No Bit Left Behind:
The Limits of Heap Data Compression

Jennifer B. Sartor Martin Hirzel Kathryn S. McKinley
The University of Texas at Austin IBM Watson Research Center The University of Texas at Austin
jbsartor@cs.utexas.edu hirzel@us.ibm.com mckinley@cs.utexas.edu
Abstract constant or increase. To program all these devices, developers are

increasingly turning to managed languages, such as Java [25], due
to theirproductivitybenefits, which include reduced errors through
memory management, reliability due to pointer disciplines, and
portability. Java, however, is not known for its memory efficiency
and is therefore in conflict with hardware trends.
Researchers have characterized Java mensagepatterns [19,
0, 17], but do not study memosavingsopportunities. A num-

On one hand, the high cost of memory continues to drive demand
for memory efficiency on embedded and general purpose comput-
ers. On the other hand, programmers are increasingly turning to
managed languages like Java for their functionality, programma-
bility, and reliability. Managed languages, however, are not known
for their memory efficiency, creating a tension between productiv-
ity and performance. This paper examines the sources and types o o -
memory inefficiencies in a set of Java benchmarks. Although prior P€T Of researchers propose and measure specific compression ap-
work has proposed specific heap data compression techniques, the _roaches [1’ 4,6,7,8, 13.’ 16, 18, 22’. 23, 30]._For (_example, Ana-
are typically restricted to one model of inefficiency. This paper gen- 1ian and Rinard use profiling and static analysis to implement ap-
eralizes and quantitatively compares previously proposed memory_proa(:hes such as constant field elision and bit-width reduction [1].
saving approaches and idealized heap compaction. It evaluates &2t1€rS explore approaches for making other programming lan-
variety of models based on strict and deep object equality, field 94ages more memory efficient [2, 9, 11, 24, 26, 27, 28, 29]. For
value equality, removing bytes that are zero, and compressing fields€*@mMPle, Appel and Goncalves share memory between equiva-

and arrays with a limited number and range of values. The results lent SML objects_ using the garbage collector [2]. All the priqr
approaches consider and compare only a few proposals at a time.

show that substantial memory reductions are possible in the Java‘l’his paper compares a wide variety of compression technigues to

heap. For example, removing bytes that are zero from arrays is par- ide ad derstandi f fici dits limit
ticularly effective, reducing the application’s memory footprint by ~ProVId€ a deeper understanding of memory €fticiency and Its imits.
This paper includes a comprehensive quantitative and qualita-

41% on average. We are the first to combine multiple savings mod- . ; i ;
tive comparison of heap data compression technigues. Our models

els on the heap, which very effectively reduces the application by ~ % >~ "FE=2 1 . . .

up to 86%, on average 58%. These results demonstrate that future?® inéfficiencies include strict and deep object and array equality,

work should be able to combine a high productivity programming calculating dominant field .valu.es and field equivalence, removing
zero-bytes, and compressing field values or array elements that use

language with memory efficiency. -
Categories and Subject Descriptor.3.4 Programming Languagés a small number and/or range of values. Our methodology period-

Processors—Memory management (garbage collection); Optimization ically snapshots all heap objects and arrays by performing heap
General Terms Experimentation, Languages, Performance, Measurement dumps during full heap garbage collections. We post-process these
Keywords Heap, Compression heap dumps to analyze memory inefficiencies and calculate mem-
1. Introduction ory savings per model. The contributions of this paper are:

Two consequences of Moore’s law are (1) an increasing number
of transistors in the same area, which server, desktop, and laptop
form factors are now using for multicore processors, and (2) con-

stant processing power on smaller and smaller devices, which is en- 2. Survey and models of compression techniques: Descriptions of
abling more functionality in the embedded space. Since cache and over a dozen techniques with memory savings formulas.

memory consume a disproportionate amount of area and are ex- 3. Empirical evaluation, including combinations: Apples-to-apples
pensive [21], the demand for memory efficiency is likely to remain comparison of individual as well as novel hybrid techniques.

1. Heap data compressibility analysis: A methodology for evaluat-
ing the memory savings limits of heap compression techniques.

*This work was supported by NSF CCF-0429859, NSF CCR-0311829, Our experiments use the DaCapo Java benchmarks [19] and a vari-
NSF EIA-0303609, DARPA F33615-03-C-4106, and IBM. Any opinions, ant of SPECjbb2000 called pseudojbb. We find that zero-based ar-
findings and conclusions expressed herein are the authors’ and do notray compression saves the most memory (on average 17% of the
necessarily reflect those of the sponsors. heap including virtual machine objects, or 41% of the application).
Together, deep-equal object and array sharing effectively reduce
the total heap on average by 11%, and by 14% for applications.
Overall we see that arrays take up the majority of space in the heap
Permission to make digital or hard copies of all or part of this work for personal or and can yield larger compression opportunities, so optimization ef-
classroom use is granted without fee provided that copies are not made or distribu'[ed]cortS should be focused here. Experiments with Lempel-Ziv com-
for profit or commercial advantage and that copies bear this notice and the full citation . indi h h C | f redund in th
on the first page. To copy otherwise, to republish, to post on servers or to redistribute pression indicate that there Is a large ar_nount orre un_ ancy in the
to lists, requires prior specific permission and/or a fee. heap (75 to 90% on average). Performing novel hybrid compres-
ISMM’08, June 7-8, 2008, Tucson, Arizona, USA. sion analysis with many savings models, we can get closer to this
Copyright(© 2008 ACM 978-1-60558-134-7/08/06. . . $5.00 idealized compression, saving on average 34% of the heap, or 58%

2YDE

j]Model 1%
S, 7

Model n

regularly-spaced intervals during normal collections. Our bench-
marks perform between four and three hundred garbage collections
at this heap size. For those benchmarks with fewer than 25 col-
lections, we force more frequent collections in order to obtain the
desired number of heap dumps.

We modified Jikes RVM, a Java-in-Java virtual machine [3] for
our experiments. Jikes is unusual because it allocates both JVM
and application objects in the heap. We differentiate between JVM
and application object allocations by adding a small amount of in-
for the application. We believe that presented compression tech-strumentation and stealing one unused bit from the object header.
niques including new combined hybrids can reduce rampant heapAt allocation time, the JVM sets the bit to one to indicate that the
bloat, making memory more efficient. This paper provides a foun- JVM created the object, or zero for application objects. For most
dation for the research community to make progress in heap dataobjects, their static class name reveals that they are a JVM object.
compression. For example, objects whose class prefix includes “jikesrvm” are
- . JVM objects and objects whose class prefix includes “DaCapo” are
2. Heap data compressibility analysis application objects. However some cases are ambiguous because
Figure 1 shows our analysis steps for measuring the potential of the JVM and application share the standard Java libraries, for ex-
heap compression. We consider a conventional representation forample, java/lang/String, or the object’s class is unspecified because
dynamically allocated objects in a program. The heap contains two they are primitive arrays. For these special cases, we classify ob-
kinds of objects: class instances with fields and arrays with ele- jects as follows: a) We instrument each method call site that calls
ments. Each object occupies a contiguous chunk of memory thatfrom a non-library method in to the class libraries. The JVM stores
consists of its fields or elements plus a header. We assume a conwhether the caller is the JVM or the application in a thread-local
ventional two-word object header with type information, garbage variable. If the library performs allocation, the JVM queries the
collector (GC) bits, and bookkeeping information for locking and thread’s local variable to tag the object with its proper status. b)
hashing. Arrays have a third header word to store the length. For primitive arrays and other cases where the class is unknown,
Since we perform experiments with a Java-in-Java virtual machine we walk the stack at allocation time to find the first non-library
(IVM), the heap contains both application and JVM objects. method descriptor, and tag the object accordingly [15].

