod (JNIEnv* env, ...) {

if (jvm_ExceptionCheck(env))
cbreak(env, "Missing JNI Error Check!");
return jvm_CallStaticIntMethod(env, ...);

}

The agent changes the pointer CallStaticIntMethod to
refer to wrapped_CallStaticIntMethod instead of the
original jvm_CallStaticIntMethod. The wrapper checks
if the JVM has a pending exception. If it does, it executes
cbreak, a native breakpoint set during agent initialization,



which reports a breakpoint hit to the native component de-
bugger and, in turn, to Blink, which displays the error mes-
sage to the user together with the current calling context.

4.1.2 Null Checking

The JNI specification requires that some function arguments
must be non-null pointer values and previous work reports
these errors are common [14]. If JNI functions receive un-
expected arguments, the JVM may crash or silently pro-
duce incorrect results. Neither outcome is desirable, and
the programmer should inspect and correct all these errors.
Blink dynamically detects obviously invalid arguments to
JNI functions, i.e., NULL or (jobject) OxFFFFFFFF. We ex-
tend Blink’s intermediate agent interposition on every JNI
function call to check that the arguments are valid as in the
following example function:
jstring
wrapped_NewStringUTF (JNIEnv* env, char* utf) {
if ( (utf == NULL) || (utf == OxFFFFFFFF) )
cbreak(env, "Invalid JNI Argument!");
return jvm_NewStringUTF(env, utf);

}

So, when C passes NULL as the utf argument, the agent calls
the C breakpoint function cbreak and reports an error mes-
sage and the current stack. At this point, the user probably
needs to examine variables and expressions from both lan-
guages to determine the root cause of the invalid argument.
We therefore provide mixed-language expression evaluation,
as described in the next section.

4.2 Jeannie Mixed-Environment Expressions

The more powerful a debugger’s data inspection features, the
easier it is for the user to determine whether she is on the
right track to finding a bug. For example, gdb provides ex-
pression evaluation with a read-eval-print loop (REPL). An
interactive interpreter evaluates arbitrary source language
expressions based on the current application state. While im-
plementing a language interpreter requires a significant engi-
neering effort, expression evaluation makes it easier to deter-
mine whether the current state is infected, especially if the
evaluator supports function calls and side effects. Besides
debugging, expression evaluation is useful for rapid proto-
typing, program understanding, and testing, as users of lan-
guages with REPLs readily attest.

Blink advances the state of the art of expression evalu-
ation by accepting mixed-environment expressions, which
nest subexpressions from multiple languages and environ-
ments with a language specification operator. It is based
on the insight that, given single-environment interpreters,
mixed-environment expression evaluation reduces to hand-
ing off subexpressions to the component debuggers and
passing intermediate results between them.

Blink implements mixed-environment expressions writ-
ten in the Jeannie programming language syntax [12], which

mixes Java and C code using the incantation “backtick pe-
riod language”, i.e., *.C and ‘.Java. A single backtick ¢
toggles when there are only two languages, as in Blink. For
example, consider this native Java method declaration from
the BuDDy binary decision diagram library [15]:

public static native int makeSet(int[] var);

The C function implementing this Java method looks as
follows:

jint BuDDyFactory_makeSet (
JNIEnv *env, jclass cls, jintArray arr
) {
. /* C code using parameters through JNI */
}

In the C function, the variable arr is an opaque refer-
ence to a Java integer array. Single-language expression
evaluation could only print its address, which is not help-
ful for debugging. But the mixed-environment expression
€.C((‘.Java arr).length) (or ¢ ((‘arr).length) for
short) changes to the Java language and accesses the Java
field 1length of the C variable arr, returning the length of
the Java array, which is much more meaningful to the user.
Clearly, mixed-environment expression evaluation makes
data inspection more convenient.

We add two features to Blink’s debugger agent to support
expression evaluation:

Convenience variables store the results of a (sub)expression
evaluation in temporary variables.

Mixed-environment data transfer translates and transfers
data between environments.

4.2.1 Convenience Variables

Application variables are named locations in which appli-
cation code stores data during execution. Convenience vari-
ables are additional named locations provided by the debug-
ger, in which the user interactively stores data for later use
in a debugger session. Convenience variables behave like
variables in many scripting languages: they are implicitly
created upon first use, have global scope, and are dynam-
ically typed. In addition to user-defined convenience vari-
ables, some debuggers support internal convenience vari-
ables, for example, to hold intermediate results during ex-
pression evaluation. In the mixed-environment case, the de-
bugger must remember not only the values of convenience
variables, but also their languages. Since gdb provides con-
venience variables (written “$var”), Blink reuses them to
store C values. Since jdb and cdb lack this feature, Blink
implements convenience variables in the debugger agent, us-
ing a table to map names to values and languages. The table
is polymorphic to support dynamic typing.

4.2.2 Mixed-Environment Data Transfer

Mixed-environment data transfer is the only case where
Blink must discover enough type information to treat the



value appropriately, since the single-language debuggers
usually perform this function. The Blink agent transfers data
from a source to a target environment by first storing data
in an array in the source environment. It then uses a helper
Java method or JNI function to read from the array and re-
turns the value to the target environment. One complication
is that the array and the retrieval function must have the cor-
rect type, since the semantics of a value depend on its type
and language. For example, Blink must convert an opaque
JNI reference in C to a pointer in Java; a struct or union
in C, on the other hand, does not have a direct correspon-
dence in Java. In the case of C values, gdb provides exactly
what Blink needs: the whatis command finds the type of an
expression without executing it, and in particular, without
causing any side effects or exceptions. Since jdb lacks the
necessary functionality, Blink distinguishes between differ-
ent Java types for primitive values, such as numbers, charac-
ters, or booleans, and for references, i.e., objects or arrays,
using a simple work-around. Blink instructs jdb to pass the
value to a helper method that is overloaded for the different
primitive and reference types. Jdb’s expression evaluation
automatically selects the appropriate method, thus ensuring
that values can be correctly transferred to C.

4.2.3 Expression Evaluation (REPL)

This section explains each step of Blink’s read-eval-print
(REPL) loop.

Read. As suggested by Rosenberg [20], the “read” stage
of Blink’s REPL reuses syntax and grammar analysis code.
We reuse the Jeannie grammar, which composes Java and
C grammars [10, 12]. It is written in Rats/, a parser gen-
erator that uses packrat parsing for expressiveness and per-
formance. The Jeannie grammar and Rats/ are designed for
composition. Section 7 discusses Jeannie in more detail.

Whereas a traditional compiler annotates the AST with
types, Blink annotates the AST with: (1) the language (Java
or C), and (2) whether each AST node is an r-value (read-
only) or an l-value (written-to on the left-hand side of an
assignment). Figure 4 shows how Blink annotates the AST
for the expression “x = $y + ‘z”, assuming that the cur-
rent language is Java. Node x is an l-value and node z is a C
r-value because z’s parent is the language toggle backtick ¢.

