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Heterogeneous hardware is central to modern advances in performance and efficiency. Mainstream pro-
gramming models for heterogeneous architectures, however, sacrifice safety and expressiveness in favor of
low-level control over performance details. The interfaces between hardware units consist of verbose, unsafe
APIs; hardware-specific languages make it difficult to move code between units; and brittle preprocessor
macros complicate the task of specializing general code for efficient accelerated execution. We propose a
unified low-level programming model for heterogeneous systems that offers control over performance, safe
communication constructs, cross-device code portability, and hygienic metaprogramming for specialization.
The language extends constructs from multi-stage programming to separate code for different hardware units,
to communicate between them, and to express compile-time code optimization. We introduce static staging,
a different take on multi-stage programming that lets the compiler generate all code and communication
constructs ahead of time.

To demonstrate our approach, we use static staging to implement BraidGL, a real-time graphics programming
language for CPU–GPU systems. Current real-time graphics software in OpenGL uses stringly-typed APIs for
communication and unsafe preprocessing to generate specialized GPU code variants. In BraidGL, programmers
instead write hybrid CPU–GPU software in a unified language. The compiler statically generates target-specific
code and guarantees safe communication between the CPU and the graphics pipeline stages. Example scenes
demonstrate the language’s productivity advantages: BraidGL eliminates the safety and expressiveness pitfalls
of OpenGL and makes common specialization techniques easy to apply. The case study demonstrates how
static staging can express core placement and specialization in general heterogeneous programming.

CCS Concepts: • Computing methodologies → Graphics processors; • Computer systems organiza-
tion → Heterogeneous (hybrid) systems; • Software and its engineering → General programming
languages;
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1 INTRODUCTION

Heterogeneous computer systems are ubiquitous. Smartphone SoCs integrate dozens of disparate
units; mainstream laptop and desktop chips include CPU and GPU cores on a single die; and modern
datacenters include GPUs, FPGAs, and special-purpose ASICs [Hauswald et al. 2015; Jouppi et al.
2017; Putnam et al. 2014]. Our work seeks to improve heterogeneous programming, in which a
single software artifact spans multiple computation units and memories with different resources,
capabilities, ISAs, and performance characteristics.
Current techniques for heterogeneous programming tend toward two extremes. On one hand,

low-level APIs such as CUDA [Nickolls et al. 2008] and OpenGL [Segal and Akeley 2016] offer
precise control over when and where code executes, but their close adherence to hardware comes
at the cost of safety and expressiveness. On the other hand, high-level abstractions that hide
distinctions between hardware units, such as autotuning approaches [Ansel et al. 2009; Luk et al.
2009; Phothilimthana et al. 2013] and domain-specific languages [Chafi et al. 2011; Ragan-Kelley
et al. 2013], sacrifice low-level control over cross-unit coordination.

This paper seeks to combine safety and expressiveness with control and performance. We propose
a new abstraction for heterogeneous programming that preserves direct control over hardware
resources. We identify two fundamental concepts in heterogeneous programming: placement and
specialization. Placement controls when and where code runs. Different units in heterogeneous
systems have different capabilities and performance characteristics, so programmers need to control
which code runs onwhich unit and how the components communicate. Specialization refines general
code for efficient execution on specific hardware or inputs. Specialized hardware accelerates specific
computational patterns, so applications need to specialize code to match the hardware’s strengths.

Static staging for heterogeneity. We describe Braid, a language and compiler that provide efficient
abstractions for placement and specialization. Braid provides a unified language with explicit
hardware targets to place code onto each architecture in the system. Braid’s type system enforces
safe communication and correct code specialization for each target.

The key idea is to generalize work onmulti-stage programming [Taha and Sheard 1997] to address
both placement and specialization. Staging offers a foundation for safe interoperation between
program components, but traditional staged languages focus on dynamic code generation and
domain-specific optimization [Brown et al. 2011; DeVito et al. 2013; Rompf and Odersky 2010;
Rompf et al. 2014]. Our compiler uses a new approach, static staging, to emit hardware-specific
code and communication constructs ahead of time. Static staging lets Braid exploit classic staging’s
expressiveness without its run-time cost.
In addition to place-specific stages, programs can use a compile-time stage to express special-

ization and to explore hardware-specific optimization strategies. Because both concepts rest on a
consistent language foundation, specialization composes with placement in Braid: applications can
use metaprogramming to decide where code should run. Our key finding is that multi-stage pro-
gramming, with new restrictions and extensions, can serve as a unifying foundation for expressive,
high-performance heterogeneous programming languages.
Braid’s philosophy is a counterpoint to domain-specific languages that target exotic hard-

ware [Chafi et al. 2011; Ragan-Kelley et al. 2013], where the goal is to hide low-level execution
details from programmers. Instead, Braid exposes hardware details and makes them safe. Whereas
DSLs are appropriate for domain experts, Braid offers system experts direct control over hetero-
geneous hardware that higher-level abstractions lack. Performance is a leaky abstraction, and
hardware details often find themselves embedded into algorithm specifications despite efforts
to the contrary [Mytkowicz and Schulte 2014]. Google’s TPU [Jouppi et al. 2017], Microsoft’s
Catapult [Putnam et al. 2014], and other bespoke accelerators are ascendant, and system designers
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will need to cope with its inevitable impact on software. Languages based on static staging can
expose these hardware-level execution details without resorting to brittle, C-based APIs.

Case study in real-time graphics. We demonstrate our approach in the domain of real-time
graphics applications, such as video games, which arguably represent today’s most widespread
form of heterogeneous programming. Graphics software consists of code running on the CPU
and in each stage of the GPU pipeline. Current APIs [Microsoft 2008; Segal and Akeley 2016] use
separate languages in each context and unsafe interfaces between them. These applications also
specialize code extensively for performance: modern games can produce hundreds of thousands of
GPU program variants that customize generic visual effects [He et al. 2016, 2015]. To produce these
variants, programmers must use rudimentary token-stream manipulation à la C preprocessor.

We implement BraidGL, a real-time graphics programming system for hybrid CPU–GPUs,
and show how it addresses these problems. The compiler takes a single source program with
staging annotations and emits a mixture of JavaScript for the CPU, GLSL for the GPU, and WebGL
“glue code” [Jackson and Gilbert 2017]. Unlike traditional graphics APIs such as OpenGL and
Direct3D, BraidGL programs statically guarantee safe interaction: the communicating programs
agree on the types of the values they exchange. In contrast to non-graphics GP-GPU languages
such as CUDA and OpenACC [Nickolls et al. 2008; OpenACC 2015], BraidGL explicitly exposes
the telescoping sequence of stages that make up the 3D rendering pipeline. Unlike any other
heterogeneous programming language we are aware of, BraidGL delivers safe compile-time and
run-time metaprogramming tools that compose with staged execution. BraidGL’s combination
of compile-time safety and low-level control fills a void left empty by both high-level tools and
C-based APIs of last resort.
We use three case studies to demonstrate that BraidGL combines performance, safety, and

expressiveness. We show how to use static staging to explore specialization strategies that improve
frame rates without adding complexity. To demonstrate its safety, we define a formal semantics for
a core of Braid and state a type preservation theorem. To demonstrate expressiveness, we show
how BraidGL eliminates error-prone boilerplate code for placement and eases the expression of
algorithmic specialization. We posit that GPU-accelerated graphics programming poses challenges
that are similar to those in other kinds of heterogeneous systems, which suggests static staging is
general enough to meet programmer needs for safety and performance in an age of heterogeneity.

We built a live-coding environment to encourage experimentation with Braid and BraidGL. The
in-browser environment is available online along with the compiler’s source code [Sampson 2017].

2 OVERVIEW BY EXAMPLE

To motivate the problem, this section illustrates the challenges of programming heterogeneous
systems using WebGL [Jackson and Gilbert 2017], the JavaScript variant of OpenGL. We then
contrast current practices with Braid.