Usually, the garbage collector loses some heap memory to frag- From heap dump series to analysis representatiorGiven a se-
mentation. We ignore fragmentation for two reasons: (1) the actual ries of heap dumps, a post-processing step applies analytical mod-
amount of fragmentation depends on the particular garbage collec-els that compute potential compression opportunities. The post-
tor in the runtime system; and (2) saving memory matters most at processor iterates over the heap dump, entering each object in-
the peak memory usage, where it makes or breaks the ability to runstance’s data into a large hash table (“Analysis representation” in
in a given amount of memory. At peak utilization, the collector will Figure 1). We compute memory savings per unique class. We do
likely apply defragmentation rather than crashing the program with not further divide objects by their allocation site or data structure,
an out-of-memory error. We only consider live objects in our analy- which may be an interesting avenue for future work. The hash table
sis because we assume the garbage collector reclaims dead objectstores every value for every field of each class at each collection.
rather than compressing them. The table also stores the field’s class information. The key to the
From program run to heap dump series. Since a program’s heap ~ hash table is a combination of the unique class identifier, the field
changes over time, its memory efficiency is also a function of time. number, a value for this field, and the collection number. The data
A perfectly accurate heap analysis would compute savings on all for a given hash key is the number of object instances of this class
live objects after every write and object allocation, but this analysis during this collection with the same value for the field.
is prohibitively expensive. Instead, our analysis takes periodic heap ~ We enter arrays into the hash table as well, but since arrays of
snapshots during program execution (“Heap dump series” in Fig- a particular type are not all the same length, all array entries are
ure 1). It therefore over-approximates heap compression becausegntered in the same “field” and also store the array element class.
for example, a field value may be zero at every heap snapshot, butWe compute most compression models after processing an entire
take on non-zero values between snapshots. We modify the garbagéieap dump into the hash table. Because we collapse all arrays of
collector to print out a heap dump during live object traversal. In a type into one field, we accumulate per-instance savings as we
addition to its usual work, during a heap dump the garbage col- process each array entry in the heap dump.
lector also prints object data (excluding bookkeeping information Helper functions. Many of our savings models require helper
from the header) as it visits each live object on every collection. functions. Functiorsizeof (T') returns the size of a primitive type
For each object, the GC prints the class identifier, the size in bytes, in bytes. Some compression techniques require a hash table at run-
the address, whether the object was created by the I3 (or time, for example, to find equivalent objects. Their models sub-
the application {zZz), the class name, and the list of fields or array tract the size of the hash table from the raw savings. Function
elements, including their types and values. Here are two example hashTableSize(n, entrySize) estimates the size of a hash table
objects from the heap dump, one class instance and one array: ~ with n entries of sizeentrySize each. We assume a hash table
with open addressing, since they have no memory overheads for
boxes or pointer chains for overflowing elements. We also assume
that% of the hash table is occupied. This assumption is conser-
vative; for example, the Java library writers use a load factor of
3 pefore doubling their size, although they use chaining instead
of open-addressing. The helper function works as follows, where
arrayHeaderSize is 12 bytes andeySize is 4 bytes:

45 = ol ol =il

Heap dump Analysis
series representation

Al

Program run Limit savings

Figure 1. Heap data compressibility analysis.

T41 24 0x581e7454 JZZ Ljava/lang/String; \

£0: object 0x581e746c f1: int 9 £f2: int 0x4c856879 £3:
T26 28 0x581e7444 JZZ [Ljava/lang/Object; \

reference array [object 0x581e746c,null,null,0x570ab004,]

int O

Since heap dumps require a lot of 1/0, they take a lot of storage
and time to generate. More heap dumps yield more accurate com-
pression measurements, but require more time and space. We em

pirically selected 25 as our target number of heap dumps. We exe-
cute the benchmarks with two times their minimum heap size us-
ing a mark-sweep collector, and print around 25 heap dumps at

hashTableSize(numberOfEntries, entrySize)
arrayHeaderSize

+ {% - numberOfEntries - (entrySize + k‘eyS@'ze)-‘

Compression technique [Cils [Arr [Reference] GC/Run | Total Application

Lempel-Ziv compression 312 GC Bnchmrk || GCs || min | max | avg || min | max | avg
Strictly-equal object sharing | 3.2.1] 3.2.2 GC antlr 25 74 75| 74 93 9% | 94
Deep-equal object sharing | 3.2.3] 3.2.3| [2, 16] GC bloat 34 74 76 | 75 33 88| 84
Zero-based object compressip.2.4| 3.2.4 [8] GC chart 24 74 75 74 32 92 o1
Constort feldibion 33T L, 24 | Run ecipse|| 251 78| 791 74| 85| 94| 87
Bit-width reduction 33.2(342 [L, 24, 30]| GC&RuN . ffOp 20| 74l /5] 74]] 89] 99| 95
Dominant-value field hashing| 3.3.3 [GC opfreq || 283 || 74| 75| r4] 89| 99| 96
Dominant-value field elision | 3.3.4 [6] Run hsqldb 24 75 83 81 83 96 85
Value set indirection 335|343 [9,26] GC jython 23| 74| 74| /4] 89| 89| 89
Value set caching 336|344 GC luindex 23 741 75| 74 82| 94| 90
Lazy invariant computation | 3.3.7 GC lusearch 26 74 81| 80 92 96 | 96
Table 1. Compression techniques modeled. Columns “Cls” and pmd| 22| 74| 79| 75| 83| 94| 95
“Arr” refer to the subsections with the model for class instances or xalan|| 22| 78| 79| /9] 94| 95| 91
arrays, where applicable. Column “Reference” cites prior work that | Pseudojpb|| 21 || 73| 74| 73| 72| 99| 75
explored heap data space savings from this compression techniqug, _average 741 77| 75] 86[95| 90
if any. Column “GC/Run” says whether this model is calculated per Table 2. Lempel-Ziv percent savings using2ip2”.

collection or over all collections.

non-lossy, in other words, the original data can be fully recovered
by decompression. Unlike the data representations for most of the
other models, Lempel-Ziv compressed data does not permit random
access, let alone in-place update. To compute this model as accu-
rately as possible, we perform online compression on the actual
heap in the JVM at garbage collection time. We perform compres-
sion with the same frequency as the heap dumps. As the collector
traverses the object graph, it appends to a heap object stream an
-exact copy of all the bytes of each object and array, including their
Bheaders. To measure their differences, we put application objects in
o " b one stream, and all objects (both JVM and application) in another.
field is constant throughout the entire run, then instead of allocat- \yjs \;se native code to process the object streams so they do not pol-

ing the same V?"”e in each i'nstance, the ‘]VM.COU|d elimi.nate th? lute the Java heap or affect the frequency of garbage collections. At
field from each instance and instead store the single value in a staticy,» and of the collection. we print the size of the full stream, i.e.

class variable. To capture these diverse optimizations, our analysis,|| |ive data in the heap. We then apply Lempel-Ziv compression
applies compression models both per-collection on each heap snapy, the stream and report the compressed size as a percentage of the

shot, and over all the heap shapshots for a benchmark. For eacmncompressed size.
snapshot, we count the number of object and application instances ' \wa show the Lempel-Ziv compression in Table 2 to illustrate

and bytes seen in order to calculate savings percentages. the potential for heap reductions. The table shows each benchmark,
3. Memory Compression Models the number of garbage collections (GC), and the minimum, maxi-

. . mum, and average over all snapshots for the total heap and appli-
A compression model is a formula that computes how many bytes ation only savings. One line of the table, “fopfreq’, is for a run

of heap data that technique can save at an instance in time. Table J((;vith frequently forced heap dumps - over 280. When comparing
g\r/:r;g?r\;]v;;lééh% rmoondeelcs‘lacsznz'tdgrﬁ%én ;h()lfnga;rir'f(l)\/rlr?qﬂgggil; this with the regular run of only 20 heap dumps, we see consistent
one field at a time. or one instance forlarra s. To obtain the total results, showing that the timing of collections is not biased. Total

. f d I’ h . yf ' h of the cf heap compression is fairly consistent, reducing the heap between
savings of a model, we compute the savings for each of the ¢ a5S€%,3 and 83%. For only application objects we see larger compres-
(or fields/instances) and then sum them up over all classes (orSion opportunity, up to 99% for fop and pseudojbb. However, we
fieldsfinstances). do not expect this much compression in practice.