Blink uses the component debuggers for symbol resolu-
tion. As is usual in debuggers, application symbols such as
variable and function names are resolved relative to the cur-
rent execution context. User convenience variables, on the
other hand, have global scope and do not require context-
sensitive lookup.

Eval. The interpreter visits the AST in depth-first left-to-
right post-order. Each node is executed exactly once and in
the right order, to preserve language semantics in the pres-
ence of side effects, and to not surprise users if an excep-
tional condition, such as a segmentation fault, cuts expres-
sion evaluation short.

Figure 4. Reading the expression x = $y + ‘z when the
current language is Java.

n localRef$3

Figure 5. Evaluating the expression x = $y + ‘z when
the current language is Java.

To evaluate an expression one AST node at a time, Blink
uses temporary storage for subexpression results. For r-
values, Blink evaluates the node, and then stores the result
in an internal convenience variable. For 1-values, Blink eval-
uates their children, but delays their own evaluation. These
lI-values are evaluated later as part of their parent, which
is by definition an assignment. Figure 5 shows the exam-
ple expression “x = $y + ‘z”, assuming that the conve-
nience variable $y is currently the number 99, and the C
application variable z is currently an opaque JNI local ref-
erence localRef$3. All leaves are variables, which Blink
evaluates through the component debuggers’ REPL. Blink
directly uses any leaf literals without lookup. At inner nodes,
Blink needs to perform evaluation actions. For the language
toggle operator ¢, Blink performs a mixed-environment data
transfer as described in Section 4.2.2. For Figure 5, Blink
discovers that the JNI reference localRef$3 on the C side
refers to the Java string " bottles" on the Java side. For
other operators, such as + and =, Blink falls back on the
REPL in the component debuggers. Note that in general, an
inner node may call a user function and may thus execute
arbitrary user code.

Print. 'When expression evaluation reaches the root of the
tree, Blink prints the result. As recommended by Rosenberg,
Blink disables user breakpoints for the duration of expres-
sion evaluation, because the user would probably be sur-
prised when expression evaluation hits a breakpoint in a
callee [20]. But there may be other exceptional conditions
during expression evaluation, such as Java exceptions or C
segmentation faults. In this case, Blink aborts the evaluation
of the current expression, and the debug session continues at



in JVM !

Figure 6. Transitions between Java and C.

the fault point instead. Whether expression evaluation termi-
nates normally or abnormally, Blink always nulls out inter-
nal convenience variables for sub-results and re-enables all
user breakpoints.

S. Blink Implementation

While previous sections described debugger composition
and the advanced features it enables at a high level, this
section explains Blink’s implementation in detail.

5.1 Blink Debugger Agent

The Blink debugger agent is a dynamically linked library
that includes both Java and native code and that executes
within the JVM hosting the application. The host JVM loads
and initializes the Blink agent using the Java Virtual Ma-
chine Tool Interface (JVMTI) [26]. Blink triggers single-
environment debugger actions using their expression eval-
uation features. As far as the component debuggers are con-
cerned, these actions are initiated by the application process.

Debugger context switching. Blink supports switching
contexts between its component debuggers as illustrated in
Figure 3. The helper functions j2c and c2j are part of the
Blink debugger agent, and contain hardcoded internal break-
points. These internal breakpoints force the application to
surrender control to the respective debugger.

Runtime transition interposition. The Blink agent inter-
poses on all environment transitions to report full mixed run-
time stack traces and to control single-stepping between en-
vironments. Figure 6 shows the four possible transitions be-
tween Java and C. Java exceptions are automatically prop-
agated by JNI, and thus do not result in additional environ-
ment transitions.

J2c¢ call: Line 8 in Figure 7 is an example of a call from
Java to C. It looks just like an ordinary method call, and
in fact, with virtual methods, the same call in the source
code may invoke native methods or Java methods. To in-
terpose on j2c calls, the Blink agent wraps all JNI native
methods. For example, the wrapper function for the native
method PingPong_cPong on Line 14 in Figure 7 conceptu-
ally reads:

PingPong.java
1. class PingPong {
2 static { System.loadLibrary ("PingPong"); }
3. public static void main(String[] args) {
4. jPing (3) ;
5 }
6 static int jPing(int 1) {
7 if (i > 0)
8 cbPong (i - 1);
9. return i;
10. }
11. static native int cPong(int 1i);
12. 1}

PingPong.c

13. #include <jni.h>
14. jint PingPong cPong(

15. JNIEnv* env, jclass cls, jint i

16. ) |

17. if (1 > 0) {

18. jmethodID mid = (*env)->GetStaticMethodID (
env, cls, "jPing", "(I)I");

19. (*env)->CallStaticIntMethod (env,cls,mid, i-1);

20. }

21. return i;

22. }

Figure 7. JNI mutual recursion example.

jint wrapped_PingPong_cPong(...) {
j2c_call(); /* interposed j2c call */
jint result = PingPong_cPong(...);
j2c_return(); /+* interposed j2c return */
return result;

}

Because wrappers are largely generic, i.e., pass arguments to
and results from the original native method implementation
while also invoking the debugger agent, Blink uses assembly
code templates to instantiate each native method’s wrapper.
This approach is simple and general, i.e., does not require
the full power of dynamic code generation. However, it does
require some porting effort across architectures and operat-
ing systems. In our experiences with IA32 and PowerPC for
Unix and Windows, the non-portable code amounts to only
10-20 lines of assembly.

Jj2c return: The Blink agent interposes on returns from a
C function to a Java method through the JNI native method
wrapper function shown above. The return looks just like an
ordinary function return, and, in fact, the same C function
can return sometimes to Java and sometimes to C.

¢2j call: All calls from C to Java go through a JNI inter-
face function, such as CallStaticIntMethod in Figure 7
on Line 19. Blink instruments every c2j interface function.
All interface functions reside in a struct of function point-
ers pointed to by variable JNIEnv* env on Line 15 of Fig-
ure 7. During JVMTTI initialization, Blink replaces the origi-
nal function pointers by pointers to wrappers. Conceptually,
the wrapper for CallStaticIntMethod reads:

int wrapped_CallStaticIntMethod(...) {
c2j_call(); /* interposed c2j call */
int result = jvm_CallStaticIntMethod(...);



c2j_return(); /* interposed c2j return */
return result;

}

Note that, for demonstration purposes, Section 4.1.1 showed
a different wrapper for CallStaticIntMethod. In the ac-
tual implementation, the wrapper also performs the check
for pending exceptions.

c2j return: The same wrappers that interpose on c2j calls
also interpose on c2j returns, as shown above.