2.1 An Example in WebGL

Real-time graphics software relies on high-performance GPU hardware to achieve interactive
frame rates. To draw each frame, the CPU loads scene data into the GPU’s memory and issues
commands to instruct the GPU to render individual objects. The rendering pipeline assembles a
mesh of vertices in 3D space that define an object’s shape, positions primitive polygons to cover the
mesh, and computes a color for every visible point on every triangle. Modern GPUs are massively
data-parallel programmable processors, and custom software controls how each step in the pipeline
works to produce a visual effect.
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Fig. 1. Stages in a simple graphics program. Each box is a stage; each arrow is a communicated value. The
position and normal vector arrays describe a mesh. projection, view, and model are transformation
matrices. The shader stages also send gl_Position and gl_FragColor vectors to the rendering system.

3 var VERTEX_SHADER =

"attribute vec3 aPosition, aNormal;" +

"uniform mat4 uProjection, uModel, uView;" +

"varying vec3 vNormal;" +

"void main() {" +

"vNormal = aNormal;" +

"gl_Position =" +

"uProjection * uView * uModel *" +

"aPosition;" +

"}";

4 var FRAGMENT_SHADER =

"varying vec3 vNormal;" +

"void main() {" +

"gl_FragColor = abs(vNormal);" +

"}";

// One-time setup.

1 var program =

compile(gl, VERTEX_SHADER, FRAGMENT_SHADER);

var loc_aPosition =

gl.getAttribLocation(program, "aPosition");

/* ... */

var mesh = loadModel();

// Per-frame render loop.

while (1) {

// Bind the shader program and its parameters.

2 gl.useProgram(program);

bindAttr(gl, loc_aPosition, getPositions(mesh));

/* ... */

draw(gl, getSize(mesh));

}

(a) Tiny rendering program in JavaScript and GLSL.

1 var mesh = loadModel();

# Render loop.

2 render js<

var position = getPositions(mesh);

# ...

# Vertex shader.

3 vertex glsl<

gl_Position = projection * view *

model * position;

# Fragment shader.

4 fragment glsl<

gl_FragColor = abs(normal);

>;

>;

draw(getSize(mesh));

>;

(b) An equivalent program in BraidGL.

Fig. 2. A bare-bones shader in WebGL and in Braid.

Code that runs on the GPU consists of short kernels called shader programs, which are written
in a GPU-specific programming language. Each programmable stage in the rendering pipeline can
be customized with a different kind of shader program. The two most common kinds are vertex
shaders, which compute the position of each vertex in a 3D mesh, and fragment shaders, which
compute the color of each pixel on an object’s surface. The CPU sends input vertex parameters to
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the vertex shader, which executes once per vertex to compute a position vector. Next, the GPU’s
fixed-function logic uses the computed vertex positions to produce a set of primitive polygons. The
fragment shader executes once per pixel in the area of each polygon, interpolating between the
vertex positions, and produces a color for each pixel. The pipeline organization means that each
stage can produce data for the next stage to consume.

Figure 1 illustrates these execution phases for the minimal example program in Figure 2a using
JavaScript, WebGL, and GLSL. In this example:

• The CPU-side setup phase 1 loads 3D mesh data, compiles the GLSL shader source code,
and looks up “location” handles for GPU-side variables. Later code will use these handles to
communicate with the GPU.

• The render loop 2 executes on the CPU, once for each frame. It tells the driver which shader
program to use, binds parameters using the location handles, and invokes a draw command
to trigger the GPU pipeline. This example uses transformation matrices called projection,
view, and model, which determine the position, orientation, and scale of the camera and the
object. The vector arrays position and normal describe the object’s shape; each consists of
one vector per vertex.

• The vertex shader 3 is a GLSL program that writes to the magic variable gl_Position to
determine the coordinates of each vertex. This example uses an input object-relative vertex
position, given by position, and multiplies it with a series of transformation matrices to
compute a view-relative position. It passes the normal vector to the fragment shader using
the prefixed names aNormal and vNormal to distinguish the vertex and fragment shaders’
views of the same data.

• The fragment shader 4 writes to gl_FragColor to produce each pixel’s color. The GPU
gathers the values of vNormal computed in neighboring vertex shader executions, interpolates
them, and uses the result for the vNormal variable in the fragment shader.

This example demonstrates three major pitfalls in OpenGL programming.

Programming in strings. The host program embeds the GPU programs as string literals and
passes them to the graphics driver for just-in-time compilation. This stringly-typed API limits static
checking and obscures data flow, causing syntax errors and undefined variables to stay silent at
compile time and crash the program at run time.
The potential for subtle errors makes it challenging to experiment with different strategies

for code placement. For example, a common optimization technique is to move computations
from the fragment shader to the vertex shader, where they run at a lower rate, or from the vertex
shader to the CPU, where they run only once per frame. The transformation matrix multiplica-
tion uProjection * uView * uModel in the vertex shader could also occur on the CPU, but
moving this computation would require changing the programming language, the API for matrix
multiplication, and the variable names.

Unsafe, verbose communication. Inter-stage communication involves three steps. Each shader
declares its parameters and outputs: uniform denotes a per-draw-call parameter; attribute
denotes a per-vertex parameter; and varying denotes a communication channel between different
shaders. During setup, the host code uses each parameter’s name to look up its handle. Finally, to
draw each frame, the host code uses the handles to assign the parameter values. None of these
constructs are type-checked at compile time.
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Some general-purpose GPU programming languages, including CUDA and its successors [Howes
and Rovatsou 2016; OpenACC 2015; Sander et al. 2015], use a single-source model where communi-
cation can be checked at compile time. These simpler languages do not target real-time graphics
programming, which requires composition of multiple nested stages to model the rendering pipeline.

Unscalable specialization. To extract high performance from the GPU, graphics applications
specialize general code to create simpler shader variants. Because divergent control is expensive
on GPUs, shaders avoid if branches. Instead, programmers often use GLSL’s C-preprocessor-like
#ifdef to generate cheaper, straight-line shader programs:

#ifdef TINT

gl_FragColor = abs(vNormal) + vec4(0.1, 0.1, 0.5, 1.0);

#else

gl_FragColor = abs(vNormal);

#endif

The C preprocessor approach suffices for a handful of build flags but does not scale well to the
massive specialization required in modern games, which can generate hundreds of thousands of
shader variants [He et al. 2016, 2015]. Traditional #ifdef code manipulation makes it difficult to
ensure that each variant will pass type checking or even parse. CUDA and other general-purpose
GPU languages have the same limitation.

2.2 Real-time Graphics Programming with Braid

Braid uses static staging to address these problems. Figure 2b shows the BraidGL version of the
WebGL program in Figure 2a. The successive pipeline stages in Figure 1 map to a nested series
of stages. The programmer quotes code with angle brackets <e> to control code generation and
placement: js<e> delimits JavaScript code executing on the CPU and glsl<e> indicates GLSL code
executing on the GPU. The example in Figure 2b uses three pairs of angle brackets to delimit four
stages, from the outermost setup stage to the innermost fragment-shader stage. Data flows from
earlier to later stages using variable references that cross stage boundaries. The BraidGL compiler
provides render, vertex, and fragment intrinsics that generate code for the appropriate compute
unit. This three-level nesting reflects the essential complexity of the real-time graphics domain. A
single level of staging would suffice to program other emerging forms of hardware heterogeneity,
such as fixed-function accelerators for machine learning or encryption.

This section uses our example to give an overview of Braid. Section 3 describes it in detail.

Unified, type-safe programming. Braid does not use strings for code. The code for the setup,
render, vertex, and fragment stages all coexist in a single, type-safe program. This uniformity
makes the flow of data clear, detects errors statically, and simplifies the job of moving computations
between stages. For example, since the transformation matrices are constant in this program, we
could move their multiplication to the CPU:

var pvm = projection * view * model;

vertex glsl<

gl_Position = pvm * position;

# ...

This change reduces CPU–GPU communication but increases the CPU’s workload, so the best
placement depends on the platform. A uniform programming model simplifies rapid exploration of
placement strategies.

