
Copyright

by

Katherine Elizabeth Coons

2013



The Dissertation Committee for Katherine Elizabeth Coons

certifies that this is the approved version of the following dissertation:

Fast Error Detection with Coverage Guarantees for

Concurrent Software

Committee:

Kathryn S. McKinley, Supervisor

James C. Browne

William R. Cook

Calvin Lin

Madan Musuvathi



Fast Error Detection with Coverage Guarantees for

Concurrent Software

by

Katherine Elizabeth Coons, B.S.;M.S.C.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2013



In loving memory of my grandmother, Jean Schlager.



Acknowledgments

I wish to thank my committee members: Kathryn McKinley, Madan Musuvathi,

J.C. Browne, William Cook, and Calvin Lin for their valuable feedback on my

research. Their insights improved this dissertation immensely.

I am particularly indebted to my advisor, Kathryn McKinley, for her guid-

ance, support, and constant encouragement. She is an ideal role model and I am

honored to have her as an advisor, mentor, and friend. I will look to her for inspi-

ration as I move forward with my career.

I thank Madan Musuvathi for teaching me the value of combining theory and

practice. When they come together I find it beautiful, and I thank Madan for this. I

would like to additionally thank Doug Burger for motivating me to push my limits,

and Jim Larus for taking interest in my career and opening doors for me. Doug and

Jim have inspired me as researchers, and as people. I built on Patrice Godefroid’s

work extensively and I thank him for providing such a sound foundation on which

to build, and for being exceedingly kind in answering my questions.

I would like to thank the friends I made in graduate school for their support

and for the pleasure of their company. Graduate school would have been unbearable

without you. In particular, I would like to thank Simha Sethumadhavan for always

believing I was capable of more than I realized. Childhood friends Elizabeth Roth-

schild and Dawn Hamilton supported me through the best and the worst moments,

and gave me confidence when I needed it most. I will be forever indebted to them.

v



I would like to thank my parents, Carol and T.A. Coons, for their uncondi-

tional love and support. They taught me to value education, gave me great freedom,

and trusted me to use that freedom wisely. The values they instilled in me have

made me a better researcher, and a better person.

Finally, I would like to thank my husband, Bert Maher, for his unwavering

belief in me. Without his encouragement and his shoulder to cry on, I would never

have made it through.

Katherine Elizabeth Coons

The University of Texas at Austin

May 2013

vi



Fast Error Detection with Coverage Guarantees for

Concurrent Software

Publication No.

Katherine Elizabeth Coons, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Kathryn S. McKinley

Concurrency errors are notoriously difficult to debug because they may occur only

under unexpected thread interleavings that are difficult to identify and reproduce.

These errors are increasingly important as recent hardware trends compel developers

to write more concurrent software and to provide more concurrent abstractions. This

thesis presents algorithms that dynamically and systematically explore a program’s

thread interleavings to manifest concurrency bugs quickly and reproducibly, and to

provide precise incremental coverage guarantees.

Dynamic concurrency testing tools should provide (1) fast response – bugs

should manifest quickly if they exist, (2) reproducibility – bugs should be easy to

reproduce and (3) coverage – precise correctness guarantees when no bugs manifest.

vii



In practice, most tools provide either fast response or coverage, but not both. These

goals conflict because a program’s thread interleavings exhibit exponential state-

space explosion, which inhibits fast response.

Two approaches from prior work alleviate state-space explosion. (1) Partial-

order reduction provides full coverage by exploring only one interleaving of inde-

pendent transitions. (2) Bounded search provides bounded coverage by enumerating

only interleavings that do not exceed a bound. Bounded search can additionally

provide guarantees for cyclic state spaces for which dynamic partial-order reduction

provides no guarantees. Without partial-order reduction, however, bounded search

wastes most of its time exploring executions that reorder only independent transi-

tions. Fast response with coverage guarantees requires both approaches, but prior

work failed to combine them soundly.

We combine bounded search with partial-order reduction and extensively

analyze the space of dynamic, bounded partial-order reduction strategies. We first

prioritize with best-first search and show that heuristics that combine these ap-

proaches find bugs quickly. We then restrict partial-order reduction to combine

these approaches while maintaining bounded coverage. We specialize this approach

for several bound functions, prove that these algorithms guarantee bounded cover-

age, and leverage dynamic information to further reduce the state space.