5.2 Context Management

One basic debugger principle from Rosenberg’s book [20]
is: “Context is the torch in the dark cave.” Users, unable
to follow all the billions of instructions executed by the
program, feel like they are being taken blind-folded into a
dark cave when searching for the source of a bug. When
the program hits a breakpoint, the debugger must provide
context.

Source line number information. The most important
question in debugging is: “Where am I?”” Debuggers answer
it with a line number. Java compilers provide line number
information to jdb, and C compilers provides line number
information to gdb or cdb, which Blink borrows.

Calling context backtrace. While “Where am 1?” is the
most important question, “How did I get here?” is a close
second. Debuggers answer this question with a calling con-
text backtrace, which shows the stack of function calls lead-
ing up to the current location. The JNI code in Figure 7 is an
example of mixed-runtime calls that produce a mixed stack.
In the beginning, the main method on Line 4 calls the jPing
method with argument 3, yielding the following stack:

main:4 — jPing(3):7

Since i > 0, control reaches Line 8, where the Java method
jPing calls native method cPong defined in C code as func-
tion PingPong_cPong:

main:4 — jPing(3):8 — cPong(2):17

The C function cPong calls back into Java method jPing
by first obtaining its method ID on Line 18, then using
the method ID in the call to CallStaticIntMethod on
Line 19:

main:4 — jPing(3):8 — cPong(2):19 — jPing(1):7

Finally, after one more call from jPing to cPong, the mixed-
environment mutual recursion comes to an end as it reaches
the base case i = 0:

main:4 — jPing(3):8 — cPong(2):19 — jPing(1):8
— cPong(0) : 17

At this point, the stack contains multiple and alternating
frames from each environment. Unfortunately, the single-
environment debuggers only know about a part of the stack

each, since each environment uses its own calling conven-
tion. For example, a standard Java debugger shows all Java
fragments, with gaps for the C parts of the stack:

main:4 — jPing(3):8 — ?(C) — jPing(1):8 — ?(C)

A standard C debugger has even less information. It only
shows the bottom-most C fragment:

?(Java/C) — cPong(0) : 17

Neither gdb nor cdb understand the JVM implementation
details for Java frames.

Blink weaves the complete stack from JVM call frames
and native method frames by exploiting the Java native
method wrappers discussed in Section 5.1. The j2c wrapper
saves its frame pointer and program counter in a thread lo-
cal variable, and the c2j wrapper retrieves the saved frame
pointer and program counter while also overwriting its old
frame pointer and return address. Modifying the proces-
sor state accordingly guides the C debuggers to skip JVM-
specific native frames between j2c and c2j wrappers and
yields the following C frames:

cPong(2) :19 — wrapped_CallStaticIntMethod
— wrapped_PingPong_cPong — cPong(0) : 17

Blink recognizes its agent wrapper functions and presents
the interleaved Java and C stack:

main:4 — jPing(3):8 — cPong(2):19 — jPing(1):8
— cPong(0) : 17

Blink thus recovers and reports the full stack to the user
as needed. These implementation details will vary for other
languages, their environments, and their debuggers. As de-
scribed below, the user can also inspect data from both lan-
guages at a breakpoint.

5.3 Execution Control

If context is the torch in the dark cave, then execution con-
trol is the means by which the user can get from point A to B
in the cave when tracking down a bug. The debugger con-
trols execution by starting up, tearing down, setting break-
points, and stepping through program statements based on
user commands.

Start-up and tear-down. The Blink controller starts the
program in the JVM, attaches jdb and either gdb or cdb, and
loads the Blink debugger agent. To load the agent, Blink uses
JVMTI and the -agentlib JVM command line argument.
To initialize the agent, Blink issues internal commands, such
as setting two internal breakpoints: one for Java and the other
for C.! After it initializes and connects all the processes, but
before the user program commences, Blink gives the user a
command prompt. When the program terminates, Blink tears
down jdb and gdb/cdb and exits.

!'The internal breakpoints are multiplexed for several conditions. See Sec-
tion 8.3 for the performance impact of evaluating these conditions.



Breakpoints. Breakpoints answer the question: “How do I
get to a point in program execution?” Users set breakpoints
to inspect program state at points they suspect may be erro-
neous. The debugger’s job is to detect when the breakpoint
is reached and then transfer control to the user. One of the
key challenges for a mixed-environment debugger is setting
a breakpoint for a location in an inactive environment. This
functionality requires the debugger to transfer control to the
other environment’s debugger, set the breakpoint, and return
control to the current environment’s debugger. Blink takes
the breakpoint request from the user, and checks if the re-
quest is for Java or C. If the current environment does not
match the breakpoint environment, Blink switches the de-
bugging context to the target environment and directs the
breakpoint request to the corresponding debugger.

Single stepping. Once the application reaches a break-
point, the question is: “What happens next?” Users want
to single step though the program, examining control flow
and data values to find errors. The step into, or simply step,
command executes the next dynamic source line, which may
be the first line of a method call, whereas the step over,
or next, command treats method calls as a single step.
The challenge for mixed-environment single-stepping is that
while jdb can step through Java and gdb or cdb can step
through C, they lose control when stepping into a call to
the other environment or when returning to a caller from the
other environment.

Blink maintains control during a step command as fol-
lows. It sets internal breakpoints at all possible language
transitions, so if the current component debugger loses con-
trol in a single-step, then the other component debugger im-
mediately gains control. Blink only enables transition break-
points from the current environment to the other environ-
ment when the user requests a single-step. Furthermore,
when the user requests step-over as opposed to step-into,
Blink enables return breakpoints, as opposed to both call
and return breakpoints. Note that Blink does not make any
attempts to decode the current instruction, but rather aggres-
sively sets needed internal breakpoints just in case the single-
step causes an environment transition, and then operates on
the user command. This approach greatly decreases debug-
ger development effort, since accurate Java single-stepping
requires interpreting the semantics of all byte codes, and ac-
curate C single-stepping requires platform-dependent disas-
sembly.

Once Blink sets the internal breakpoints, it implements
single-stepping by issuing the corresponding command to
jdb or gdb/cdb. There are three possible outcomes:

® The component debugger’s single-step remains in the
same environment. Blink performs no further action.

e There is an environment transition and consequently an
internal breakpoint intercepts it. Blink steps from the
internal breakpoint to the next line.

® An exceptional condition, such as a segmentation fault,
occurs. Blink abandons single stepping.

In all cases, Blink then disables its internal breakpoints, as
usual for breakpoint algorithms [20].

5.4 Data Inspection

Once the user arrives at an interesting point, the main ques-
tion becomes: “Is the current state correct or infected?” This
question is hard to answer automatically, so data inspection
answers the simpler question “What is the current state?”
Blink delegates the inspection of application variables, in-
cluding locals, parameters, statics, and fields, to the compo-
nent debugger for the current environment, which provides
the most local origin for a variable. If, however, the current
component debugger does not recognize the variable, Blink
tries the other component debugger.