Safe communication. Braid enforces a consistent interface between heterogeneous components.
The vertex shader references the position variable, which is defined in the render-loop stage.
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Cross-stage references are a special case of a more general concept in Braid called materialization
that abstracts communication channels in heterogeneous hardware.

Metaprogramming for specialization. Programmers can define staging-basedmacros that transform
code for efficiency. A programmer might write a compile-time conditional macro, @static_if, to
replace the #ifdef-based conditional tinting from above:

gl_FragColor = @static_if tint

(abs(normal) + vec4(0.1, 0.1, 0.5, 1.0))

abs(normal)

Because it is based on stages, Braid’s macro system guarantees that all generated programs will
be well-typed. Unlike with #ifdef metaprogramming, programmers can trust that any possible
combination of compile-time options will lead to meaningful shader code. The key idea is to treat
the compilation phase as another stage that precedes runtime setup. Stages thus offer a common
basis for compile-time specialization and run-time coordination.

2.3 Dynamic vs. Static Stages

Braid’s static staging approach generalizes multi-stage programming [Taha and Sheard 1997].
Traditional staging focuses on constructing compilers and domain-specific languages [Brown et al.
2011; DeVito et al. 2013; Rompf and Odersky 2010; Rompf et al. 2014]. In this dynamic staging
approach, a stage-0 program generates a stage-1 program, which may generate a stage-2 program,
and so on. If the stages need to communicate, an earlier stage bakes values into the later-stage
program as constants [Kiselyov 2014; Rompf and Odersky 2010; Taha and Sheard 1997].

Traditional multi-stage programming’s flexible semantics leads to costly implementations. Cur-
rent implementations, such as Scala LMS [Rompf and Odersky 2010], Terra [DeVito et al. 2013],
and MetaOCaml [Calcagno et al. 2003b], build up abstract syntax trees and compile them on the
fly. AST manipulation enables arbitrary code transformation, but it requires that staged programs
invoke a full compiler to run any later-stage code. The cost is acceptable for offline code generation
but inappropriate for application code.

Our work extends and restricts staging to make it practical to use in heterogeneous programs. The
key goal is to generate code ahead of time for all stages. Static staging introduces materialization, a
new construct that denotes inter-stage communication without AST manipulation. Materialization
coexists with traditional splicing, which retains prior work’s code generation semantics. The static
programming model means that staged Braid programs do not need to bundle a Braid compiler to
execute. The next section details the distinction between materialization and traditional splicing
and its consequences for the language implementation.

3 STATIC STAGING IN BRAID

Braid’s goals are to express placement and specialization in a heterogeneous system while statically
compiling efficient code. Its unique features in service of these goals are:

• A new kind of escape expression, called materialization, for inter-stage communication.
• Multi-level escape expressions, which compose staging constructs for specialization together
with staging constructs for placement.

• An optimization, pre-splicing, that avoids the cost of runtime metaprogramming while pre-
serving its semantics.

• A hygienic macro system that uses staging to encapsulate reusable specialization strategies.

Table 1 enumerates Braid’s staging constructs.
This section describes the Braid language and its prototype compiler. For simplicity, the basic

Braid system has only one target, JavaScript, and uses unannotated quotes <e>. The compiler emits
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Table 1. Language constructs in Braid.

Syntax Name Section Purpose
target<e> quote 3.1 Produce a code value for target that will run e.
!e run Execute a code value.
[e] splice Inline a code value from the parent scope.
%[e] materialize 3.2 Communicate a value from the parent scope.
n[e] multi-level escape 3.3 Evaluate e in the context n levels away and splice.
$[e] & $<e> open code 3.4 Splice while preserving the current quote’s scope.
@name macro invocation 3.5 Call a function defined at any earlier stage.

string-wrapped JavaScript code for each <e> and runs the code using eval. Section 5 shows how
we add compiler backends for hardware targets in real-time graphics.

3.1 Traditional Staging:Quote, Run, and Splice

Braid borrows three central constructs from traditional multi-stage programming: the quote, run,
and splice expressions. Quotation (also known as bracketing in MetaML [Taha and Sheard 1997]
and quasiquotation in Lisp [Bawden 1999]) denotes a deferred computation and produces a code
value. In Braid, quotation is written using angle brackets:

var program = <

var highlight = fun color:Vec3 ->

min(color * 1.5, vec3(1.0, 1.0, 1.0));

highlight(vec3(0.2, 0.8, 0.1))

>

Here, program is a code value that, when executed, defines and invokes a function. Its type is
written <Vec3>, which indicates that the delayed code will produce a value of type Vec3. A run
operator, !e , executes code values. Here, !program evaluates to the vector (0.3, 1.0, 0.15).
Quotations use a splice expression (also called escape or unquote), to compose code values. In

Braid, square brackets denote splicing. The splice expression [e] must appear inside a quote. It
evaluates e in the quote’s parent context to produce a code value to insert into quote. For example,
splicing can “bake in” a parameter as a constant:

var makeHighlight = fun amount:<Float> ->

< fun color:Vec3 ->

min(color * [amount], vec3(1.0, 1.0, 1.0)) >

The [amount] splice looks up a code value from the environment outside the quote and splices it
into the body of the quoted highlighting function. The makeHighlight function takes a parameter
of type <Float>, which may be any quoted code that produces a Float. For example, invoking the
function and then running the result with the expression !(makeHighlight(<2.0>)) produces a
function with the literal 2.0 inlined into its body. The result is equivalent to:

fun color:Vec3 ->

min(color * 2.0, vec3(1.0, 1.0, 1.0))

In this example, splicing is akin to partial evaluation.

Compiling stages statically. The baseline Braid compiler emits JavaScript code for all stages.
It wraps quoted code in string literals and compiles the run operator ! to JavaScript’s eval.
Splicing uses string replacement with a magic token. Our makeHighlight function compiles to
this JavaScript code:
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var QUOTE_1 = "function (color) {" +

" return min(color * __SPLICE_1__, vec3(1.0, 1.0, 1.0))" +

"}";

var makeHighlight = function (amount) {

return QUOTE_1.replace("__SPLICE_1__", amount);

}

Our above invocation compiles to JavaScript using eval:

var QUOTE_2 = "2.0";

var highlight2 = eval(makeHighlight(QUOTE_2));

This example shows that the Braid compiler emits quoted and non-quoted code at the same level of
abstraction, as JavaScript statements. Traditional staged compilers represent quoted code as an AST
that looks very different from the executable code emitted for non-quoted expressions. In Braid,
there is no runtime AST data structure, and running quoted code does not require an additional
translation step. This ahead-of-time code generation is key to performance in heterogeneous
programming. BraidGL, for example, emits complete GLSL programs from shader quotes at compile
time so it can match the performance of manually-written OpenGL code.
This trio of staging concepts—quote, run, and splice—make up Braid’s tools for traditional

metaprogramming. Next, we describe Braid’s extensions to staging for heterogeneous programming.

3.2 Expressing Communication: Materialization

Braid adds an abstraction for efficient inter-stage communication. In traditional dynamic staging,
the only way to communicate with a later stage is to lift a raw value to a code value and splice
it into the later stage’s code [Taha and Sheard 1997]. Traditional splicing does not suffice for
heterogeneous programming, where it is both inefficient and inflexible. Instead, Braid introduces
a new communication construct, called materialization, that makes a value defined in one stage
available in another, later stage.

For example, this GPU-side function adjusts a color by a CPU-specified amount:

var amount = 0.8;

< fun color:Vec3 ->

min(color * %[amount], vec3(1.0, 1.0, 1.0)) >

The expression %[amount] is a materialization escape. Like a splice escape, %[e] evaluates e in
the current quote’s parent context. But unlike with splicing, e need not be a code value. It may
have an ordinary type, such as Float, because materialization does not manipulate any code—it
communicates e through shared memory or dedicated communication channels, depending on
the hardware target. In BraidGL, materialization abstracts the OpenGL APIs for binding shader
parameters. Materialization distinguishes Braid from prior multi-stage languages, which view
splicing as the only method for cross-stage persistence [Hanada and Igarashi 2014; Kiselyov 2014].
The explicit distinction between splicing and materialization is the core concept behind static
staging that differentiates it from prior multi-stage programming work.