Finally, we bound the partial order on a program’s transitions, rather than

the total order on those transitions, to combine these approaches without sacrificing

partial-order reduction. This algorithm provides fast response, incremental coverage

guarantees, and reproducibility. We manifest bugs an order of magnitude more

quickly than previous approaches and guarantee incremental coverage in minutes

or hours rather than weeks, helping developers find and reproduce concurrency

errors. This thesis makes bounded stateless model checking for concurrent programs

substantially more efficient and practical.

viii



Contents

Acknowledgments v

Abstract vii

Contents ix

Chapter 1 Introduction 1

Chapter 2 Background and Related Work 8

2.1 Testing Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Heuristic-Based Search . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Multithreaded Programs and Semantics . . . . . . . . . . . . . . . . 13

2.3 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Systematic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Partial-Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Dependence relation . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Persistent Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Sleep Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Dynamic Partial-Order Reduction . . . . . . . . . . . . . . . . . . . 22

2.7 Bounded Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



2.7.1 Depth-Bounded Search . . . . . . . . . . . . . . . . . . . . . 25

2.7.2 Context-Bounded Search . . . . . . . . . . . . . . . . . . . . 27

2.7.3 Preemption-Bounded Search . . . . . . . . . . . . . . . . . . 28

2.7.4 Delta-Bounded Search . . . . . . . . . . . . . . . . . . . . . . 30

2.7.5 Fair-Bounded Search . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 Best-First Search 36

3.1 Partial-Order Reduction for Bounded Search . . . . . . . . . . . . . 36

3.2 Best-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Execution Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Best-First Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Priority Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Prioritizing New Local States . . . . . . . . . . . . . . . . . . 45

3.5.2 Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Tester Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.4 Hierarchical Priority Functions . . . . . . . . . . . . . . . . . 47

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 Bound Persistent Sets 51

4.1 Sufficient Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Bound Sufficient Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Properties of Bound Functions . . . . . . . . . . . . . . . . . 60

4.2.2 Depth-Bounded Search . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Context-Bounded Search . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Preemption-Bounded Search . . . . . . . . . . . . . . . . . . 70

4.2.5 Delta-Bounded Search . . . . . . . . . . . . . . . . . . . . . . 77

x



4.2.6 Fair-Bounded Search . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 5 Computing Bound Persistent Sets 88

5.1 Dynamic Partial-Order Reduction . . . . . . . . . . . . . . . . . . . 89

5.2 Bounded Partial-Order Reduction . . . . . . . . . . . . . . . . . . . 96

5.2.1 Conservative Backtrack Points . . . . . . . . . . . . . . . . . 98

5.2.2 Computing Depth-Bound Persistent Sets . . . . . . . . . . . 99

5.2.3 Computing Context-Bound Persistent Sets . . . . . . . . . . 101

5.2.4 Computing Preemption-Bound Persistent Sets . . . . . . . . 108

5.2.5 Computing Delta-Bound Persistent Sets . . . . . . . . . . . . 120

5.2.6 Computing Fair-Bound Persistent Sets . . . . . . . . . . . . . 128

Chapter 6 Optimizations 136

6.1 Transitive Reduction Optimization . . . . . . . . . . . . . . . . . . . 137

6.2 Alternative Thread Optimization . . . . . . . . . . . . . . . . . . . . 144

6.3 Release Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Bound Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Sleep Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Combining Bound Functions . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 7 Partial-Order Bounds 157

7.1 Local Bound Sufficient Sets . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Computing Local Bound Persistent Sets . . . . . . . . . . . . . . . . 160

7.3 Local Depth Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Local Context Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.6 Other Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xi



Chapter 8 Results 181

8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.4 Coverage Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.5 Visited Over Unique Visited States . . . . . . . . . . . . . . . . . . . 194

8.6 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.7 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.8 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Chapter 9 Future Work 206

9.1 Other Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.1.1 Partial-order Bounds . . . . . . . . . . . . . . . . . . . . . . . 207

9.1.2 Bug Depth Bound . . . . . . . . . . . . . . . . . . . . . . . . 207

9.2 Parallel Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.2.1 Exploring Executions in Parallel . . . . . . . . . . . . . . . . 209

9.2.2 Parallelizing Each Execution . . . . . . . . . . . . . . . . . . 209

9.3 Exploiting the Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.4 Exploiting Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Chapter 10 Conclusions 213

Bibliography 215

Vita 223

xii



Chapter 1

Introduction

Concurrent software is notoriously difficult to debug because errors may occur only

with unexpected thread interleavings that are difficult to identify and reproduce.