6. Generalization

The previous sections focus on composing debuggers for
Java and C. Below, we discuss how to generalize our ap-
proach to more environments. Section 7 describes our ex-
perience with extending Blink to include the Jeannie pro-
gramming language, which mixes Java and C in the same
methods.

Requirement 1: Single-environment debuggers. As might
be expected, debugger composition requires single-environ-
ment debuggers to compose. The single-language debuggers
must support the features discussed in Section 3.1. The con-
troller can extract these features through a command line in-
terface (which is what we use), an API, or a wire protocol.

Requirement 2: Language transition interposition. Our
approach requires instrumenting local and non-local control
flow in all directions across environment boundaries. For
Blink, we leverage Java’s wrapper-based FFI to meet this
requirement and instrument the wrappers. However, there
are other viable implementation strategies for interposition.
For example, for an interpreted language, the interpreter can
call the instrumentation when encountering a transition. For
a compiled language, the compiler can inject a call to the
instrumentation when compiling a transition. Finally, when
only compiled code is available, static or dynamic binary
instrumentation can implement interposition.

Requirement 3: Debugger context switching. Our ap-
proach requires external interfaces to single-environment
debugging functions, such as print or eval. Most single-
environment debuggers provide these commands, includ-
ing jdb and gdb. This ability is also a defining feature
for languages with interactive interpreters, such as Perl,
Python, Scheme, and ML. If, on the other hand, the single-
environment debugger does not support direct function invo-
cation, we must call the helper function through other means,
for example, using an agent helper thread, or a lower-level
API underlying the single-environment debuggers.



1. public static native void f(int x)
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3. jint y = 0;
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7. System.out.println(x);
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9. }

10. printf("%d\n", y);
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Figure 8. Jeannie line number example.

Composing environments. Given two environments where
one environment is the native C environment, it is easy to sat-
isfy the above criteria. For instance, Perl, Python, and Ruby
have debuggers and foreign function interfaces to C. We can
thus satisfy the three requirements as follows: (1) reuse the
perldebug, pdb, or ruby-debug single-environment de-
buggers and their interfaces; (2) extend the runtime systems
to interpose calls to native methods; and (3) use perldebug,
pdb, or ruby-debug to evaluate calls to native methods that
trigger a C breakpoint.

For more than two environments (N > 2), there are
W possible language transitions to interpose on and
debugger context switches to perform. In theory, we could
implement composition by adding agents for each pair of en-
vironments. In practice, the native C environment often acts
as a bridge environment, since most environments imple-
ment foreign function interfaces to C. Using C as a bridge
environment, all the essential requirements are satisfiable:
(1) N single-environment debuggers handle their corre-
sponding N environments; (2) interposition captures tran-
sitions between the N environments and C, because every
transition goes through C; and (3) debugger context switch-
ing to any environment also goes through the bridging C
environment.

7. Language Extension Case Study:
Debugging Jeannie

This section shows how composition generalizes Blink to
the Jeannie programming language [12]. Jeannie programs
combine Java and C syntax in the same source file. This de-
sign eliminates many language-interface errors and simpli-
fies resource management and multi-lingual programming.
The Jeannie compiler produces C and Java code that exe-
cutes in a native and JVM environment, respectively. Thus
adding Jeannie to Blink serves as an example of debugging
more languages in Blink’s mixed environment.?

2 Debugging Jeannie is distinct from borrowing Jeannie’s expression evalu-
ation functionality, which Blink also does and Section 4.2 described.

Jeannie nests Java and C code in each other in the same
file. Compared to JNI, Jeannie is more succinct and less
brittle. For example, JNI obscures the Java type system,
whereas Jeannie programs directly refer to Java fields and
methods, which the Jeannie compiler type checks. In Jean-
nie, ¢ .language specifies the language. As a shortcut, back-
tick ¢ toggles. For example, in Figure 8, the body of Java
method £ is the block A of C code. Block A contains a nested
block B of Java code, with a nested C expression C, which,
in turn, nests Java expression D. The Jeannie compiler emits
separate Java and C files that implement the expected nesting
semantics using JNI. In the example, the Jeannie compiler
separates the code for the Java method declaration and snip-
pets B and D into a Java file and puts the code for C snippets
A and Cinto a C file. Jeannie’s design supports adding more
languages, but that is beyond the scope of this paper.

To add Jeannie to Blink, we changed the Jeannie com-
piler to generate and maintain debug tables for line num-
bers, method names, and variable locations, and we changed
Blink to use these tables for Jeannie source-level debugging.
The following sections illustrate how we extended Blink to
support context management, execution control, and data in-
spection for Jeannie.

7.1 Context Management

Line numbers answer the question: “Where am I?” Call
stacks answer the question: “How did I get here?”

Source line number information. To report the current lo-
cation to the user, the debugger needs to map from low-level
code offsets to source-level line numbers. The Jeannie com-
piler has access to source line numbers during translation,
but relies on other compilers to generate low-level code.
For debugging, we need to preserve line numbers through
the second step. For Jeannie-generated Java code, we wrote
a post-processor that rewrites Java bytecodes to reestablish
the original line numbers from Jeannie sources. For Jeannie-
generated C code, we rely on #1line directives, which are
supported by C compilers precisely to preserve debugging
information for intermediate C code.

Calling context backtrace. Since Jeannie is a single lan-
guage, Blink should show only the user-specified Jeannie
methods and functions on the stack, instead of showing the
generated single-language functions, which are just an im-
plementation detail. For example, for the C source snippets
A and C in Figure 8, the Jeannie compiler generates C func-
tions £ _A and £_C. For the Java snippets B and D, the Jean-
nie compiler generates Java methods £_B and £_D. When the
application is suspended in D, the low-level call stack is:

. —>f—>f A—>fB—->f C—f_D

but this trace is not reflected in the user’s code. We changed
the Jeannie compiler to generate a table mapping names
of generated functions back to the original functions. Blink



uses this mapping to hide low-level call frames and instead
reports source-level names, e.g., just ‘... — £,

7.2 Execution Control

Breakpoints answer the question “How do I get to a point in
program execution?” Single-stepping answers the question
“What happens next?”

Breakpoints. To support breakpoints in another language,
the debugger needs to map from source-level lines to low-
level code offsets. This requires similar debugging tables as
for context management (Section 7.1), except in the opposite
direction. In the case of Jeannie, there is one additional issue:
Blink must delegate the breakpoint to the correct component
debugger by using debugger context switching if necessary.