Implementing materialization. To compile quotes containing materialization expressions, the
Braid implementation uses a strategy similar to lambda lifting for closures. The hardware target
determines how to communicate materialized data. For CPU targets, a code value consists of a code
pointer and an environment containing materialized values. Our highlighter example compiles to:

var QUOTE_1 = "... color * m1 ...";

{ code: QUOTE_1, env: { m1: amount } }

The code value is a JavaScript object. Its env member maps the opaque materialization name m1 to
a concrete value. To execute code values with materialized data, programs bind the environment’s
names and then invoke eval.
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Section 5 describes how BraidGL implements materialization for CPU–GPU communication.

Cross-stage references. While materialization expressions can be useful on their own, Braid
programmers typically use materialization implicitly via references to variables defined at earlier
stages. These cross-stage references use materialization under the hood without requiring bracket
syntax. For example, this version of the highlighter program uses cross-stage references to the
variables amount and color:
fun color:Vec3 amount:Float ->

< min(color * amount, vec3(1.0, 1.0, 1.0)) >

This code has identical semantics to a quote that uses explicit materialization escapes:
< min(%[color] * %[amount], vec3(1.0, 1.0, 1.0)) >

The type checker keeps track of the stage where each variable is defined, and when a reference
crosses a stage boundary to reach its definition, the compiler uses materialization to communicate
the value.

Cross-stage references are nearly syntactic sugar for materialization escapes. A reference to an
earlier-stage variable such as color has the same semantics as a materialized reference %[color],
but it differs in performance when a stage uses the same variable multiple times. Consider the
highlighter with a parameterized channel limit:
< min(color * amount, vec3(limit, limit, limit)) >

This code should not waste bandwidth to communicate three copies of the limit value to the GPU.
The Braid compiler ensures that cross-stage references communicate their values only once.

3.3 Multi-Level Escapes

Staging in Braid plays two distinct roles: specialization and placement. In programs that compose
both roles, it must be possible to specialize code that uses placement to coordinate multiple hardware
units. For example, this program creates code to run on the GPU:

var amount = ...;

var shader = fun color:Vec3 -> <

gl_FragColor = [

if (amount == 1.0)

< color >

< min(color * amount, vec3(1.0, 1.0, 1.0)) >

]

>

It uses a splice escape to decide whether to emit code to highlight the color parameter. When
amount is 1.0, the shader can use simpler code and avoid wasting bandwidth to communicate the
value. However, this program uses runtime metaprogramming. Every invocation of the shader
function will splice together a fresh shader code string. This dynamic code generation is both
inefficient and unnecessary: amount cannot change between calls, so the generated code is the
same every time. To fix this problem, Braid programs can opt into compile-time metaprogramming
using multi-level escape expressions.
Multi-level escapes generalize the traditional escape construct to enable splicing and material-

ization between non-adjacent stages. By annotating an escape expression n[e] with a number n,
programs can evaluate e and splice it at the nth prior stage without passing through the intermediate
stages. While a single-stage splice escape produces metaprogramming code at the immediately
preceding stage, a multi-stage splice lets the programmer move the cost of metaprogramming
earlier—even to compilation time.
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In our example above, metaprogramming occurs at the CPU execution stage, but we would
like to perform it at compile time instead to eliminate its run-time overhead. We can introduce a
compile-time stage by wrapping our program in a new, top-level quote:

var amount = ...;

!<

var shader = fun color:Vec3 -> <

gl_FragColor = 2[

if (amount == 1.0)

< color >

< min(color * amount, vec3(1.0, 1.0, 1.0)) >

]

>

>

By writing the splice escape as 2[...], this version performs splicing at the outer specialization
stage. Executing this program performs splicing, but it produces a second-stage program that does
not do any splicing itself. The resulting shader code uses one of the two alternative expressions
and omits the other entirely. A plain, single-level splice expression, in contrast, would instead
materialize amount at run time and use it to splice the shader dynamically, as in the previous
version of the example.

The numeric stage indexing in multi-level escapes is powerful but not always ergonomic. Rather
than as a user-facing feature, multi-level escapes are important as an underpinning for cross-stage
references (Section 3.2) and macros (Section 3.5). Our formalism for Braid (Section 4) uses them to
define the semantics for both.

Implementing generalized splicing. The Braid compiler recursively emits nested quotes using
nested JavaScript string literals. Stage splicing works by replacing a token within an inner string:

var amount = ...;

var QUOTE_1 = "var shader = function (color) {" +

"var QUOTE_2 =" +

" \"gl_FragColor = __SPLICE_1__\";" +

"return QUOTE_2;" +

"}";

QUOTE_1.replace("__SPLICE_1__", ...);

The two-level splice 2[e] is not equivalent to a nested splice [[e]]. The latter splices code twice,
once in each stage:

var amount = ...;

var QUOTE_1 = "var shader = function (color) {" +

"var QUOTE_2 =" +

" \"gl_FragColor = __SPLICE_1__\";" +

"return QUOTE_2.replace(\"__SPLICE_1__\", __SPLICE_2__);" 1
+ "}";

QUOTE_1.replace("__SPLICE_2__", ...); 2

The outer splice 2 runs first and inserts code into the outer quote, which splices again 1 to
transfer the value into the inner quote. Multi-level splicing is required to generate staged code that
does not itself generate any code at run time.

3.4 Expressive Metaprogramming with Open Code

As described so far, quotes must contain self-contained, executable programs without unbound
variable references. This strategy rules out important specialization strategies. For example, a
graphics shader might need to conditionally darken or lighten a computed color:
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var night = ...;

var shader = <

var color = get_color(); 1
gl_FragColor = [

if night

< color * 0.7 > 2

< min(color * 1.2, vec3(1.0, 1.0, 1.0)) > 3
]

>

Both quoted color references 2 3 are illegal because the variable is not defined in any earlier
stage. A sibling quote 1 declares the variable, but cross-stage references may only safely refer to
enclosing ancestor stages.
In the multi-stage programming literature, these self-contained quotes with no out-of-scope

references are called closed code. Some languages allow open code, where quotes can refer to variables
that are locally undefined [Benaissa et al. 1999; Moggi et al. 1999; Nanevski and Pfenning 2005;
Taha and Nielsen 2003]. Unconstrained open code prohibits static code generation because variable
references can be undefined until run time. Braid introduces a limited form of open-code quotation
that allows static compilation.
In Braid, programs opt into open code by annotating escapes and quotes with a $ prefix. For

instance, this version of the quoted shader code is legal:

var color = get_color();

gl_FragColor = $[

if (night)

$< color * 0.7 >

$< min(color * 1.2, vec3(1.0, 1.0, 1.0)) >

]

Open quotes $<...> share the environment of their nearest corresponding $-prefixed escape
expression, so the references to color in this version of the code are legal. Whereas ordinary quotes
might be spliced anywhere, including into contexts where color is not defined, these open quotes
may only be spliced into their nearest $[...] escape, where color is guaranteed to be defined.
The type system enforces this requirement to prohibit splicing anywhere else. For example, this
Braid program produces a type error:

var sneaky;

var shader1 = <

var color = ...;

$[ sneaky = $<color> ];

>;

var shader2 = < $[sneaky] >;

This contrived example would smuggle a reference to the variable sneaky from a context where it
is defined (shader1) into a context where it is undefined (shader2). The type system prohibits the
assignment to sneaky to prevent the ill-formed splice.

This simple type constraint, where every quote has exactly one splice point, suffices, but future
work may explore rules that add flexibility while maintaining static safety. For example, the compiler
could allow multiple potential splice points, as long as they are statically enumerable, or programs
could transform open quotes with additional context before splicing them at their destinations.