This problem is increasingly important because power limitations have compelled

hardware developers to abandon single-thread performance in favor of parallel hard-

ware. In response, developers must write more concurrent code and develop con-

current abstractions.

To debug and test concurrent software, dynamic tools execute the program

with different thread interleavings, searching for one that manifests a bug. A bug

manifests when the program crashes or a deadlock or user-specified assertion failure

occurs. Experience with developers and testers suggests that dynamic concurrency

testing tools should provide:

1. Fast Response: If a bug exists, it should manifest quickly.

2. Reproducibility: After a bug manifests, it should be easy to reproduce.

3. Coverage: The search should complete with a precise coverage guarantee.

Fast response, reproducibility, and coverage are all important to developers, and

dynamic concurrency testing tools currently fall short. Three classes of tools meet

1



only one or two of these requirements:

1. Stress testing repeatedly runs the test under heavy load to increase the

probability that a rare schedule will occur. Stress testing provides fast re-

sponse, particularly during early stages of testing, but it does not guarantee

reproducibility or coverage.

2. Heuristic-based fuzzing directs the thread scheduler towards interleavings

likely to manifest a bug based on heuristics [Edelstein et al., 2003,Sen, 2008,

Park et al., 2009,Joshi et al., 2009,Burckhardt et al., 2010,Nagarakatte et al.,

2012]. Fuzzing provides fast response, but it does not guarantee coverage.

3. Stateless model checking systematically enumerates a program’s thread

interleavings [Godefroid, 1997,Musuvathi and Qadeer, 2007a]. Model checkers

guarantee coverage and reproducibility, but they do not provide fast response.

None of these approaches provide fast response and guarantee coverage because ex-

ploring the state space suffers from exponential state-space explosion – the number

of thread interleavings for a concurrent program is exponential in the length of the

program and the number of threads. Two approaches from prior work alleviate this

problem. (1) Partial-order reduction explores the entire state space but selects only

one interleaving of independent transitions and thus provides full coverage [Gode-

froid, 1997, Godefroid, 1996, Flanagan and Godefroid, 2005]. (2) Bounded search

enumerates all thread interleavings that do not exceed a bound, and thus provides

bounded coverage [Musuvathi and Qadeer, 2007a,Emmi et al., 2011].

We consider coverage with respect to a particular input, initial program

state, and safety property. An algorithm provides full coverage if it guarantees that

no state reachable from the initial program state with the given input violates a

particular safety property. An algorithm provides bounded coverage if it guarantees

that no state reachable within the bound from the initial program state with the

2



given input violates the safety property. Safety properties include the absence of

deadlocks and the absence of user-specified assertion failures.

Unit tests for concurrent abstractions are particularly well-suited to software

model checking. Unit tests are typically small programs in which multiple threads

access a shared concurrent data structure, which makes exploring their entire state

space feasible. These tests often contain cycles in the state space, where a thread

returns to the same state repeatedly until another thread’s action breaks the cycle.

Enumerating all thread interleavings for such a program is impossible be-

cause the search may unroll the cycle indefinitely. Finding principled ways to

break these cycles is an important component of prior work [Aggarwal et al., 1990,

Peled, 1993,Peled, 1994,Godefroid and Wolper, 1994,Musuvathi and Qadeer, 2008].

Bounded search offers one solution to this problem for stateless model checkers.

Partial-order methods explore all states required to verify a given safety

property. A unique behavior of a concurrent program corresponds to a partial order

on the actions of its threads, whereas a thread interleaving is a total order on those

actions. Thread interleavings with the same partial-order are equivalent with respect

to the safety property: any bug that manifests under one such interleaving manifests

under all such interleavings.