Single stepping. Stepping in Jeannie adds the challenge
that a single source line may involve multiple languages.
Line 6 in Figure 8 is an example. As discussed in Section 7.1,
the Jeannie compiler tracks original line numbers even when
code ends up in different source files. Blink implements
Jeannie stepping by inspecting line numbers and iterating: it
keeps stepping until the source line differs from the starting
source line. For step-over, Blink records the current stack
depth and then iterates, stepping until stack depth is less than
or equal to the initial depth.

7.3 Data Inspection

Data inspection helps users determine if the current state is
correct or infected. The compiler for each language must
generate a table that maps source-level variable names to un-
derlying variable access expressions in the generated code.
The Jeannie compiler stores local variables in explicit envi-
ronment records [12]. We extended the Jeannie compiler to
provide the necessary mapping information through a sepa-
rate symbol file, which Blink reads on demand.

8. Evaluation

This section evaluates our claim that debugger composition
is an economical way to build mixed-environment debuggers
and that the resulting debuggers are powerful. We show that
Blink is relatively concise, new development cost is low, the
space and time overheads are low, and the resulting tool
is portable. Through the use of case studies, Section 8.4
demonstrates that Blink helps programmers to quickly find
mixed-language interface bugs.

8.1 Methodology

We rely on single-environment debuggers, JVMs, C compil-
ers, and operating systems. We use JDK 1.6 as implemented
by Sun and IBM. For the debuggee running on Linux/IA32
machines, we use Sun’s Hotspot Client 1.6.0_10 [25] and
IBM’s J9 1.6.0 (build pxi3260-20071123_01) [1]. We also
use Sun’s javac 1.6.0_10 and gcc 4.3.2 with the -g op-
tion. For Windows, we use Sun’s Hotspot Client 1.6.0-10,

Debugger SLOC #Files
Blink 9,481 41
Controller (front-end) 4,575 18
jdb driver (back-end) 391 1
gdb driver (back-end) 511 1
cdb driver (back-end) 546 1
Agent - Java (back-end) 1,515 9
Agent - C (back-end) 1,943 11
Java debugger - jdb 86,579 769
jdb (user-interface) 18,360 122
JDI (front-end) 16,983 256

JDWP Agent (back-end) 40,171 356
JVMTI (back-end) 11,065 35
C debugger - gdb 6.7.1 1,017,069 2,331

gdb 419,921 1,524
include 32,039 215
bfd 286,981 398
opcodes 278,128 194

Table 1. Debugger SLOC (source lines of code).

Sun’s javac 1.6.0_10, and Microsoft’s C/C++ compiler
(cl.exe) 15.00.21022.08. We use Sun’s JDK 1.6.0 jdb and
Microsoft’s cdb 6.9.0003.113 debuggers, and GNU gdb 6.8
debugger running on Cygwin 1.5.25, a Unix compatibility
layer for Windows.

8.2 Building Blink

Blink’s modest construction effort leverages the large engi-
neering effort and supported platforms of existing single-
environment debuggers. To quantify this claim, we count
non-blank non-commenting source lines of code (SLOC),
which is an easily available, but imperfect measure of the ef-
fort to develop and maintain a software package. Given the
orders of magnitude differences in SLOC, we are confident
that this metric reflects substantial differences in engineering
effort.

8.2.1 Construction Effort

Table 1 shows the code sizes of Blink, jdb, gdb, and
their components. The jdb line counts are for the jdb
1.6 sources in demo/jpda/examples.jar of Sun’s JDK
1.6.0-b105. The JDI line counts are for the JDI imple-
mentation in the Eclipse JDT. The JDWP and JVMTI
line counts are for the corresponding subdirectories of the
Apache DRLVM. Blink adds a modest 9,481 SLOC to inte-
grate 1,103,648 SLOC from the Java and C debuggers. The
SLOC of the existing debugger packages are 9 to 107 times
larger than Blink’s. Although other researchers show how
to build single-environment debuggers more economically
than gdb [19, 21], Blink adds modestly to this effort. Blink
only adds new code for interposing on environment tran-
sitions and for controlling the individual debuggers. Blink
otherwise reuses existing debuggers for intricate platform-
dependent features such as instruction decoding for single-
stepping or code patching for breakpoints.
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Figure 9. Blink portability and SLOC.

8.2.2 Portability

To evaluate the effort required for porting Blink to multiple
platforms, we measure the amount of platform-independent
and -dependent code.

The basic composition framework requires 4,575 SLOC.
Blink needs an additional 4,265 SLOC to support our initial
configuration, which uses Sun’s Hotspot JVM, jdb, and gdb
running on Linux/IA32. Out of Blink’s total 9,481 SLOC,
approximately 1,500 SLOC implement platform-specific
code in the agent and debugger drivers, representing about
16% of Blink’s code base. Our native agent contains a small
amount of non-portable platform- and ABI-specific code to
access the native call stack. Furthermore, a small amount of
debugger-specific code is required because cdb exposes a
different user interface than the more expressive gdb. Con-
sequently, Blink employs an internal adaptation layer to pro-
vide uniform access to either gdb on GNU platforms or cdb
on Windows.

Figure 9 plots the cumulative SLOC for the Blink con-
troller; then the code for supporting Hotspot, jdb, and gdb
on Linux; then the code for supporting J9 on Linux; then gcc
and gdb under Cygwin on Windows; and finally Microsoft’s
C and cdb on Windows. As shown in the figure, Blink re-
quires no additional code to support IBM’s J9 and Cygwin.
Furthermore, it requires only 640 SLOC to support cdb on
Windows. These results show that Blink’s debugger compo-
sition is effective and requires only small amounts of code
when adding more operating systems, JVMs, C compilers,
and component debuggers.

8.2.3 Portability Tests

We now briefly describe some of our functionality tests.
They give us confidence that our implementation is correct
and complete on all supported platforms.

Context management. This test sets two breakpoints, at
jPing (PingPong. java:7) and cPong (PingPong.c:17)
in Figure 7. During execution, the application stops at each
of these breakpoints twice, and, each time, the test issues the
backtrace command.

Execution control. This test first sets a breakpoint at the
main method of the mutual recursion example in Figure 7.

From there, the test repeatedly uses the step command
until the end of the program. This test exercises all cases
of mixed-language stepping through calls and returns.

Data inspection. This test first sets a breakpoint in a nested
context of two example programs in the Blink regression test
suite. (The interested reader can find these programs in the
open-source distribution of Blink [9].) When the application
hits the breakpoint, the test evaluates a variety of expres-
sions, covering primitive and compound data, pure expres-
sions and assignments, language transitions, and user func-
tion calls.