3.4.1 Pre-Splicing to Avoid Code Generation. Braid’s restrictions on open code provide an op-
portunity to avoid the cost of runtime metaprogramming where it seems unavoidable. Consider a
version of our highlighting shader where amount is a runtime parameter:
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var shader = fun color:Vec3 amount:Float -> <

gl_FragColor = $[

if (amount == 1.0)

$< color >

$< min(color * amount, vec3(1.0, 1.0, 1.0)) >

]

>

Because amount is unknown at compile time, the multi-level escape approach from Section 3.3 will
not work. Instead, this program splices GLSL code just before executing it to avoid a branch on
the GPU. But there are only two possible final versions of the complete shader program, so it is
wasteful to re-splice the code on every shader invocation.

The Braid compiler introduces an optimization to avoid wasteful code generation. Pre-splicing
leverages the type system’s open-code restrictions, which ensure that the set of resolutions for each
$[...] escape is statically enumerable. The optimization iterates through each possible resolution
of each such escape and produces a variant of the quote that inlines the chosen quotes. Then, it
transforms the code from each splice escape to look up the correct variant in a table. In our example,
pre-splicing produces optimized code equivalent to this escape-free program:

var shader = fun color:Vec3 amount:Float ->

if (amount == 1.0)

< gl_FragColor = color >

< gl_FragColor = min(color * amount, vec3(1.0, 1.0, 1.0)) >

The JavaScript backend emits a switch on the IDs that identify each resolution:

var QUOTE_1_1 = "..."; // The pre-spliced variants.

var QUOTE_1_2 = "...";

var id = (amount === 1.0) ? 1 : 2;

switch (id) { // Variant lookup.

case 1:

return QUOTE_1_1;

case 2:

return QUOTE_1_2;

}

Pre-splicing trades reduced runtime cost for increased code size by generating a combinatorial space
of specialized programs. For example, if a quote has two pre-spliced escapes, and each contains 3
possible subquotes, then the optimization will produce 3 × 3 complete variants. The Braid compiler
provides a flag to disable the pre-splicing optimization if exponential code bloat becomes a problem.

3.5 Reusable Specialization with Macros

Tomake specialization strategies reusable, Braid adds a staging-based macro system. Library writers
express common patterns for optimizing general code, and application writers reuse them without
too much careful reasoning about stages. For example, some examples above use an if at an earlier
stage to statically choose between two expressions. Using Braid’s macro system, we can define a
“specialized if" construct, @spif, which substitutes for if in quoted code:

var night = ...;

< var value = @spif night 0.3 0.8;

gl_FragColor = vec3(value, value, value) >

In Braid, macro invocations are syntactic sugar for explicit staging constructs. A macro invocation,
written @name, invokes the function name at the stage where name is defined and splices the result
into the current stage. There is no special syntax to define a macro; any function that accepts
code values as arguments can be a macro. To define @spif, for example, a library author writes an
ordinary function that takes code values as arguments:
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e ::= c | x | var x = e | e ; e | ⟨e⟩ | !e | n[e] | %[e] |
$
n[e] | $⟨e⟩

x ∈ variables, c ∈ constants, n ∈ 1, 2, . . .

Fig. 3. Syntax for BraidCore.

var spif = fun cond:<Bool> t:<Float> f:<Float> ->

if !cond t f;

Recall that ! executes code values, so !cond in this example evaluates the condition expression.
The Braid compiler desugars macro invocations to multi-level splice escapes (Section 3.3) that

skip to the stage where the function’s name is bound. The macro’s arguments become quote
expressions. In our example, the macro is only one quotation level away, so the @spif invocation
desugars to a single-level escape:
1[ spif <night> <0.3> <0.8> ]

The macro syntax offers a convenient way for Braid programmers to harness the power of multi-
level splicing for specialization without directly reasoning about stages.
Macro functions can also take open-code quotes as arguments. Our @spif macro, for example,

can let its t and f arguments refer to variables in the calling context, as in:

< var color = ...;

var value = @spif night (0.3 * color) color; >

To resolve the references to color, the spif definition uses open-code arguments marked with $:

var spif = fun cond:<Bool> t:$<Float> f:$<Float> ->

if !cond t f

The $<Float> parameter type indicates that t and f should be passed as open quotes.
Braid’s type system for staging ensures that code remains well-typed in all stages, and the syntac-

tic sugar for macro invocations inherits the same guarantee. In other words, Braid’s macro system
is hygienic: macro writers need not worry about aliasing names in specialized code [Kohlbecker
et al. 1986; Lee et al. 2012].

4 TYPE SYSTEM AND SEMANTICS

We formalize a semantics for BraidCore, a minimal version of Braid, to rigorously define its staging
constructs and safety guarantees. This section summarizes the formalism; the accompanying
supplemental material gives the full static and dynamic semantics and sketches the proof of a safety
theorem. Figure 3 lists the abstract syntax for BraidCore.

The static staging semantics for BraidCore are simpler than most traditional staging semantics
because of the limitations on open code. Approaches such as MetaML [Taha and Sheard 1997]
use a tagging strategy. Each value carries an integer tag that indicates its relative stage number
(negative for earlier stages, positive for later stages). In the rules for quote and escape expressions,
the semantics must shift every value’s tag upward or downward. BraidCore instead organizes values
into per-stage environments on a stack where variables always resolve in the topmost environment.

Type system. Types are either primitive or code types:

τ ::= t | ⟨τ ⟩ t ::= Int | Float | · · ·

A type context Γ consists of a stack of per-stage contexts γ that map variable names to types:

Γ ::= · | γ , Γ γ ::= · | x : τ ,γ
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The typing judgment Γ1 ⊢ s : τ ; Γ2 builds up a context. The rule for variable lookup retrieves a value
from the γ on the top of the stack, and assignment adds a new mapping:

type-lookup

γ , Γ ⊢ x : γ (x);γ , Γ

type-var

Γ1 ⊢ e : τ ;γ , Γ2

Γ1 ⊢ var x = e : τ ; (x : τ ,γ ), Γ2

Cross-stage references are omitted from BraidCore because they can be modeled as syntactic sugar
for materialization. A splice expression n[e] checks the expression n levels up:

type-splice

Γ1 ⊢ e : ⟨τ ⟩; Γ2 len(γ ) = n

γ , Γ1 ⊢ n[e] : τ ;γ , Γ2

Here, γ , Γ denotes a prefix γ and a tail context Γ, and len(γ ) determines the prefix’s size. The result
of e must be a code type. Materialization is similar, but the escape only moves a single stage and e
need not result in a code type.

Dynamic semantics. We define a big-step operational semantics. Following the type system, a
heap H consists of a stack of per-stage environments h. Values are either constants c or code values
⟨⟨e,h⟩⟩, which consist of an expression and an associated environment that contains the results of
materialization expressions.
The main big-step judgment H ; e ⇓ H ′;v evaluates an expression to a value and updates the

heap. As with the type system, we use h(x) to denote variable lookup. The rules for assignment
and variable lookup work with the top per-stage environment in the heap:

lookup

h,H ;x ⇓ h,H ;h(x)

assign

H ; e ⇓ h,H ′;v

H ; var x = e ⇓ (x (→ v,h),H ′;v

To evaluate a quotation, the semantics “switches” from the main big-step judgment to a quoted
judgment written H ;h; e ⇓i H

′;h′; e ′ where i is the current quotation level. The latter judgment
scans over the quoted expression to find escapes that need to be evaluated eagerly with the main
semantics. It threads through a heap H , which may be updated inside escaped expressions, and a
materialization environment h, which holds the results of top-level materialization escapes. The
rules leave most expressions, such as assignments, intact:

qoted-assign

H ;h; e ⇓i H
′;h′; e ′

H ;h; var x = e ⇓i H
′;h′; var x = e ′

The judgment switches back to ordinary ⇓ interpretation when an escape goes beyond the current
quotation level. For example, a splice n[e] where n = i returns to the top level. It evaluates e to a
code value and includes the resulting expression:

qoted-splice-resume

H ; e ⇓ H ′; ⟨⟨eq ,hq⟩⟩ n = i merge(h,hq) = h
′

H ;h; n[e] ⇓i H
′;h′; eq

A merge(h,h′) helper judgment combines the variable mappings from two environments.