Partial-order methods explore at least one interleaving per partial order and

thus explore all states that might violate the safety property without exploring all

thread interleavings. Partial-order methods do not provide incremental coverage,

however. If the tester terminates the search prematurely due to time constraints,

then it provides no meaningful coverage guarantee. If the search arbitrarily prunes

cycles in the state space, then the search sacrifices coverage.

Bounded search, in contrast, explores only states that are reachable within a

bound. Within the bound, bounded search explores all thread interleavings. When

the state space is large, this incremental coverage guarantee is useful. If thread

3



interleavings with small bounds are representative of those seen in practice, then

bounded search prioritizes bugs likely to manifest in practice. Additionally, some

bounds systematically prune cycles in the state space. Bounded search can thus

provide incremental guarantees for cyclic state spaces. Without partial-order reduc-

tion, however, bounded search wastes most of its time exploring redundant thread

interleavings. As the bound increases, this wasted time increases exponentially.

We compare bounded search with partial-order reduction and show that in

practice, bounded search is useful only when the bound is very small. Time wasted

exploring multiple interleavings of independent transitions quickly overwhelms the

benefit of the bound. Partial-order reduction with no bound is both more effective

and less time-consuming, if the search terminates acceptably quickly. If the search

does not terminate quickly enough, practical bounded search requires partial-order

reduction. This thesis extensively analyzes the space of possible dynamic, bounded

partial-order reduction strategies. We show that näıvely combining bounded search

with dynamic partial-order reduction sacrifices bounded coverage. We then show

how to combine these approaches in three ways that preserve bounded coverage.

First, we develop an algorithm, compressed data structures, and heuristics

to prioritize the state space using best-first search [Coons et al., 2010]. The best two

heuristics (1) explore the reduced state space and prioritize executions that contain

fewer preemptive context switches [Musuvathi and Qadeer, 2007a], and (2) explore

the preemption-bounded state space and prioritize executions that modify the par-

tial order. These heuristics provide fast response – bugs manifest quickly. Because

they prioritize rather than prune the state space, the search eventually guarantees

coverage. As the bound or the size of the state space increases, however, best-first

search becomes impractical due to memory and time constraints. These results mo-

tivate using partial-order reduction to reduce, rather than prioritize, the bounded

state space. Prior work suggests that combining these approaches while preserv-

4



ing bounded coverage is impractical for certain useful classes of bound functions,

however [Musuvathi and Qadeer, 2007b].

We next reduce the bounded state space with partial-order reduction and

preserve bounded coverage by exploiting dynamic information to make this com-

bination practical. Prior work shows that dynamic partial-order reduction reduces

the state space more effectively than static partial-order reduction does [Flanagan

and Godefroid, 2005]. Static partial-order reduction relies on static analysis to pre-

dict whether accesses to shared data may be dependent, so these predictions must

be conservative. Dynamic partial-order reduction determines whether accesses to

shared data are dependent with one another explicitly at runtime. We exploit this

dynamic information to identify dependences imposed by the bound function and

show that we can reduce the size of the state space significantly by compensating for

these dependences. Bounded partial-order reduction (BPOR) provides incremental

coverage guarantees with a significantly reduced state space. With certain bound

functions, this search also incrementally prunes cycles in the state space.

We develop a bounded partial-order reduction algorithm and specialize it for

several bound functions including the number of context switches, the number of

preemptive context switches [Musuvathi and Qadeer, 2007a], the number of deltas

from an initial execution [Emmi et al., 2011], and a fairness bound that systemati-

cally prunes cycles in the state space [Musuvathi and Qadeer, 2008]. We prove that

each algorithm guarantees bounded coverage. These algorithms incur significant

overhead when compared to unbounded partial-order reduction because the bound

introduces dependences between otherwise independent transitions.

We identify properties of bound functions that enable partial-order reduction.

Prior work bounds properties of an execution – a total order on a program’s transi-

tions [Musuvathi and Qadeer, 2007a,Burckhardt et al., 2010,Emmi et al., 2011]. In

Chapter 7, we observe that partial-order reduction relies upon the commutativity of

5



independent transitions. A bound on the total order sacrifices this commutativity.