3.2 Object compression

Models in this section quantify the size of all the data in the heap. ;g section presents object compression techniques that operate
Because_ the heap cor!talns redu_ndanmes, the a(;tual |nf0rmat|orbn entire objects, as compared to later sections, which describe
content is smaller than its conventional representation. compression techniques for individual fields and array instances.

From analysis representation to limit savings.We then apply a
variety of compression models to compute potential compression
opportunities. Each model calculates the memory savings from a
particular heap compression technique (“Limit savings” in Fig-
ure 1). Section 3 describes and presents formulas for all consid-
ered techniques. For many models, we calculate potential memory
savings after examining each heap dump, i.e., after each collection
However, some models require the analysis to examine the dat
from the whole run of the benchmark. For example, if a particular

3.1 Holistic heap data size and information content

3.1.1 Total heap size

. . .) 3.2.1 Strictly-equal object sharin
We measure the total heap size by summing all objects, fields, ob-) y-€d])] 9
ject headers, and array elements in the heap, assuming a convenIWo objects arestrictly-equalif they have the same class and all
tional representation, and excluding fragmentation, static objects, fields have the same value. Equality is strict because even pointer

and the stack. The below models Compute Savings from this base.ﬂG'dS must be identical. Section 3.2.3 describes additional com-
line. pression opportunities for objects witleep equalityn which the

pointer values are different, but the objects to which they point are
equal [2, 16]. When objects are strictly equal, they can share all
We first consider the memory savings achieved by simply zipping their memory. The JVM may allocate only one instance and then
the contents of all heap objects. The size given byip2” is a point all references of strictly-equal objects to the same instance.

rough estimate of the true “information content” of the heap. We In principle, two objects can not be shared if they are used
expect this savings to be larger than for any of the more realistic for pointer comparison or as an identity hash code in the future.
models below. Like the other models, Lempel-Ziv compression is In addition, the period of time for sharing may be limited if the

3.1.2 Lempel-Ziv compression

program modifies a strictly-equal object later. Our analysis ignores object bit-map to indicate which bytes in the original object are
these cases for the purpose of this limit study. If classas NV entirely zero [8]. The compressed object representation consists of
objects, out of whichD are distinct, then the memory savings are the header, the bit map, and the values of all non-zero bytes. The
(N — D) - sizeof (C). With strict equality, finding the number of size of the bit map is the number of non-header bytes in the original
distinct objects D) from a heap snapshot is linear in time and object. The bit-map for objectoccupieq totalBytes(o) /8] bytes.
space. We simply iterate over all objects in clésand enter them The savings for all objects in the heap are therefore:

in a hash table and do not store duplicates. We use the value of
all fields as the hash key. In the end, the number of entries in the Z (zeroBytes() — [’Wytes(o)-D
hash table isD. Online implementations of object sharing use a o€ Obtucts 8
hash table at runtime as well. This model provides the following
net savings: Note that this compression scheme can be applied to both array
and non-array objects, and to both primitive and reference fields.
(N = D) - sizeof (C) — hashTableSize(D, pointerSize) We compute memory savings per instance, and then add them up

for each class.
3.2.2 Strictly-equal array sharing

Array sharing is similar to sharing of non-array objects, except that i)))
the array length must match [16]. Since different length arrays have Field compression techniques operate on the fields of class in-
different sizes, we iterate over all arrays to add up their sizes before stances, which excludes static fields and array elements.
compression, construct the hash table, and then iterate over all . .

distinct arrays to find the unique size. The model must also subtract3-3-1 Constant field elision

the memory used for the hash table itself. The resulting savings Constant field elision saves memory by eliding a field if it is

3.3 Field compression

model for array typd'[] is: constant for all instances of that type. If all instances of class C have
)))) the same value for instance fiefd that field can be static [1, 24].
Z sizeof (a) — hashTableSize(D, pointerSize) For N objects, that saves:
a€T[|NagD

(N —=1) - sizeof (f)

We compute constant field elision savings by accumulating infor-
mation over all heap dumps of an experimental run.

3.2.3 Deep-equal object and array sharing

Two objects can share memory even if they differ in a pointer field,
as long as the targets of the pointers are equivalent [2, 16]. Every
strictly-equal object pair is also deep-equal. Because there are more3 3 5 Field bit-width reduction

deep-equal object pairs than strictly-equal ones, deep-equal sharinq:, o . .

In the absence of cycles, deep equality can use a bottom-upfor the field than the type takes. If all objects of clasfiave small
traversal of the object graph, for example, by piggybacking on values in instance field, then thgy can all be represented with a
GC reachability traversal by adding a post-order breadth-first visi- Smaller bit-width [1, 24]. ForV objects, that saves:
tor [2]. This traversal computes sharing for all the leaves first, then . P P
corr[1p]utes sharing for the Fr)1ext level of%he object graph, and so on. N (OmgmalBltWZdth(f) - TEdUCEdBZtWZdth(f))

It thus guarantees that when visiting an object, it has already cal- We measure field bit-width reduction both per heap dump and
culated the sharing of all the objects to which it points. Therefore, over all heap dumps in the run. Field bit-width reduction over all
we simply compare objects at the current level and one level deeperheap dumps takes all seen field values into account and therefore
using a hash table. Thus, for the entire heap, deep-equal acyclic ob-more accurately reflects true memory savings potential.

ject sharing takes timé@(e), wheree is the number of pointers in
reachable heap objects. 3.3.3 Dominant-value field hashing

Cycles complicate deep equality comparison. A naive algorithm b minant-value field hashing compresses objects by eliding fields
would just propagate sharing opportunities from objects to their yith one dominant value, storing this value as a static class mem-
predecessors until reaching a fixed point. We are using this ap-per [1]. The JVM can store aberrant values of instance ffet
proa}ch, but the’ fixed-point iteration is slow for.S(.)me benchmarks. classC in a hash table using the object ID as the hash key. We only
Marinov and O’Callahan point out that determining deep equality giore aperrant values in the hash table; therefore, if the object ID
is a special case of the graph partitioning problem [16] and recom- e not exist in the hash table, the program will access the field
mend Cardon and Crochemore’s graph partitioning algorithm that statically.

takesO(elogn) [5].) . . We assume that clags hasNV instances, and thdp instances
The savings model for a clagswith N instances out of which L 5ve the dominant value in the field. For example, consMes

D are distinct is the same as in strictly-equal sharing, except that 1y instances an® = 990 of them have the dominant value. The
D is smaller. There are fewer distinct objects than in strictly-equal giner N7 — D = 10 instances have hash table entries. The savings
sharing, since deep equality exposes more sharing opportunities: 5.

(N — D) - sizeof (C) — hashTableSize(D, pointerSize) N - sizeof (f) — hashTableSize (N - D, sizeof(f))

or, for arrays of type []: For the example, dominant-value field hashing would save 31,448
Z sizeof (a) — hashTableSize(D, pointerSize) .bytes =1000 x 32 — (3/2 % 10 * (32 + 4) +12). Clearly, Fhere

is a cross-over point where the savings become negative. If the
a€TllnagD computed savings is hegative, we assume zero savings as we would
. . not apply the optimization. Because this technique relies on an
3.24 Zero-based object and array compression object ID, actual savings may be lower if the JVM has to use
Zero-based object compression reduces object size by removingadditional memory on ID tracking, for example, if it uses a moving
bytes that are zero. We assume an implementation that uses a pereollector.