5 STATIC STAGING FOR REAL-TIME GRAPHICS

This section instantiates our language design and implementation for BraidGL, a prototype language
for real-time 3D rendering on CPU–GPU systems. The compiler emits a combination of host code
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in JavaScript, shader code in GLSL [Segal and Akeley 2016], and interface code using the WebGL
API [Jackson and Gilbert 2017].

5.1 Targets and Annotations

In Braid, programmers choose a target for each quote that controls how it is compiled. Annotations
on quotes, written t<e>, select a target t . Targets specify the code-generation language and hardware.
Targets are defined in compiler extensions with three components: a language variant that adds
platform-specific intrinsics and removes unsupported features; a code-generation backend; and
communication strategies that specify how to materialize values from other targets.
The BraidGL compiler extension defines a shader target, written glsl<e>. The compiler emits

shader quotes as GLSL source code in string literals. The ! operator cannot run shaders directly;
instead, BraidGL defines special intrinsic operations that execute the code in the graphics pipeline.
BraidGL also includes a js<e> annotation, which directs the compiler to emit JavaScript code

as a function declaration and to execute it on the CPU. The per-frame render stage uses this code
type in place of plain <e> to avoid the cost of using JavaScript’s eval on each frame.

5.2 Binding Stages with Intrinsics

BraidGL provides three intrinsics that execute a graphics program’s stages. The render intrinsic
registers code to run on the CPU to draw each frame; vertex binds a vertex shader; and fragment
associates a fragment shader with a vertex shader. We leave less common stages, such as tessellation,
geometry, and compute shaders [Segal and Akeley 2016], for future work.

The render intrinsic registers code that draws each new frame. The vertex intrinsic compiles
to a call to WebGL’s gl.useProgram(), which instructs the gl context to use a given compiled
shader program for the next draw call. Finally, fragment instructs the compiler to emit setup code
that compiles the fragment shader’s code together with its containing vertex shader to create an
executable program. Together, this nesting of intrinsics and quotes in BraidGL:

render js<

# (render loop code)

vertex glsl<

# (vertex shader code)

fragment glsl<

# (fragment shader code)

> > >

compiles to this JavaScript code:

var QUOTE_1 = "(vertex shader code)";

var QUOTE_2 = "(fragment shader code)";

var shader_1 = compile_shader(gl, QUOTE_1, QUOTE_2);

add_renderer(function () {

// (render loop code)

gl.useProgram(shader_1);

});

The compile_shader runtime functionwrapsWebGL’s GLSL compilation calls, and add_renderer
registers a callback to draw each frame [Web Hypertext Application Technology Working Group
2017]. The end result is a JavaScript program that resembles hand-written WebGL code.

5.3 Binding Shader Parameters

Materialization expressions and cross-stage references in BraidGL denote communication constructs
in WebGL. This example communicates a vector value from the CPU to both shader stages:
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Table 2. The lines of code in each case study program and its equivalent JavaScript and GLSL code.

Program BraidGL LoC JS+GLSL LoC
Phong 61 119
head 59 141
couch 144 218

var color = vec3(0.2, 0.5, 0.4);

vertex glsl<

... color ...

fragment glsl< ... color ... >

>

The compiler generates three ingredients for eachmaterialization. First, it emits a uniform, varying,
or attribute declaration in the GLSL code for each shader to indicate its source:
var QUOTE_1 =

"uniform vec3 param_1;" +

"void main() { ... param_1 ... }";

Next, the compiler emits a location handle lookup in the host code:

var shader_1 = compile_shader(gl, QUOTE_1, QUOTE_2);

var shader_1_loc_1 = gl.getUniformLocation(shader_1, "param_1");

Finally, when compiling the vertex intrinsic, the compiler emits code to bind materialized values:
gl.uniform3fv(shader_1_loc_1, vec3(0.2, 0.5, 0.4));

Thematerialization’s type dictates which OpenGL API call to use in the generated code. For example,
the gl.uniformMatrix4fv function communicates a 4×4 matrix value.

Vertex attributes. The above example shows a uniform shader parameter, which is constant across
all vertex shader invocations. BraidGL also supports vertex attribute parameters for per-vertex data.
For example, programs may communicate a model’s mesh coordinates using a vertex attribute.
In BraidGL, a T Array represents a dynamically-sized buffer of T values. When a shader’s

materialization expression has a T Array type, the compiler binds it as an attribute instead of as a
uniform. The result in the shader quote has type T and refers to the current value of the attribute.
For example, in this materialization from our earlier example:

var position = getPositions(mesh);

vertex glsl<

... %[position] ...

>

the position variable has type Vec3 Array, but the materialization inside the vertex shader
produces a single Vec3. The BraidGL compiler uses WebGL’s gl.vertexAttribPointer API call
to bind attribute buffers.
OpenGL does not support direct communication of attributes from the CPU to the fragment

shader. Attributes can only communicate to the vertex shader. To implement array references in
fragment shaders, BraidGL emits code to copy the attribute’s value through the vertex shader via
varying-qualified parameters.

6 EVALUATION

We evaluate Braid’s ergonomics to show how static staging helps graphics programmers explore
placement and specialization choices. We develop three case studies and describe how to accomplish
a variety of well-known visual effects and optimization techniques.
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(a) Phong lighting. (b) Diffuse only. (c) Per vertex.

(d) Head. (e) No bump map. (f) Couch. (g) Medium detail.

Fig. 4. Outputs from the case study programs.

We implement a compiler for Braid and BraidGL in 5554 lines of TypeScript and a grammar for
the PEG.js [Majda 2010] parser generator. The compiler uses a generalization of lambda lifting,
which we call scope lifting, to compile both functions and quotes into closure-like structures.
BraidGL emits JavaScript code that uses the WebGL 1.0 API, a Web standard supported by all major
browsers [Jackson and Gilbert 2017]. We have developed a live-coding environment for BraidGL
that runs the compiler and the generated code in the browser. The open-source implementation
and the interactive environment are available online [Sampson 2017].

The implementation includes a complete interpreter for Braid. Unlike the compiler, the interpreter
implements quotes using runtime ASTs, so it can pretty-print staged code. Pretty-printing is useful
for debugging Braid programs, but we use the compiler for all performance experiments.

Table 2 shows the lines of BraidGL code in each program compared to the equivalent JavaScript
and GLSL, which can be twice as verbose. By design, the BraidGL compiler emits code that matches
handwritten WebGL code, up to cosmetic differences such as variable naming. No abstraction in
BraidGL prevents the compiler from delivering the same performance as an equivalent hand-written
version of the program.

To evaluate performance, we measure the time it takes to draw each frame. Each program
renders an 8×8×8 grid of objects. A test harness loads the scene in a browser and measures
the execution time of the compiled JavaScript using the browser’s high-resolution timing API,
Performance.now [Grigorik et al. 2016]. We also measure draw time, the total time per frame
spent in OpenGL’s glDrawArrays and glDrawElements calls, which invoke the graphics pipeline
to draw pixels. Draw time measurements help separate the time spent on CPU and communication
from the core GPU rendering time. We collect per-frame latencies over 8 seconds and report the
mean and 95th percentile times.

The experiments used an Apple MacBook Pro with a quad-core 2.3 GHz Intel 3615QM CPU and
an Nvidia GeForce GT 650M GPU running the Safari 10.0 browser with WebKit 12603.1.1 on macOS
10.12 (build 16A270f).

6.1 Phong Lighting Model

The Phong reflection model [Phong 1975] is a ubiquitous algorithm for approximating lighting
effects. Figure 4a shows the Phong program stylizing the “Stanford bunny” mesh [Stanford 2003].
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(a) Phong lighting. (b) Head. (c) Couch.