We solve this problem with bounds on the partial order. A bound on the partial

order guarantees that independent transitions still commute. We describe a general

approach to apply a bound to a partial order and use this technique to implement

depth and context-bounded search without sacrificing any partial-order reduction.

Chapter 2 relates this work to methods for testing concurrent software in-

cluding model checking and heuristic-based search. Chapter 2 then provides a formal

language and semantics to describe concurrent programs as a system of transitions.

The behavior of a program is determined by a partial order on its dependent transi-

tions. We review the dependence relation and describe how it enables partial-order

reduction. We then review bounded search including depth, context, and preemp-

tion bounds from prior work [Musuvathi and Qadeer, 2007a]. Because we build

extensively on prior work, we discuss relevant related work throughout the thesis.

Chapter 3 empirically compares dynamic partial-order reduction to bounded

search to motivate combining them. We additionally show why näıvely combining

them sacrifices bounded coverage. We then describe an algorithm, compressed data

structures, and heuristics to prioritize the state enumeration with best-first search.

This chapter includes results for best-first search because they motivate bounded

partial-order reduction – the heuristics that combine intuitions from bounded search

and partial-order reduction are most effective at finding bugs quickly.

Chapter 4 presents conditions under which a set of transitions is sufficient to

explore all local and deadlock states reachable within a bound. We define conditions

for several bound functions and prove that they are sufficient. Chapter 5 presents

an algorithm that computes these sufficient sets. We specialize this algorithm for

several bound functions and prove that each algorithm computes a sufficient set of

transitions in each state. In Chapter 6, we optimize bounded partial-order reduction

to further reduce the state space. Together, these chapters provide a framework for

6



applying dynamic partial-order reduction to a bounded state space.

Chapter 7 proposes a general technique for bounding a partial order, rather

than a total order on a program’s transitions. We apply this technique to depth

and context-bounded search. We prove that the resulting algorithms explore all

states reachable within the bound without sacrificing partial-order reduction. These

examples provide a framework for designing bounds that combine well with partial-

order reduction.

Chapter 8 empirically compares different bound functions with and without

partial-order reduction, and shows that the optimizations in Chapter 6 are effective.

We compare the partial-order bounds introduced in Chapter 7 with their total order

counterparts, and show that bounded partial-order reduction is significantly more

effective with partial-order bounds. Chapter 9 discusses avenues for future work and

finally, Chapter 10 discusses this work’s results and their impact.

The state of the art dynamic partial-order reduction algorithm reduces the

state space significantly but does not provide incremental guarantees or guarantees

for cyclic state spaces [Flanagan and Godefroid, 2005]. State of the art fuzzing-based

approaches often find bugs quickly but provide probabilistic coverage guarantees at

best [Nagarakatte et al., 2012]. This thesis introduces algorithms, proves their

coverage guarantees, and empirically demonstrates the following,

Bounded search can be combined with dynamic partial-order reduction to

find bugs quickly and reproducibly with systematic, incremental coverage

guarantees.

This thesis makes bounded stateless model checking for concurrent programs sub-

stantially more efficient and practical.

7



Chapter 2

Background and Related Work

This section relates this work to strategies for testing concurrent programs including

model checking and heuristic-based search. We formalize semantics to describe mul-

tithreaded programs, and review partial-order reduction and bounded search. We

review dependence relations and show how persistent sets use them to reduce the

state space while providing coverage guarantees. We review Dynamic Partial-Order

Reduction (DPOR), an algorithm that dynamically computes persistent sets [Flana-

gan and Godefroid, 2005]. We then review bounded search. We define several

bounds from prior work and discuss their advantages and disadvantages.

2.1 Testing Concurrent Programs

In this section, we relate our work to other methods for testing concurrent programs.

Our work focuses heavily on coverage, so we first discuss model checkers for con-

current programs. We use heuristics to guide and bound the search, so we describe

other heuristic-based approaches as well.

8



2.1.1 Model Checking

A model checker exhaustively verifies whether a system meets a specification [Clarke

and Emerson, 1981]. We broadly divide model checkers into two categories: symbolic

and explicit model checkers. Symbolic model checkers express sets of states and

their transition relations as formulas. Successful symbolic model checkers have used

binary decision diagrams (BDDs) to efficiently encode sets of states or used SAT

solvers for exploration [McMillan, 1992, Burch et al., 1990, Yang and Dill, 1998,

Cimatti et al., 2002, Biere et al., 1999]. We focus on explicit model checking, in

which the search explicitly and exhaustively enumerates states.