For the special case of a boolean field, the presence or absencanapshots of a run of the benchmark. We then compute the memory

in the hash table is enough to indicate the value without having to
store an entry, so the savings are:

N - sizeof (f) — hashTableSize (N — D,O)

3.3.4 Dominant-value field elision
Chen, Kandemir, and Irwin introduced dominant-value field eli-

savings per instance by processing all heap dumps a second time.

Dominant zero field elision: Given an object of clas€, if all

the fields inZ are zero or null, the implementation sets a bit in
the object header to record that information and does not store the
fields in the object. If at least one of the fieldsZnhis non-zero or
non-null, we clear the bit and hijack the class pointer in the header
of the object to point to a secondary object. The secondary object

sion [6]. Their approach targets the same inefficiencies as dominant-Stores the values of the fields i

value field hashing, but their implementation uses offline profiling

and then makes dynamic per-instance decisions to deal with mis-

Assume clas€’ has N instances, and/ instances require a
secondary object because at least one of the fields ia non-

takes. In addition, they make per-class decisions, rather than per-zero or non-null. FortN' — M objects, we saveizeof (Z) each.

field decisions, that consider all the fields in each class together.
Chen et al. identify the frequent value for each field per class

We assume the extra bit per object, whether compressed or not, is
stolen from the object header. For each of the remainihgbjects,

after a particular benchmark run. In an offline pass, they use the we have the overhead of a secondary object header, and of course,

frequent field value count to choose particular fields as good candi-

we don't savesizeof (Z). So the total memory savings for claSs

dates for optimization in a separate benchmark run. If most object are:

instances of a class hold the same dominant value for a particular
field, the dominant value fields can be shared by many instances,

(N — M) - sizeof (Z) — M - headerSize

thereby saving memory. They separate dominant values into tWo p,minant non-zero field elision: For the first instance of clags

kinds: zero and non-zero. Fields with a dominant value of zero (in-
cluding null, in the case of pointers) can be elided entirely and no
storage need be used for them, whereas non-zero (strictly-equal, i

by instances that use them.
For a clasg”, Z fields are zero-dominant. SimilarlyyZ is the

subset of fields that are dominant with non-zero values. Because of

their object layout, Chen et al. only achieve savings for an object
instance ifall fields in Z remain zero. Similarly, if all fields iivVZ

retain their dominant values, they achieve compression. If any field

in Z or NZ does not retain its dominant value, those subsets of
the object cannot be elided, and their implementation will allocate
memory for all (dominant and non-dominant) fields in the object.

Determining dominant field sets: To select groups of fields in
classC to place inZ and NZ, we definedomInstances(C, f) as
the number of instances of claSswhich have the dominant value
for field f. We definedomSortedFields as a list of fields in class
C' in descending order afomInstances(C, f). Then, we define

quality (i) =i - domInstances(C, domSortedFields][i])

This product multiplies the number of fieldsby the number of
instancesiomInstances(C, domSortedFields]i]) for which those
fields could be saved. Chen et al. determinerththat maximizes
quality(m). The firstm elements of the listomSortedFields go
into Z for zero fields, ortNZ for non-zero fields

For example, say clags has 3 fields fi, f2, and fs. Given 20
instances of clasS, saydomInstances(C, fi1) = 16 which means
that 16 of the 20 instances share a dominant valueffolLet’s
saydomlInstances(C, f2) = 18 anddomlInstances(C, f3) = 10.
Since domSortedFields is sorted by descendingomInstances,
we havedomSortedFields = [f2, f1, f3]. Then we take the max
of the following quality values:

quality(1) =1 - domInstances(C, f2) =1-18=18
quality(2) =2 - domInstances(C, f1) =216 =32
quality(3) =3 - domInstances(C, f3) =3 -10=230

Sincequality(2) is largest, we know that we should optimize fields
1 and 2 inthis class, not field 3. We thus consider two fields for zero
or non-zero field elision based on their dominant value.

Following the methodology of Chen et al., we compute the
candidate fields for dominant-value field elision using data from all

1Chen et al. sum up théomInstances(C, f) over the set of all classes
that areC' or a subclass of’. We do not for simplicity.

that has all fields invVZ that match dominant values, we assume
a secondary object holding those dominant values is allocated. We

Massume part of the original object header points to the secondar
the case of pointers) dominant fields must be stored and pointed to b 9) P y

object. The secondary object adds the cost of its header. However,
for subsequent instances that have all field&/ii with dominant
values, we simply use a bit in the object header to indicate this
instance shares a secondary object and point it to the previously
created secondary object. For this instance, we save sVBf(
memory. If an instance of clags has even one field aVZ that
holds a non-dominant value, we cannot save memory and this
instance has to allocate its own secondary object.

We assume class hasN instances, and/ instances require a
secondary object because at least one of the field&irdoes not
hold its dominant non-zero value. Memory savings are similar to
dominant zero field elision; however, we have to reserve memory
for one secondary object, including a header, to hgkf's domi-
nant values. So the total memory savings for clésse:

(N —M —1) - sizeof(NZ) — (M + 1) - headerSize

3.3.5 Field value set indirection

Field value set indirection saves memory by holding a “dictionary”
of values for a field separately from object instances, enabling
instance fields to hold a smaller index into the dictionary. If the
field f of classC' has only a few distinct values over all instances
of C, then instead of storing those values directly, it stores the
dictionary index, and the dictionary stores the actual values [9, 26].
Specifically, if field f stores at mosi < 256 different values,
then instead of storing the values directly, store an 8-bit index into
a K-entry dictionary. If clas€” hasN instances, the savings are:

N - (sizeof(f) — 1) — (arrayHeaderSize + K - sizeaf(f))

Field value set indirection makes no assumptions about the type
of field f: it applies equally well to char, int, float, pointer, etc.
Where bit-width reduction requires all field values to be small,
value set indirection only makes requirements on the number of
field values. Set indirection applies more generally than bit-width
reduction. It also reduces field width, but requires extra space for
the dictionary.

3.3.6 Field value set caching

Field value set caching is similar to field value set indirection, but is
performed only on fields witli >= 256 values, and thus requires
some extra separate storage. In the object instance, the field is just

an index into a dictionary as in field value set indirection. The most Character arrays: Java represents characters using a 16-bit en-
frequent 255 values are “cached” in the dictionary (to allow an 8- coding for unicode. But English-language applications tend to use
bit index). For the othe — 255 values, the 256th entry in the mostly characters that require only the lower 8 bits. The accordion
dictionary is reserved to indicate that the value is not cached. In arrays bit-width compression optimization represents each array
that case, the field is stored in a hash table indexed by the objectthat consists entirely of 8-bit characters using a byte array [30] to

ID. To compute the savings, assume the classMasbjects, and
M objects have a value in fielfl that is not among the 255 most
frequent values for that field. In practice, if the field values are
skewed,M is small. The memory savings are:

N - (sizeof(f) — 1)
— arrayHeaderSize — 255 - sizeof (f)
— hashTableSize(M, sizeof (f))

save:

2

a€char([|AonlyUsesBits(a,8)

la.length |

Other types: The above examples use boolean and char arrays,
but the array bit-width reduction also works for arrays of short, int,
or long [24]. In general, you can optimistically represent an array
of typeT’[] as aB-bhit array provided all values need at mésbits

Field value set caching also makes no assumptions about the typgg save:

of field f: it applies equally well to char, int, float, pointer, etc.
3.3.7 Lazy invariant computation
Assume clas”' has two fields,f1 and f2, and they are always

identical. Then we only need to store one of them, and save the

memory for the other one. As another example, assumeClass
three fields,f1 f2 fs, and it is always the case thit = f2 + fs.
Then, we do not need to stoyg, since we can always compute
it from f, and fs. In the most general case, if there is a way to
compute a fieldf from other fields of the same object, we can elide
the field.