Fig. 5. The average time to draw a frame for three case studies. The bar height depicts the total time. The
black portion is the time spent in WebGL draw calls. Error bars show the standard error of the mean. Points
show the 95th percentile latency.

Programmers often render 3D objects with different components of a general shader program.
Phong lighting, for example, consists of two components: diffuse lighting, which resembles light
cast on a matte surface, and a specular component, which approximates reflections on a glossy
material. Figure 4b shows an object rendered with only diffuse lighting, simulating a matte material.
We explore three strategies for customizing the Phong shader to draw matte and glossy objects: a
straightforward dynamic conditional and two specialization techniques. We then demonstrate a
common optimization that trades off accuracy for efficiency.

Dynamic conditional. To choose an object’s appearance, the programmer can choose to introduce
a dynamic condition into the GPU-side shader code to choose an object’s appearance. The CPU
chooses whether to draw a given object as matte or glossy, and then the GPU includes one or both
lighting components:

render js<

var matte = get_appearance();

vertex glsl< # ...

fragment glsl< # ...

var color = if matte diffuse (diffuse + ...);

The final ... placeholder represents the code that computes the specular Phong component. To
communicate the matte condition variable, the Braid compiler generates code to bind a uniform
parameter to the Phong shader. The Braid code is free of boilerplate and makes it clear that the
parameter choice is located on the CPU.
Figure 5a shows the dynamic conditional’s small performance cost. The original bar is the

unconditional shader and GPU if denotes the version with a dynamic condition. The latter takes
12.8 ms on average to render each frame, compared to 12.6 ms for the original.

Static conditional. Programmers often need to convert dynamic conditions into compile-time
decisions for efficiency. When all objects in a scene use the same parameters—when they are all
matte, for example—a dynamic conditional is wasteful. A compile-time static if construct uses a
macro that executes at compile time:

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 71. Publication date: October 2017.



71:20 Adrian Sampson, Kathryn S McKinley, and Todd Mytkowicz

var matte = 1; # Compile-time parameter.

var static_if = fun c:Int t:$<Float3> f:$<Float3> ->

if c t f;

!<

render js<

# ... Phong code ...

>

>

Wrapping the entire program in !<...> introduces a compile-time stage. To convert the dynamic
condition to a static one, we replace if with @static_if in the shader code:
var color = @static_if matte diffuse (diffuse + ...);

No other changes are necessary. The generated WebGL code does not use a uniform parameter to
communicate matte, and the compiler removes the code for specular reflection. In Figure 5a, the
static if bar shows this version of the Phong program with matte turned on. The frame latency
is 12.0 ms, which is slightly faster than the original program. Braid’s stages provide zero-cost
compile-time specialization.

Specialized conditional. Applications can gain performance by generating simpler versions of a
shader and choosing between them on the CPU. This transformation reduces the control burden on
the GPU, so modern games can generate hundreds of thousands of specialized shader variants [He
et al. 2015]. However, rapidly switching between shaders can incur overhead, so the advantage of
specializing depends on the hardware and workload. It is important to experiment with both.
Braid makes it simple to switch between the two strategies. In the Phong program, we add a

specializing if macro, @spif, that resembles @static_if but is declared in the CPU stage instead
of a compile-time stage. We then replace the if in the original code with @spif to get identical
behavior but different performance:
var color = @spif matte diffuse (diffuse + ...);

The @spif macro uses pre-splicing (Section 3.4.1) to produce two condition-free versions of the
GLSL shader. The compiled CPU code chooses which to bind based on the matte variable. This
flexibility highlights how static staging unifies run-time decisions for placement and compile-time
decisions for specialization.

In Figure 5a, the GPU if and specialized if bars compare between a GPU-side dynamic condition
and the specialized equivalent. In this case, the overhead of specialization is a disadvantage: its
frame latency is 14.7 ms, compared to 12.8 ms for a standard if. The difference emphasizes the need
for a language that lets programmers rapidly experiment with both versions to make judgments
based on empirical measurements.

Per-vertex promotion. Shader developers move code between the vertex and fragment shaders to
trade off between performance and visual quality. The fragment stage runs many times between
each vertex, so while code in the fragment shader is more costly than per-vertex code, it computes
more detailed visual effects. The graphics pipeline interpolates results from the vertex stage for
the fragment stage. Programmers promote fragment computations to the vertex stage to produce
cheaper, lower-quality results.

Traditionally, experimenting with promotion requires large code changes. In Braid, materializa-
tion makes it trivial. We promote the lighting computation to the vertex stage by wrapping it in
materialization brackets:
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vertex glsl< # ...

fragment glsl<

var color = %[

# ... lighting code ...

] > >

Figure 4c shows this version’s lower-quality output. In Figure 5a, the per vertex bar shows the
performance advantage: the optimized version’s latency is 10.9 ms, compared to 12.6 ms for the
original program.

6.2 3D-Scanned Head Rendering

To show how developers experiment with textures, we use the head 3D scanning data fromMcGuire
[2011]. It comprises a mesh, a surface texture, and a bump map. We implement a renderer using all
three. Figure 4d shows the output. We demonstrate how programmers can use BraidGL to avoid the
boilerplate typically associated with textures and to eliminate their cost with a simple specialization
strategy.

Texture mapping. Many shaders use GPUs’ special support for texture mapping, which “paints”
a 2D image onto the surface of a 3D object. The object’s data includes a mapping between mesh
vertices and coordinates in the image. In WebGL, loading images into the GPU’s texture memory
requires even more boilerplate code than binding ordinary shader parameters. The programmer
chooses a numbered texture unit, activates it, and binds a texture object before rendering the object:

gl.activeTexture(gl.TEXTURE0);

gl.bindTexture(gl.TEXTURE_2D, preloaded_texture);

gl.uniform1i(sampler_loc, 0); // unit "0" corresponds to gl.TEXTURE0 above

Then, in GLSL, the texture appears as a uniform value. The shader passes the value into a texture
lookup function, texture2D:

uniform sampler2D sampler;

varying vec2 texcoord;

void main() {

vec4 color = texture2D(sampler, texcoord);

}

The BraidGL compiler implements a materialization strategy that eliminates the boilerplate. Mate-
rializing a Texture value from the CPU stage to a GPU stage automatically generates binding code
for a GPU texture unit. In the head program, the GPU materializes a CPU-defined variable tex:

var texcoord = mesh_texture_coordinates(head);

var tex = texture(load_image("head.jpg"));

render js< # ...

vertex glsl< # ...

fragment glsl<

var color = texture2D(tex, texcoord);

> > >

The compiler chooses units for the two textures in head and generates the code to bind them.

Optional bump mapping. Programmers use bump mapping to add detail to surfaces by changing
the way they reflect light. A bump map texture dictates how much to deflect the normal vector at
each point. In the head program, the bump map makes the object look more realistic, but it may
be unnecessary in some contexts, such as when the object is in the distance. Figure 4e shows the
output without bump mapping.

We use a Braid macro to make bump mapping optional in the head program. The macro, @bump?,
takes the bump-map lookup code as an argument and, when a compile-time use_bump_map flag
is cleared, returns a default zero-deflection vector instead. When bump mapping is disabled, the
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corresponding texture materialization is eliminated, and the BraidGL compiler does not generate
the code that loads binds the bump texture. The frame latency (Figure 5b) improves from 15.4 ms
to 14.7 ms with this change.

6.3 Procedural Couch Model

We use a couch scene from He et al. [2016] that exemplifies graphics applications with many
specializable features and complex trade-offs between efficiency and functionality. It uses a repeating
leather texture, an ambient occlusion map to simulate shadows, a mask texture that controls
darkening due to wear, bump mapping, and specular mapping to modulate reflections. Figure 4f
shows the output.