Results. Currently, all these and other functionality tests
succeed for the following configurations on TA32:

Sun JVM Linux
{ IBM JVM }*{ Cygwin }+ gdb
The “Cygwin” case uses Windows with the GNU C com-
piler, instead of Microsoft’s C compiler. We also tried the
tests on PowerPC, but found that gdb did not interact well
with the JVM on that platform. Using a Linux/Power Mac
G4 machine running IBM JDK 1.6.0 (SR1) and gdb 6.8,
gdb reports an illegal instruction signal (SIGILL) when the
debuggee resumes execution after a breakpoint in a shared
library. We leave further investigation of different architec-

tures to future work. We also test Blink with Microsoft’s C
compiler and Microsoft’s C debugger:

Sun JVM + Windows + cdb

In this configuration, context management and execution
control are fully supported, but data inspection is only par-
tially supported because cdb’s expression evaluation fea-
tures are incomplete when compared to gdb.

8.3 Time and Space Overhead

This section shows that the time and space overheads of
Blink’s intermediate agent are low.

Time Overhead. The time overhead of the intermediate
agent is linearly proportional to the number of dynamic tran-
sitions between Java and C, since it installs wrappers in both
Java native methods and JNI functions. These wrappers add
a small number of instructions to the dynamic instruction
stream for each transition between Java and C.

To measure the performance impact of interposition in
the intermediate agent, we ran several large Java programs
with the Blink agent. We measured runtime and dynamic
transition counts with Sun Hotspot 1.6.0_10 running on a
Linux/IA32 machine on the SPECjvm98 and DaCapo Java
v.2006-10 Benchmarks [23, 3]. These Java benchmarks exer-
cise C code inside the standard Java library. The initial heap
size was 512MB, and the maximum heap size was 1GB. The
experiments used a Pentium D 2 GHZ running Linux 2.6.27.
Each benchmark iterated once. The results are the median of
16 trials.



Benchmark | Environmental transition counts Execution time in seconds Normalized execution time
Java — C Java«— C Java«— C | Base Active Interposed Checked Active Interposed Checked
JVMTI transitions transitions | JVMTI transitions transitions
antlr 221,309 249,411 470,720 | 4.58 4.41 4.64 4.65 0.96 1.01 1.02
bloat 594,644 233,795 828,439 8.50 8.48 9.32 9.41 1.00 1.10 1.11
chart 346,317 677,240 1,023,557 9.28 9.17 9.90 9.87 0.99 1.07 1.06
eclipse 2,631,281 6,206,930 8,838,211 | 50.70  50.88 59.76 58.69 1.00 1.18 1.16
fop 540,899 1,439,441 1,980,340 3.74 3.88 4.25 4.31 1.04 1.14 1.15
hsqldb 130,959 73,750 204,709 5.61 5.65 5.76 5.78 1.01 1.03 1.03
jython 13,525,019 42,859,171 56,384,190 | 11.83  11.66 12.27 12.37 0.99 1.04 1.05
luindex 441,090 936,565 1,377,655 9.28 9.35 9.94 10.01 1.01 1.07 1.08
lusearch 2,015,481 1,513,508 3,528,989 8.34 9.17 9.89 10.05 1.10 1.19 1.21
pmd 531,579 436,124 967,703 8.45 8.58 9.05 9.09 1.02 1.07 1.08
xalan 769,991 362,868 1,132,859 | 19.10 19.54 22.34 22.27 1.02 1.17 1.17
compress 5,958 9,960 15,918 3.71 3.73 3.96 4.00 1.01 1.07 1.08
jess 92,272 62,917 155,189 2.63 2.56 3.23 3.16 0.97 1.23 1.20
raytrace 18,170 12,375 30,545 1.44 1.43 1.64 1.68 0.99 1.14 1.17
db 53,225 80,733 133,958 9.54 9.57 9.72 9.74 1.00 1.02 1.02
javac 184,566 71,972 256,538 6.54 7.28 7.46 7.30 1.11 1.14 1.12
mpegaudio 25,733 21,588 47,321 2.81 2.81 2.77 2.79 1.00 0.99 0.99
mtrt 18,784 13,427 32,211 1.80 1.72 2.01 2.02 0.96 1.12 1.12
jack 418,681 886,216 1,304,897 3.90 3.87 4.22 4.38 0.99 1.08 1.12
GeoMean 1.01 1.09 1.10
Table 2. Performance characteristics of the Blink debug agent with Hotspot VM 1.6.0_10.
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Figure 10. Time overhead of the Blink debug agent with Hotspot VM 1.6.0_10. Note the vertical axis starting at 0.9.

Table 2 shows the results. Column environmental tran-
sition counts shows the number of dynamic transitions be-
tween Java and C. The following columns show execution
times in the four configurations—Base, Active JVMTI, In-
terposed transitions, and Checked transitions—and normal-
ized execution times for the debugger configurations. The
Base configuration represents production runs without any
debugging-related overhead. In contrast, the fully functional
agent needs to activate JVMTI, interpose transitions, and
check transitions.

Figure 10 illustrates Blink’s runtime normalized to the
production runs. JVMTI, interposition, and transition check-
ing add 1%, 8%, and 1% overhead, respectively. There are a

few counter-intuitive speedups because the JIT and GC add
non-determinism to the runtime. On average, Blink’s total
overhead is 10%. Figure 11 shows that the overhead is sub-
linear to the total dynamic transition counts. Although the
agent overhead is linearly proportional to the dynamic tran-
sition counts in theory, it is less in practice because environ-
mental transitions contribute little to overall execution time.
For an interactive tool, a 10% overhead is modest.

Space Overhead. The space overhead of running Blink is
mostly due to additional code loaded into the debuggee. In
particular, on Linux/IA32, the intermediate agent itself re-
quires 388 KB, and the 229 JNI function wrappers introduce
174 KB of constant space overhead. Additionally, each na-



Main Java class Program

| Java/C SLOC |

Bug type Bug site (source file:line)

UnitTest Java-gnome 4.0.10 64,171/67,082 | Null parameter Environment.c:48
geonf .BasicGConfApp libgconf-2.16.2 796/1,157 Null parameter | org_gnu_gconf_ConfClient.c:425
BadErrorChecking Blink-testsuite 1.14.3 15/9 Exception state BadErrorChecking.c:21

Table 3. Studied JNI Bugs. The two JNI bugs in UnitTest and gconf .BasicGConfApp are found when running these two
programs with Blink. BadErrorChecking models exception handling bugs reportedly common in both user- and system-level

JNI code [13, 29].