We cannot possibly check for all possible field invariants that
translate into memory savings. In our experiments, we only explore
the case where two fields are always identical. However, a tool like
Daikon or DIDUCE tool [12, 14] could provide invariants which is
a possibility for future work. Assume it takédytes to encode the
invariant. If we eliminate fieldf in V instances, the savings are

N - sizeof (f) — 1

For our experiments, we can elide the duplicate field entirely, and
expect to statically store information of sife= sizeof (f) that

>

a€T[]NonlyUsesBits(a,B)

\‘8 - sizeof (T') — B

3 - a. lengthJ

3.4.3 Array value set indirection

Array value set indirection is similar to field value set indirection. If
all elements of all arrays of a given class have elements drawn from
a small set of distinct values, then replace each instance element
with a small index into a dictionary that stores the actual value.
For example, if all instances of an array typg] contain at most

K < 256 different values, array elements can store an 8-bit index

into a K-entry table of values of typ&. The memory savings are:

Z a.length - (sizeof(T) - 1)
a€T[]
— arrayHeaderSize — K - sizeof (T')

This optimization makes no assumptions about the elemenfitype
It applies equally well for int, float, pointer, etc. This model does
reduce element size, but because it is more generally applicable

says which field to look up instead. For this special case, savingsthan array bit-width reduction, it incurs the overhead of storing the
come out the same as constant field elision even though the field isdictionary.

not constant over all instances.
3.4 Array object compression

3.4.4 Array value set caching
Array value set indirection can be generalized to the case where

Array compression techniques operate on array instances. We comthere are a few aberrant values that do not fit in the primary dictio-
pute overall compression by accumulating savings for all instances nary. Caching reserves one dictionary index (of 256) to indicate an

of all classes.
3.4.1 Trailing zero array trimming

Programs often over-provision the capacity of arrays used as
buffers, leading to unused trailing zeros [8]. These can be trimmed,
provided that the trimmed array remembers the nominal and true ; ¢ ali] ==

length. Assuming it takes an additional 4 bytes to store both
lengths, the savings for array tyfig] are:

Z (tmilingZeros(a) - sizeof (T') — 4)
a€T[]

3.4.2 Array bit-width reduction
Array bit-width reduction computes savings per instance, com-
pressing array elements similarly to field bit-width reduction.

Boolean arrays: Per default, a Java virtual machine uses a byte
to represent a boolean, and hence, an arrdy ledoleans occupies
3 words for the header plus bytes for the elements. The trivial
optimization of representing an array of boolean by a bit vector

saves:

a€boolean|]

{g - a. lengthJ

aberrant value, and stores the aberrant values into a secondary hash
table. We use a combination of the original array’s object ID and
the index of the array element for the secondary hash table’s key.
An array access[i] in this case is as follows:

aberrant_indicator:
return secondary_hash.get(a, i)
else:
return dictionaryla[i]]

Let A be the total number of aberrant array elements in all arrays
of typeT[]. Then the savings are:

Z a.length - (sizeof(T) - 1)
a€T[]

— arrayHeaderSize — K - sizeof (T')
— hashTableSize' (A, sizeof(T))

The hashTableSize’ function assumes that keys are 8 bytes, be-
cause the key represents both an array and an index.

3.5 Hybrids

Hybrids combine multiple compression techniques to obtain more
savings than one technique alone.

3.5.1 Maximal hybrid

The maximal hybrid chooses the compression technique that saves

the maximum amount of memory for each piece of data. We first
compute the maximum for field techniques. For example, within
the same clas§), one field may save most from bit-width reduction,
another field may save most from dominant-value hashing. The
maximal hybrid uses the technique that saves the maximum amoun
of memory for each particular fielfl of classC'. Savings are:

D

fEFields(C)

mazFieldSavings(C) max savings(C, f,0)

o€ FieldOpts

In other words, we sum the savings from each figlavhen us-
ing the optimizationo with maximum savings for that field. The
set FieldOpts contains constant field elision (per snapshot), bit-
width reduction, dominant-value hashing, value set indirection or
caching, and lazy invariant computatfon

Besides field optimizations, the maximal hybrid also considers
optimizations that apply to entire objects of a class rather than
individual fields. Again, the idea is to pick, for each class, the
optimization that yields the highest savings:

maxClassSavings =

max

E max { mazFieldSavings(C),
o€ ClassOpts

C e Classes
Note thatmaxzClassSavings considersmazFieldSavings(C) as
one alternative for each class, along with the class optimization
techniques irClassOpts, which are zero-based object compression
and strictly-equal object sharihg
For arrays, the maximal hybrid starts by choosing the maximal
array instance compression techniques:

Z savings(T'[], 1, 0)

i€T]

savings(C, o)}

mazArraylSavings(T]]) max
o€ ArraylOpts

The set of array instance optimizatiodAsrayIOpts contains trail-
ing zero trimming, bit-width reduction, and zero-based compres-
sion. Next, just like for classes, the maximal hybrid picks the best
optimizations for each array typ¥]]:

Z max ¢ mazArraylSavings(T|]), }
T[] €Arrays

The set of array type optimizationsrray T'Opts contains strictly-
equal array sharing, value set indirection, and value set caching.

In total, the maximal hybrid saves the sum of the maximal
savings of class and array type optimizations:

mazArrayTSavings =

max savings(T[], o
o€ ArrayTOpts g(H’)

mazClassSavings + mazxArrayTSavings

3.5.2 Combined hybrid

In some cases, after applying an optimizatigrto a piece of data,
it is possible to apply- as well on the same data to obtain addi-
tional savings. For example, we can have perform “trailing zero ar-
ray trimming”=o, first and then do “array bit-width reductiondz,
achieving more savings with the hybig o 02 than eithewn; or oz.

We calculate combined-hybrid heap compression by applying
multiple models in sequence. We first finthzFieldSavings(C')
for each clas€”. In other words, each field is optimized with the
best optimization inFieldOpts for that field. Next, we check
if each instance can benefit further from the optimizations in

2Due to the offline analysis required in dominant value elision, we exclude
it from this hybrid calculation.

3Due to implementation limitations, we exclude deep-equal object sharing
from this hybrid calculation.

ClassOpts: zero object compression and strictly-equal object
haring. To correctly compute these compression models, the
previously-applied field optimizations modify the analysis repre-
sentation as required, for example, by changing field and object
sizes, and by re-populating the hash table for strictly-equal object
sharing. We then simply add up each type’s savings to achieve a
lobal combinedClassSavings, which is the total savings from

applying all non-array optimizations in sequence.

We compute hybrid array savings similarly. For the maximum
potential savings, per array instance, we apply the optimizations
from ArrayIOpts in the following order: (1) trailing zero trim-
ming, (2) bit-width reduction, and (3) zero-based compression.
Throughout these calculations, we keep track of changes to the
array length, array size, element size, and number of zero entries
to feed into later optimizations. Similar to combined object sav-
ings, we follow the instance optimizations by type optimizations
in ArrayTOpts to explore further compression. Even if instance
optimizations have been performed to reduce the array footprint,
strictly-equal array sharing, array value set indirection, and caching
could realize further savings. However, we do not need to recal-
culate the array sharing hash table, as instance optimizations only
elide zeros and do not change element values. After we calculate
combined savings for each array type, we add them to compute the
total combined ArrayT'Savings.