Texture averaging. To reduce detail levels for efficiency, graphics programmers need to selectively
disable texture layers. We introduce a CPU-side average function that computes the mean color in
an image. Shaders can replace a texture lookup call, such as texture2D(leather, texcoord),
with code that insteadmaterializes the CPU-side expression average(leather). Instead of commu-
nicating an entire texture, the specialized program sends a single vector to the GPU. Static staging
enables local code changes that affect global interactions between heterogeneous components.

Rapid trade-off exploration. When developing complex effects, graphics programmers need to
rapidly explore a space of configurations and check their output visually. BraidGL makes this
exploration simple: we can toggle contributions to the surface colors in couch by specializing away
code in the fragment shader stage and replacing texture lookups with average. Exploring these
changes with traditional APIs would require carefully coordinating simultaneous changes to GPU
and CPU code. In BraidGL, eliminating code that uses parameters from the CPU automatically
removes the corresponding host-side code that sets up and communicates that data.
Toggling specialization options yielded a range of visual effects, including a low-detail, flat

version and a medium-detail version (Figure 4g) that maintains most of the leatherness while
preserving some performance benefit. Figure 5c shows the three versions’ frame latencies, which
range from 17.7 ms to 19.0 ms.

7 RELATEDWORK

Static staging builds on prior work inmulti-stage programming, language abstractions for placement,
and GPU languages.

Multi-stage programming. Research on type systems for staged programming originated with
MetaML [Taha 2003; Taha and Sheard 1997]. Our primary contribution is the distinction between
splicing and materialization. Whereas traditional splicing inlines values into generated code as
literals, our materialization performs inter-stage communication without code generation. Existing
staged languages assume that the final “target program”will consist of a single stage; materialization,
in contrast, lets application code efficiently coordinate multiple stages without invoking a compiler.
Prior languages conflate the two communication modes [Hanada and Igarashi 2014; Kiselyov 2017].

Braid is most closely related to “heterogeneous” staged languages, where the meta-level language
and quoted language differ, such as Terra [DeVito et al. 2013], variants of MetaOCaml [Eckhardt
et al. 2007; Takashima et al. 2015], pluggable object languages in MetaHaskell [Mainland 2012], and
Scala’s lightweight modular staging [Rompf and Odersky 2010]. Quoted domain-specific languages
also separate execution contexts: for example, database queries from application code [Cheney et al.
2013; Najd et al. 2016]. This prior work prioritizes code generation, so it lacks Braid’s materialization
concept for runtime communication between stages. Jeannie [Hirzel and Grimm 2007] is more
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similar: it uses stages to represent glue between Java and C. We extend this basic idea for placement
in heterogeneous hardware.
Several type systems address open code in dynamic multi-stage programming [Benaissa et al.

1999; Calcagno et al. 2003a, 2004; Chen and Xi 2003; Davies and Pfenning 1996; Kim et al. 2006;
Moggi et al. 1999; Nanevski and Pfenning 2005; Taha and Nielsen 2003]. Braid restricts open code
so the compiler may generate all code ahead of time. Future work could explore relaxing these
restrictions while preserving AOT compilation.
Braid’s staging-based macros resemble hygienic macro expansion systems [Flatt 2002, 2016;

Kohlbecker et al. 1986; Lee et al. 2012]. Like MacroML [Ganz et al. 2001], Braid uses staging to
define macros, but unlike MacroML, it defines them using syntactic sugar for function calls.

Because its annotations control the order of evaluation, staging works as a form of programmer-
directed partial evaluation [Taha and Sheard 1997]. Our work focuses on domain- and hardware-
specific optimizations over transparent specialization as in partial evaluation. It does not share the
classic termination problems of partial evaluation because compilation runs in a single pass.

Placement abstractions. Language abstractions for code placement also appear in SPMD languages
such as X10 [Charles et al. 2005] and Chapel [Chamberlain et al. 2007]. Their goal is to expose
locality in distributed systems composed of nodes with roughly equal capabilities. The model is
insufficient for single-node heterogeneous systems, such as CPU–GPU hybrids, where one unit is
subordinate and units have wildly different capabilities and ISAs.

In ML5 [Murphy et al. 2007], a single distributed program expresses computations that execute
on many different machines, and a type system with modal logic rules out unsafe sharing between
places. Marking each data element with a place is a data-centric dual to Braid’s code-centric
placement annotations.

We give programmers explicit control over staged execution, whereas some systems automatically
decompose monolithic programs into phases. In partial evaluation, binding-time analysis finds
the parts of a program that can be computed eagerly when a subset of the inputs are available.
Jørring and Scherlis [1986] define staging transformations as compiler optimizations, and λ12 hoists
computation in a higher-order, two-stage language [Feltman et al. 2016].

Programming GPUs. The most common general-purpose programming environments for GPUs
are CUDA [Nickolls et al. 2008] and OpenCL [Stone et al. 2010]. OpenCL uses a string-based API
similar to OpenGL, while CUDA and other single-source GPU languages [Gregory and Miller 2012;
Howes and Rovatsou 2016; OpenACC 2015; Sander et al. 2015] avoid the hazards of stringly-typed
interfaces. Like OpenGL, however, these simpler non-graphics languages still lack safe metapro-
gramming tools for compile-time and run-time specialization. To help address this shortcoming in
CUDA and similar languages, we plan to port Braid to a GPGPU backend.
Mainstream GPU shader languages directly reflect the structure of current real-time graphics

hardware pipelines: programmers write separate kernels for each programmable stage [Advanced
Micro Devices 2015; Apple 2016; Kessenich 2015; Microsoft 2008; Segal and Akeley 2016]. To
communicate, each kernel declares unsafe interfaces that must align across all kernels. Even in
modern APIs that use bytecode representations for shaders, such as Vulkan [Khronos 2017] and
Metal [Apple 2016], host–shader interfaces cannot be statically checked.

In rate-based languages, type qualifiers describe different rates of computation in a single program
that spans all stages of the programs’ graphics pipeline [Foley and Hanrahan 2011; He et al. 2016;
Proudfoot et al. 2001]. Rates play a similar role to stages in Braid: a compiler uses them to split the
program into per-stage kernels. Similarly, import operators in Spire [He et al. 2016] are analogous
to materialization expressions in Braid: they move data between rates. While Braid and Spire have
similar goals, their approaches differ in important ways. First, while Braid’s stages are always
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explicit, Spire seeks to automatically infer its data-centric rate annotations. Hiding these details
can make performance less predictable. Spire’s @Vertex and @Fragment annotations can appear
on declarations that are far from the computations involving the annotated variables, which can
hinder reasoning about when and where a computation will run. Second, Braid’s quotes are a
closer match for the conceptual model in current graphics code, where shader stages are clearly
delimited from each other and from host code. Porting legacy OpenGL code to BraidGL does not
require radical reorganization. Finally, Braid focuses on defining general language constructs and
semantics for heterogeneous placement and specialization. Spire focuses specifically on the GPU
domain and does not include formal semantics.
Several experimental languages for writing shaders [Austin and Reiners 2005; Baggers 2017;

Bexelius 2016; Boguta 2016; Elliott 2004; LambdaCube 2016; McCool et al. 2004, 2002; McDirmid
2009; Scheidegger 2011], like others for GPGPU programming [Klöckner 2014; Klöckner et al.
2012], tend to focus on dynamic code generation, whereas our work focuses on ahead-of-time
optimization. Futhark [Henriksen et al. 2017] uses a pure-functional approach to describe data
parallelism in GPU-GPUs. Lime [Auerbach et al. 2010] transparently targets both GPUs and FPGAs
by adding constructs for data, pipeline, and task parallelism to Java.

8 CONCLUSION

We hope this paper leaves the reader with three main ideas:

• Heterogeneous programming languages need abstractions for placement and specialization.
• With extensions for static code generation, multi-stage programming can offer a foundation
for both concepts.

• Current tools for real-time graphics are especially unsafe, verbose, and brittle. Our community
has an opportunity to make graphics development less bad.

We see static staging both as a practical solution to the immediate problems with GPU programming
and as a sound semantic foundation for emerging heterogeneous systems.
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