Main Java class Production run

Runtime checking
(-Xcheck:jni)

Debugging session with J9 VM
Single environment | Mixed environment

Hotspot VM J9 VM | Hotspot VM J9VM | jdb gdb Blink
UnitTests running crash warning warning | crash fault breakpoint
gconf .BasicGConfApp running crash running crash crash fault breakpoint
BadErrorChecking running crash warning error crash fault breakpoint

Table 4. Impact of JNI bugs under different configurations. Running: continue executing with undefined state. Crash: abort
the JVM with a fatal error (e.g., segmentation fault). Error: exit JVM with error message. Fault: suspended by debugger due
to an error inside the JVM, which becomes inoperable. Breakpoint: suspended by debugger, while JVM remains operable.
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Figure 11. Environmental transitions and time overhead for
the Blink debug agent with Hotspot VM 1.6.0_10. Note the
logarithmic horizontal axis.

tive method incurs 11 bytes space overhead for its wrapper,
instantiated from an assembly code template. Finally, each
thread requires 156 bytes of thread-local storage used by the
intermediate agent, and less than 160 bytes for each wrapper
activation on the stack for an environment transition. We do
not measure total space overhead in a live system, since it is
small by design.

8.4 Feature Evaluation

This section explores how Blink saves programmers time
and effort when diagnosing the source of mixed-environment
bugs. We compare Blink to other tools using three case stud-
ies. In these studies, the other tools are not helpful, whereas
Blink directly pinpoints the bugs.

We examine three common mixed-environment errors:
one artificially recreated and two found in JNI programs in
the wild. Table 3 lists the programs, lines of code, bug types,
and bug sites. Blink directly identifies the two JNI bugs
in UnitTest and gconf.BasicGConfApp. We also recre-
ated an exception-handling bug in BadErrorChecking,

which is reported as common in both user- and system-
level JNI code [13, 29]. For each of these bugs, Table 4
compares Blink to production runs of Hotspot and J9, with
runtime checking in Hotspot and J9 (configured with the
-Xcheck: jni command line option), and with jdb and gdb.

In production runs with runtime checking, Hotspot and J9
behave differently, but neither JVM helps the user find bugs.
Hotspot tends to silently ignore bugs without terminating,
whereas J9 either crashes or reports errors. While seemingly
improving stability, ignoring bugs in production runs may
also corrupt state, which is clearly undesirable. The JVMs’
runtime checking does not help much for two reasons. First,
error messages are largely dependent on JVM internals and
are inconsistent across the two JVMs. Second and more
importantly, the JVMs cannot interpret code and data in
native code, where the JNI bugs originate.

Single-environment debuggers are also of limited use.
The JNI bugs trigger segmentation faults, which are machine
level events below the managed environment. As a result, the
managed environment debugger (jdb) cannot catch the fail-
ure. The unmanaged environment debugger (gdb) catches
this low-level failure, but detection is too late. For instance,
the fault-inducing code never appears in the calling contexts
of any thread when gdb detects the segmentation fault for J9
running BadErrorChecking.

Blink stops the programs immediately after it detects the
JNI error conditions, because it understands both environ-
ments. At the point of failure, programmers can inspect
all the mixed-environment runtime state. We next discuss
these errors in more detail, grouping them in two categories:
(1) null parameters and (2) exception state checking.

Null Parameters. Semantics for JNI functions are unde-
fined when their arguments are (jobject)OxFFFFFFFF
or NULL [14]. Hotspot ignores these errors and J9 crashes
in gconf.BasicGConfApp and UnitTests, which pass



NULL to the NewStringUTF JNI function (see Table 4).
NewStringUTF takes a C string and creates an equivalent
Java string. Returning NULL for a NULL input may improve
reliability, but violates the specification of NewStringUTF:

“Returns NULL if and only if an invocation of this
function has thrown an exception.” [14]

When Hotspot returns NULL, it should also post an excep-
tion. In addition, returning NULL may mislead JNI program-
mers into believing that NewStringUTF returns a null Java
string when the input parameter is NULL [24]. J9 crashes and
presents a low-level error message with register values and a
stack trace. The error message does not include any clue to
the cause of the bug. JVM runtime checking does improve
the error message.

Blink detects the NULL parameter and presents the Java
and C state on entry to the JNI function. Given the JNI fail-
ure in gconf.BasicGConfApp, a mixed-environment call-
ing context tells the programmer that NewStringUTF does
not return a null Java string for a NULL input with the fol-
lowing useful error message:

JNI warning:

NULL parameter to JNI Function: NewStringUTF

425 return (*env)->NewStringUTF(env, val);
blink> where

[1] Java_org_..._1client_1iget_1istring

(ConfClient.c:425)
[2] org.gnu.gconf.ConfClient.getString
(ConfClient. java:440)

[3] gconf.BasicGConfApp.createConfigurableLabel
(BasicGConfApp.java:128)

blink> _
Missing Exception State Checking. JNI does not define
the JVM’s behavior when C code calls a JNI function with
an exception pending in the JVM. Consider this C source
code from the BadErrorChecking micro-benchmark.
16. #include <jni.h>
17. JNIEXPORT void Java_BadErrorChecking_call (
18.  JNIEnv *env, jobject obj) {
19.  jclass cls = (*env)->GetObjectClass(
env, obj);
20.  jmethodID mid = (*env)->GetMethodID(
env, cls, "foo", "QOV");
21. (*env)->CallVoidMethod(env, obj, mid);
22. mid = (*env)->GetMethodID(
env, cls, "bar", "(OV");

23. (*env)->CallVoidMethod(env, obj, mid);
24. }

At the call to Java in Line 21, the target Java method foo
may raise an exception and then continue with the C code
in Line 22, while the JVM has a pending exception. JNI
rules require that the C code either returns immediately to
the most recent Java caller or invokes the ExceptionClear
JNI function. Consequently, the call to the JNI function
GetMethodID in Line 22 leaves the JVM state undefined.
In fact, Hotspot keeps running while J9 crashes. This rule
applies to 209 JNI functions out of 229 functions in JNI 6.0.

Writing the corresponding error checking code is tedious
and error-prone. Previous work [13, 29] reports hundreds
of bugs in JNI glue code. We briefly inspected the Java-
gnome 4.0.10 code base and found two cases of missing
error checking. One case never happens unless the JVM
implements one JNI function incorrectly. The other case
happens only when the JVM is running out of memory,
throwing an OutOfMemoryError exception, which is rare
and thus hard to find and test. For these reasons, we created
the BadErrorChecking micro benchmark.

The intermediate agent in Blink detects calls to JNI func-
tions while an exception is pending, and asks Blink to stop
the debuggee. Blink then warns the user of missing error
checking, and presents the calling context.

JNI warning: Missing Error Checking: GetMethodID
[1] Java_BadErrorChecking_call
(BadErrorChecking.c:22)
[2] BadErrorChecking.main
(BadErrorChecking. java:5)

blink> _

9. Related Work

This section describes how our paper advances the state of
the art in building mixed-environment debuggers and how
Blink compares to prior work.

9.1 Mixed-Environment Debuggers

One contribution of this paper is an implementation of the
most portable and powerful debugger for Java and C to
date. Blink’s power and portability derives from composing
existing powerful and portable debuggers. In retrospect, this
idea may seem obvious, but we believe that it was previously
unclear whether composition could provide fully featured
debugging across language environments.