We then sum combined-hybrid class and array type savings to
obtain total combined-hybrid savings:

combinedClassSavings + combined Array TSavings

4. Results
This section evaluates and compares the compression models.
4.1 Methodology

We added heap data compressibility analysis to Jikes RVM [3] ver-
sion 2.9.1. We used the “FastAdaptiveMarkSweep” configuration,
which optimizes the boot image (“Fast”) and uses a mark-sweep
GC. We disabled the optimizing compiler during the application
run to reduce compiler objects in the heap. Since Jikes RVM it-
self is written in Java, it allocates JVM objects in the Java heap
alongside application objects; we show both total and application-
only results. Our benchmark suite consists of the DaCapo bench-
marks [19] version “dacapo-2006-10-MR1”, and of pseudojbb, a
variant of SPECjbb2000 (seeww.spec.org/osg/jbb2000/).

We used Ubuntu Linux 2.6.20.3.

Bnchmrk || GC| # Types Size[KB] Size[Instancep
Cls| Arr Total| Arr| App Total| Arr| App
antlr 14] 529] 69| 49,81170%| 5%]| 785,561 33%]0.5%
bloat 122] 593| 79| 56,724/ 67%| 16%| 967,360 32%| 17%
chart 23] 675| 85| 56,61668%| 8%| 970,070 33%| 3%
eclipse 4411,136|175| 87,799 68%| 25%| 1,534,580 35%| 18%
fop 22| 784| 73| 52,184 70%| 4%| 830,111 34%|0.6%
hsqldb 13| 538 78]201,37543%| 76%)] 7,231,418 21%| 89%
jython 218] 892 78| 63,706 67%| 9%]1,067,35933%| 6%
luindex 11| 533| 70| 50,185 70%| 7%| 794,63333%| 2%
lusearch || 26] 536] 73| 70,994 78%]| 34%| 850,828 33%| 8%
pmd 71| 644] 72| 59,22067%| 9%| 992,510 34%| 6%
xalan 125/ 711| 88| 71,148 76%|27%| 940,201 36%| 9%
pseudojbly| 18| 495| 72| 74,180 73%| 35%]| 1062,901 36%| 25%

Table 3. Benchmark and heap dump characterization.

Due to space constraints, we pick one representative heap dump
mid-way through the approximately 20 we gather. For more com-
prehensive results, see the companion technical report [20]. Sec-
tion 4.5 validates the generalizability of one heap dump for an
example benchmark, comparing savings over many dumps. Even
though savings are for one dump, some models consider constraints

from all dumps, see Table 1. Table 2 shows the number of heap one dominant value, and have many fields with fewer than 256 val-
dumps. Table 3 characterizes our benchmark suite, including theues that can benefit from a “dictionary”. Our benchmarks do not see
number of GCs, the number of class and array types represented ira lot of benefit from value-set caching, meaning they do not have
the measured heap dump, and the size of the measured heap dumpmnany fields with more than 256 values. Similarly, few pairs of fields
For all benchmarks, arrays occupy more bytes but have fewer in- are equal over all instances of a class, so lazy invariants do not com-
stances than classes. The application occupies between 4% angress the heap much. Overall, the field optimizations yield smaller
76% of the amount of bytes occupied by Jikes RVM. Subsequent savings than object compression. For field compression, bit-width
sections and tables represent total memory savings as a percentageduction, dominant-value hashing, and value set indirection yield
of total KB, and represent application memory savings as a percent-the greatest savings. If it is easy to have an offline pass of the run,
age of application KB. We were not able to compute application- then dominant zero elision affords good compression too.

specific savings for models that require analysis over all dumps. 4.4 Array compression

; ; Bnchmrk Total Application
4.2 Object compression | Biwidth | Value sef| Tr | Bitwidth| Value set
Bnchmrk Total Application Zro| Ch| GC| Run| Indr| Cch|| Zro| Ch| GC|Indr|Cch
Equal sharing | Zero- Equal sharing | Zero- antlr 31 4] 8] 0.2] 0.3 5 3 2 2 2 0
Strictly| Deep | based|| Strictly| Deep | based bloat 3 5| 8] 04| 05 6 3 9 10| 10 0
Cls| Arr | Cls| Arr | Cls| Arr || Cls| Arr | Cls| Arr | Cls| Arr chart 31 4] 8] 0.2] 03] 5| 11| 2 2ol 2
antlr 2| 4| 4| 5| 6| 14|| 0| 12|/0.2| 12| 0.2| 48 eclipse 2 6] 9] 0.1] 0.2 6]l 0.9 13| 13| 0.1} 13
bloat 1| 8| 7| 8| 6| 14| 0| 6| 3| 7| 8| 25 fop 6| 4| 7| 0.2] 05 5] 0.1/0.1| 0.4| 0.5 0
chart 2 4| 4| 5| 6| 13 21 2| 3| 2| 2| 41 hsqldb 1{09] 2 0] 0.1 1{ 04| 0| 0.3 0| 0.3
eclipse 1| 4| 2| 4| 6] 14}{0.2] 2|05 2| 5| 25 Jython 2| 5| 8| 02| 04| 6 2| 3 41 0.2 5
fop 2| 4| 4| 5| 6| 16 0| 14| 0.1 15/0.3| 57 luindex 5! 4| 8| 0.2 0.3 5] 25(0.9 1| 0.9] 0.2
hsqldb 0.5 3| 1| 3| 8] 12| 0] 3| 0| 3] 9| 11 lusearch 2| 5| 7| 0.1] 0.2] 5] 09| 5 6 6 O
jython 1| 6| 5| 7| 6] 13 0| 8|0.6f 10| 3| 28 pmd 3] 5| 9| 0.2 0.5 6 8| 5 6 5 1
luindex 2| 5| 4| 5| 6| 15{/0.4| 27|/0.9| 27| 2| 58 xalan 18| 4| 10| 0.2 2 7| 49| 6| 17| 13| 24
lusearch 2 4| 4| 4| 4| 32 2 4] 4| 5| 1| 72 pseudojbh| 3| 14| 18| 0.1| 0.4 14 41 32| 34| 32 0
pmd 1 7| 6| 7| 7| 14}/0.1] 9| 2| 9| 8| 33 average 41 5| 9| 0.1 04 6 9 7 8 6 4
xalan || 1| 21] 3] 22] 5] 29]0.7] 58] 2] 59] 1] 66 Table 6. Percent memory savings from array compression.
pseudojoly 1| 4] 4] 5| 5| 20) Of 4] 0 4] 4] 33 Table 6 shows memory savings from the array compression
average 1| 6] 4| 7| 6| 17{/0.5| 12| 1| 13| 4| 41

- - - techniques in Section 3.4, which are overall greater than for ob-
Table 4. Percent memory savings from object compression. jects. Many benchmarks have a significant amount of arrays allo-
Table 4 shows memory savings from the object compression cated with padding that can benefit from trailing zero trimming.

techniques in Section 3.2. As expected, deep-equal sharing resultXalan with a large part of its heap being arrays, can save 18% by

in more savings than strictly-equal sharing. Whereas deep equalitytrimming zeros. For just application arrays, this model helps most
is essential for saving class-instance memory, strict equality suf- for chart, luindex and xalan Our benchmarks spend very little
fices for arrays, because most arrays are primit€adan in par- space on boolean arrays, hence we do not show a separate column
ticular benefits greatly from deep-equal array sharing, saving 22% for bit-width compressing them; the numbers were all zero. How-
of the total heap and 59% of the application heap. Also, zero- ever, many character arrays benefit from bit-width reduction — up to
based compression gets some good savings ranging from 4 to 8%14% with pseudojbbEclipseand pseudojbbapplication character

for classes and 12 to 32% for arrays. Application-specific zero- arrays are prime candidates for savings. Although application sav-

based compression savings greatly depend on the benchmark. Apings vary per benchmark, similar to Zilles’ results which were com-

plication numbers vary more widely than total numbers, showing puted with different methodology, we see up to 32% compression
that the JVM is fairly consistent. Overall zero-based compression possibility [30]. Interestingly, arrays of types other than character
achieves the highest individual savings (with objects and arrays can also benefit significantly from bitwidth reduction, with savings