The closest work to compositional debugging is by
White, who describes a manual technique for mixed-environ-
ment debugging for Java and C that attaches single-environ-
ment debuggers to the same process [35, 36]. The result-
ing system is limited because it cannot examine a mixed
stack, cannot step into cross-environment calls, and can-
not set breakpoints in one environment when stopped in the
other, all of which Blink supports.

There are three mixed-environment debuggers (dbx, XDI,
and the Visual Studio debugger) that are practical, but unlike
this paper, do not use a compositional approach. These de-
buggers are not easily extended nor are they portable.

The dbx debugger extends an existing C debugger for
Java [27]. XDI extends an existing Java debugger for C [18].
Both XDI [18] and dbx [27] are powerful but they are less
portable than Blink. XDI works only with the Harmony
JVM, which is a non-standard JVM. Dbx only works with
Sun’s JVM on Solaris, and, with limited functionality, on
Linux. Blink is more portable; it supports multiple JVMs



(HotSpot and J9) and C debuggers (cdb and gdb) on both
Linux and Windows.

The Visual Studio debugger debugs C# and C in the
CLR (Common Language Runtime) [22]. It is also exten-
sible through debug engines [34]. However, in contrast to
Blink, where multiple debuggers attach to a single mixed-
environment program, each Visual Studio’s debug engine is
responsible for one program. The CLR provides two debug-
ging APIs: one native and one managed. To handle a mixed-
environment program, a debug engine must use both APIs.
Given two CLR debuggers, one for the native API and one
for the managed API, our compositional approach would
yield a mixed-environment debugger.

9.2 Single-Environment Multi-Lingual Debuggers

Some multi-lingual debuggers require all the languages to
implement a single interface in the same environment [4, 16,
21]. For example, the GNU debugger, gdb, can debug C to-
gether with a subset of Java statically compiled by gcj [4].
Many real-world Java applications however exceed the gcj
subset and require a full JVM to run. Compared to these ap-
proaches, ours is the only one that leverages independently-
developed debuggers.

9.3 Portable Debuggers

Portability of debuggers depends on their construction mech-
anisms: reverse engineering or instrumentation. In the re-
verse engineering model, debuggers interpret machine-level
state with symbol tables emitted by compilers, and gener-
alize the symbol table formats to add more platforms. For
instance, dbx, gdb, and 1db recognize portable symbol ta-
ble formats including dbx “stabs” [16], DWARF [5], and
even PostScript [19]. In the instrumentation model, a de-
buggee process executes its debugger code. By construc-
tion, the instrumentation-based debuggers are as portable
as the languages of the in-process debuggers. For instance,
TIDE [33], smld [32], and Hanson’s machine-independent
debugger [11] do not need any extra effort for additional
platforms. However, instrumentation causes a factor 3—4
slowdown, which may impede adoption.

Blink leverages portability of its component debuggers,
and the construction mechanisms are portable. For reverse
engineering, the symbol table for Jeannie discussed in Sec-
tion 7 is platform-independent. For instrumentation, the in-
termediate agent has only 10-20 lines of low-level assembly
code.

9.4 Advanced Mixed-Language Debugger Features
The following subsections discuss work related to Blink’s
advanced debugger features.

9.4.1 Mixed-Language Interpreters

One contribution of this paper is Blink’s read-eval-print loop
(REPL) for mixed Java and C expressions. Debuggers that
support multiple languages, such as gdb, often include an

interpreter for expressions in each language. Blink is novel
in that it interprets expressions by delegating subexpressions
to the appropriate single-language debuggers. Blink’s REPL
uses a syntax for embedding Java in C and vice versa that
was developed in an earlier paper on Jeannie [12]. The Jean-
nie paper described the language and its compiler, but did
not describe an interpreter, let alone a debugger.

9.4.2 Mixed-Language Bug Checkers

Another contribution of this paper is Blink’s dynamic er-
ror checker for Java native interface (JNI) calls. The clos-
est related work is the -Xcheck: jni flag, which turns on
dynamic error checking in Sun’s and IBM’s JVMs. Table 3
in [13] summarizes how each JVM behaves for a variety of
bugs with and without this flag. For example, the flag traps
uses of invalid local references, or double-frees of resources.
Blink provides similar functionality in a JVM-independent
way, and, as an added benefit, provides a stack trace and
breakpoint for debugging the problem.

There are various static bug checkers for Java and C.
Static analyses are a valuable asset for detecting bugs early.
However, they suffer from false positives: not every reported
bug is an actual bug. As a dynamic checker, Blink has no
false positives. Each existing static JNI bug checker is de-
signed to look only for some class of bugs, and some yield
false negatives even for their chosen class of bugs. J-Saffire
infers and checks Java types from C code [8]. Kondoh and
Onodera check type-state properties on JNI code based on
BEAM [13]. Tan and Croft use static analyses to study se-
curity issues in Java’s standard library [29]. Of course, static
multi-lingual bug checkers are not restricted to Java and C.
For example, Quail performs string analysis for Java/SQL
safety [31]. Static analysis is complementary to dynamic de-
bugging, which helps find some bugs static analysis misses.
Furthermore, the hundreds of bugs in widely-used libraries
reported by these papers motivate our work.

An alternative to finding bugs in mixed-language pro-
grams is to rewrite those programs in a language that pre-
vents some bugs from occurring in the first place. For exam-
ple, SWIG [2] generates stubs for C to be called from Tcl.
SafeJNI [28] combines Java with CCured [17] instead of C.
Jeannie [12] provides a type-checked syntactic embedding
for Java and C. While these approaches are the right long
term solution, they may never be adopted because they re-
quire substantial code rewrites. Blink is synergistic since it
supports debugging JNI and Jeannie. Furthermore, Blink is
an enabling technology for transitioning to better languages.

10. Conclusions

Debugging is one of the most time-consuming tasks in soft-
ware development. It requires a knack for formulating the
right hypotheses about bugs and the discipline to systemati-
cally confirm or reject hypotheses until the cause of the bug
is found [37]. Single-environment developers have long had



good tools to help them navigate the debugging task system-
atically. But mixed-language developers have been left in the
dark. We propose and evaluate a new way to build cross-
environment debuggers more easily using scalable composi-
tion. We use our compositional approach to develop Blink, a
debugger for Java, C, and Jeannie. The open-source release
of Blink is available as part of the xtc package [9]. Blink is
full-featured and portable across different JVMs, operating
systems, and C debuggers. Furthermore, Blink includes an
interpreter (read-eval-print loop) for cross-environment ex-
pressions, thus providing users with a powerful tool not just
for debugging, but also for testing, program understanding,
and prototyping.
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