36%), but at the cost of having to decompress individual object between 2 and 18%. Value set indirection helps little for arrays, be-

instances before use. cause it is too strict: at least some arrays exceed the allotted dictio-

4.3 Field compression nary. However, using the dictionary as a cache and placing aberrant

) i . values in a secondary hash increases the opportunities significantly,

Table 5 shows memory savings from the field compression tech- 5,4 5o value set caching saves more memory. In partipsagdo-

niques in Section 3.3. A field can be constant-elided onI_y if_ i_t is job can compress the heap by 14% with value-set caching. Overall,

constant over the whole run. Our benchmarks have a significantihe array optimizations in this section yield smaller savings than

number of elidable constant fields. The "Bitw” columns refer to erq_pased object compression for arrays, but value caching and
field bitwidth reduction, either based on whether the field obeyed bit-width reduction are competitve with deep-equal sharing.

its bitwidth over all heap dumps (“Run”) or just the selected heap . .
dump (“GC”). In both cases, reducing field bit-width can save be- 4-> Compressibility over time

tween 4 and 7% of the heap size. This similarity implies that the Most of the results in this section are for one mid-run heap dump
range of all field values is fairly accurately represented in one heap only. We investigated whether one heap dump can be representative
dump. As discussed in Section 3.3.4, dominant-value field elision for the entire run by plotting a compressibility time series for
requires two passes over all heap dumps, one to compute candidatene benchmarkfop in Figure 2. We forced frequent heap dumps
fields and another to consider all instances for savings. Zero eli- every 512KB of allocation, collecting 148 heap dumps. Each curve
sion is effective for fields, for example, it reduda®at by 12%. is one compression technique, the x-axis is time, and the y-axis
Fewer fields can be elided due to a non-zero dominant value as ex-is the percent memory savings. The lines are mostly horizontal,
pected, but it saves up to 6% eglipse However, both dominant validating that compressibility changes little from heap dump to
elision techniques require ahead of time profiling to achieve sav- heap dump. More variation is seen at startup and shutdown as
ings. Dominant-value hashing and value set indirection each canexpected, but the middle of the run is fairly stable. This shows
save 4 to 9% of the heap. So our benchmarks have many fields withour per collection savings for classes and arrays at a middle heap

Bnchmrk Total Per Run Total Application
Const | Bitw Dom elision Bitw | Dom Value set Lazy || Bitw | Dom Value set Lazy
Elision | Run | Zero | !Zero GC | Hash | Indir | Cache| Invar GC | Hash | Indir | Cache| Invar
antlr 4 5 5 1 4 5 5 1 1 0.2 0.1 0.2 0 0
bloat 4 7 12 1 5 6 5 1 1 6 7 8 0.2 0.4
chart 4 5 4 0.8 5 6 5 1 1 1 0.8 2 0.2 0.1
eclipse 5 6 9 6 5 6 6 1 1 5 6 7 0.4 0.8
fop 6 7 6 1 4 5 5 1 1 0.3 0.1 0.1 0 0
hsqldb 4 7 4 3 7 9 7 0.2 0.2 7 10 7 0 0
jython 4 5 5 0.9 5 6 5 1 0.9 3 3 4 0 0.1
luindex 4 5 5 1 5 5 5 1 1 2 1 2 0 0.3
lusearch 3 4 3 0.7 4 4 4 1 0.7 1 0.8 1 0.7 0
pmd 6 8 8 2 5 6 6 0.9 1 10 9 9 0 4
xalan 3 4 5 1 4 4 4 0.7 0.9 1 1 1 0 0.5
pseudojbb 3 4 4 1 4 5 4 1 0.7 3 4 5 0 0.2
average 4 6 6 2 5 6 5 0.9 0.8 3 4 4 0.1 0.5
Table 5. Percent memory savings from field compression.
25% A~
— combaArr this paper, we see that the combined hybrid for arrays is able to
T maxar compress the heap by up to 39%. Adding the savings for both ob-
20% 4 combCls jects and arrays, we see we savings up to 46% of all memory, and
T paxcls 86% for application data. These results show that there is a lot of
Lo | zerocls blogt and redundancy currently in the Java heap that could b_e ex-
—inditHid ploited. Although we cannot reach the 83% (or 99% for applica-
cacheArr tions) compression that bzip can achieve, we can achieve over half
strEqArr
10% A /_/_r\ bitwFd of the savings while still being able to access and update individual
et objects,
— 7\ suEacls Overall, we see the most potential for space optimization with
5% 1< A arrays. For our benchmarks, the majority of the heap size is taken
— — indirare up by arrays (43 to 78%), and our models show the greatest po-
0% tential compression with arrays. Removing bytes that are zero is
particularly effective, saving on average 45% of the heap and up
Figure 2. Compressibility ofop over time. to 73% for applications. Although previous researchers have ana-

] . lyzed many compression techniques, we are the first to apply many
dump should be representative. We also gathered savings for themodels successively to each piece of data in the heap. For applica-
per run models with frequent heap dumps which were very similar tjon classes and arrays, on average we can compress the heap by
to savings for 20 heap dumps, showing that there is little collection 5go4 with our combined hybrid model. Our hybrid analysis shows

bias. great potential to reduce the heap bloat causing Java memory inef-
4.6 Hybrid object compression ficiency.
Benchmark Total Application
Maximal | Combined Ma\ximglp Combined 5. Related work
Cls | Arr | ClIs | Arr || CIs | Arr | CIs | Arr Previous work either characterizes heap data without specifically
antir 91 16 91 2011 03] 481 03] 50 studying compression, or focuses on specific compression tech-
bloat 10 | 17 | 10| 21 12 | 28 [13 | 38 nigues without attempting to be comprehensive.
chart 9 16 9 19 4| 43 3 46 Modeling and characterization. Mitchell and Sevitsky catego-
eclipse 9| 17| 10| 22| 10| 28] 10| 41 rize fields by the role they play in an object (header, pointer, null,
fop 9| 18 9| 221 03] 58| 03] 60 primitive), and categorize objects by the role they play in a data
hsqldb 12 12 12| 13| 12| 12| 12| 12 structure (head, array, entry, contained) [17]. These measures to-
Jython 9] 16| 10| 21 5] 30 5] 35 gether with scaling formulas predict the heap data reductions of
luindex 9| 17| 9] 21 3| 61] 3] 66 manual program changes. Whereas Mitchell and Sevitsky focus on
lusearch] 3] 7] 39 3] /3] 3] 80 providing human heap understanding, we focus on heap compres-
pmd 10] 16) 10] 22| 14| 34| 14| 37 sion that can be performed in the JVM.
g";";:‘ G ; 22 ; g? 3 4712 % ?j Dieckmann and Hlizle study object lifetimes, size, type, and
average 520 5T o5 e T 15 e T 5 reference density for the SPECjvm98 benchmarks [10]. In addition

to these measures, Blackburn et al. study time varying heap, alloca-
Table 7. Percent memory savings from hybrid compression. tion, and lifetime behaviors of the SPECjvm98, SPECjbb2000, and
Table 7 shows memory savings from the hybrid compression DaCapo benchmarks [19]. They show that DaCapo is significantly
techniques in Section 3.5. The savings from the maximal hybrid ex- richer in code and data resource utilization than SPEC, which is
ceed the savings of any individual optimization, because it picks the why we use DaCapo here. While these studies provide general in-
best compression technique for each individual piece of data. The sights on heap memory composition, we measure specific limits of
savings from the combined hybrid exceed those from the maximal heap data compression.
hybrid, because each piece of data may be optimized by multiple Compression techniques. This section offers an incomplete sur-
techniques. But the additional savings of combined over maximal vey of compression techniques for executable images, object head-
are low for non-arrays. Arrays afford much greater savings in gen- ers, code, and the virtual execution engine itself. Stephenson et al.
eral. These results suggest that JVM developers should focus com-use static analysis to perform bit-width compression on C programs
pression optimizations more on arrays. Using models presented inbefore compiling those C programs to FPGAs [24]. Cooprider and

Regehr [9], Titzer [27], and Titzer and Palsberg [28] compress exe- reviewers for helpful feedback on the writing of this paper. We
cutable images for embedded chips. They apply bit-width compres- would also like to thank Nick Mitchell and Gary Sevitsky for
sion and field value set indirection on pre-allocated static data, but fruitful discussions on the problem of heap bloat.

not on dynamically allocated heap data. Bacon et al. [4] compress References

header “fields” (type, hash, lock, GC bits) with some of the tech-
nigues that our paper explores for non-header data. Ernst et al. [11],
Evans and Fraser [13], and Pugh [18] compress executable code
and class files. Titzer et al. reduce the footprint of a Java virtual
machine [26].
Heap data compression. The following research implements spe-
cific heap data compression techniques. Ananian and Rinard use
static analysis and an offline profiling run for constant field elision,
field bit-width reduction, and dominant-value field hashing [1]. Ap-
pel and Goncgalves use generational garbage collection for deep-
equal acyclic object sharing [2]. Chen et al. use compacting garbage
collection for zero-based object compression and speculative trail-
ing zero array trimming [8]. Shankar et al. use online program
analysis to create a specializer that exploits heap constants in in-
terpreters [23]. Zhang and Gupta use static analysis and an offline
profiling run for field bit-width reduction [29]. Zilles uses specula-
tive narrow allocation for character array bit-width reduction [30].
These approaches expose some of the real-world implementa-
tion challenges for compression. For example, relying on offline
profiling and static analysis reduces applicability to languages like
Java with dynamic class loading, reflection, and native code. Some
techniques target only specialized domains, such as interpreters,
English-language characters, or acyclic data. Speculative optimiza-
tions require a back-out mechanism when compressed data prop-
erties are violated and this mechanism must be thread-safe. These,

challenges and runtime overheads expose space-time tradeoffs that ™

are particular to the application setting. We leave to future work the
space-time tradeoff of particular compression implementations. We
address here the limits of memory efficiency by measuring the im-
pact and applicability of compression on a large number of bench-

marks, thus enabling apples-to-apples comparisons.
Towards heap data compressionWhereas the above research

overcomes some real-world challenges of heap data compression,
the others propose optimizations without evaluating full imple-
mentations. Chen et al. simulate dominant-value field elision [6].
Shaham et al. hand-optimize benchmarks with object-level life-
time optimizations [22], and Chen et al. hand-optimize benchmarks
with field-level lifetime optimizations [7]. Marinov and O’Callahan
hand-optimize benchmarks with deep-equal object sharing [16].
We also explore the limits of compression techniques, but we go
a step further by empirically comparing a wider variety and combi-
nations of techniques.

6. Conclusion

Memory is expensive, yet Java applications often squander it.
Based on Lempel-Ziv compression, we estimate that at least 73%
of heap data is redundant and compressible. Previous work has sug-
gested a variety of compression techniques to harness some of this
redundancy in the form of space savings. We developed a method-
ology for evaluating the limits of such compression techniques. It
consists of a heap data compressibility analysis along with over a
dozen models for the savings potential of individual optimizations.
Thus, we are the first to offer an apples-to-apples comparison of
a large number of different heap data compression techniques. We
show that significant space savings are possible, especially with
array compression and combined hybrid techniques. We hope that
optimizing this discovered heap bloat can make Java a space effi-
cient, high productivity programming language.

Acknowledgments We would like to acknowledge the help of
Steve Blackburn with experimental implementation, Maria Jump
for assistance with heap dump generation, and Mike Bond and

[1] C. S. Ananian and M. Rinard. Data size optimizations for Java programs. In
Languages, Compiler, and Tool Support for Embedded Sysg903.

[2] A. W. Appel and M. J. R. Gongalves. Hash-consing garbage collection.
Technical Report CS-TR-412-93, Princeton University, 1993.

[3] B. Alpern etal. The Jalag® virtual machinelBM Systems JournaB9(1):211—
238, 2000.

[4] D. Bacon, S. Fink, and D. Grove. Space- and time-efficient implementation
of the Java object model. IBuropean Conference for Object-Oriented
Programming 2002.

[5] A. Cardon and M. Crochemore. Partitioning a graptoifia|log, |v|).
Theoretical Computer SciencEd82.

[6] G. Chen, M. Kandemir, and M. J. Irwin. Exploiting frequent field values in
Java objects for reducing heap memory regirementsVirtwal Execution
Environments (VEER005.

[7] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Field level analysis
for heap space optimization in embedded Java environmentateimational
Symposium on Memory Managemeztio4.

[8] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and
M. Wolczko. Heap compression for memory-constrained Java environments. In
Object-Oriented Programming, Systems, Languages, and Applica#ioa8.

[9] N. D. Cooprider and J. D. Regehr. Offline compression for on-chip RAM. In
Programming Language Design and Implementatz007.

[10] S. Dieckmann and U. bizle. A study of allocation behavior of the SPECjvm98
Java benchmarks. Buropean Conference for Object-Oriented Programming

[11] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting. Code
compression. IfProgramming Language Design and Implementatit#n7.
[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In
International Conference on Software Engineering (ICSBP9.
W. S. Evans and C. W. Fraser. Bytecode compression via profiled grammar
rewriting. InProgramming Language Design and Implementat2001.
[14] S. Hangal and M. S. Lam. Tracking Down Software Bugs Using Automatic
Anomaly Detection. Irinternational Conference on Software Engineering
2.

[15] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the connectivity
of heap objects. linternational Symposium on Memory Managemga02.

[16] D. Marinov and R. O’Callahan. Object equality profiling. @bject-Oriented
Programming, Systems, Languages, and Applicafi2063.

[17] N. Mitchell and G. Sevitsky. The causes of bloat, the limits of health. In
Object-Oriented Programming, Systems, Languages, and Applica#ioag.

[18] W. Pugh. Compressing Java class filesPtogramming Language Design and
Implementation1999.

[19] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. Kbject-Oriented Programming, Systems,
Languages, and Application2006.

20] J. B. Sartor, M. Hirzel, and K. McKinley. No bit left behind: The limits of
heap data compression (extended version). Technical Report TR-08-17, The
University of Texas at Austin, 2008.

[21] Semiconductor Industry Association. SIA world semiconductor forcast 2007—
2010, Nov. 2007. http://www.sia-online.org/prelease.cfm?ID=455.

[22] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-efficient
Java. InProgramming Language Design and Implementat@001.

[23] A. Shankar, S. S. Sastry, R. Bdand J. E. Smith. Runtime specialization
with optimistic heap analysis. I@bject-Oriented Programming, Systems,
Languages, and Application2005.

[24] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with
application to silicon compilation. IRProgramming Language Design and
Implementation2000.

[25] TIOBE Software. TIOBE programming community index, 2007. http://tiobe.-
com.tpci.html.

[26] B. Titzer, J. S. Auerbach, D. F. Bacon, and J. Palsberg. The ExoVM system for
automatic VM application reduction. Rrogramming Language Design and
Implementation2007.

[27] B. L. Titzer. Virgil: Objects on the head of a pin. K@bject-Oriented
Programming, Systems, Languages, and Applicafi2086.

[28] B. L. Titzer and J. Palsberg. Vertical object layout and compression for fixed
heaps. IlCompilers, Architectures, and Synthesis for Embedded Sy206&

[29] Y. Zhang and R. Gupta. Compression transformations for dynamically allocated
data structures. Imternational Conference on Compiler Constructi@02.

[30] C. Zilles. Accordion arrays: Selective compression of unicode arrays in Java.
In International Symposium on Memory Managem&a07.

[