Explicit model checkers exhaustively enumerate states and verify that a

given property holds in each state. Many explicit model checkers explore an ab-

stract model of the system, often expressed in a modeling language such as SPIN’s

Promela [Holzmann, 1997, Edelkamp et al., 2004, Aggarwal et al., 1990]. We fo-

cus on model checkers that explore the system’s implementation directly [Gode-

froid, 1997, Havelund and Pressburger, 2000, Musuvathi et al., 2002, Leven et al.,

2004,Visser et al., 2000b,Visser et al., 2000a]. Exploring the implementation directly

eliminates potential errors in translating the system to the modeling language.

While exhaustively exploring the state space, some explicit model checkers

keep track of the states they have visited [Havelund and Pressburger, 2000, Holz-

mann, 1997,Edelkamp et al., 2004,Musuvathi et al., 2002,Leven et al., 2004,Visser

et al., 2000b, Visser et al., 2000a]. Stateful model checkers must encode and store

states concisely. Inadequate storage space is a primary concern when exploring an

exponential state space.

We focus on stateless model checking, which is better-suited to model check-

ing large-scale software in which encoding states concisely may be difficult, and the

state space is intractably large to store [Godefroid, 1997]. VeriSoft [Godefroid, 1997]

and Chess [Musuvathi and Qadeer, 2007a] both use stateless model checking to find

9



bugs in large software systems. Stateless model checkers are more practical for large

software systems, but they suffer from an unacceptable blow up of the state space.

Explicit model checkers exhaustively explore the state space and thus en-

counter exponential state space explosion. Many model checkers use partial-order

reduction to reduce the state space. Partial-order methods avoid exploring redun-

dant states by exploring only one interleaving of independent transitions. Most

partial-order reduction strategies from prior work use static analysis to identify tran-

sitions that may be dependent with one another [Godefroid and Wolper, 1992,Peled,

1994, Valmari, 1990, Bosnacki et al., 2006]. Partial-order methods apply to both

stateful and stateless search, and to model checkers that check abstractions as well

as model checkers that check implementations directly.

We focus on dynamic partial-order reduction, where the model checker de-

tects dependences at runtime. We choose dynamic partial-order reduction because

prior work shows it is far more effective at reducing the state space than static

partial-order reduction is [Flanagan and Godefroid, 2005]. Dynamic partial-order

reduction detects dependences more accurately than static partial-order reduction

does because dynamic partial-order reduction exploits information available only

at runtime. Dynamic partial-order reduction can thus identify more independent

transitions and reduce the state space more aggressively.

The results of this work are clearly applicable to other stateless, explicit-

state model checkers. These results may be less useful for stateful model checkers

because their priorities are quite different. Reducing the overhead of tracking state

is often the most important concern for stateful model checking algorithms. Still,

the bounds we discuss and the heuristics we explore may be useful in that context.

Next, we discuss heuristic-based search in more detail.

10



2.1.2 Heuristic-Based Search

Prior work uses heuristics to guide both model checking and fuzzing algorithms

towards error states more quickly. Heuristics also guide the search towards shorter,

simpler error states that are more useful to the tester. We first relate this work to

heuristics for fuzzing algorithms, then to heuristics for model checking.

Heuristic-based fuzzing perturbs a program’s thread schedule to manifest

bugs [Edelstein et al., 2003, Sen, 2008, Sen, 2007, Park et al., 2009, Joshi et al.,

2009]. Fuzzing is not systematic and does not provide coverage guarantees, but it

often finds bugs quickly. We focus on coverage guarantees so that testers will have a

useful guarantee when no bugs manifest. Fuzzing heuristics are still related, however,

because they may provide good bound functions if they lead to bugs quickly. For

example, CTrigger’s bug triggering interleavings, designed to manifest atomicity

violations, are similar to the preemption and context bounds that we describe in

Section 2.7 [Park et al., 2009,Musuvathi and Qadeer, 2007a].

Many heuristic-based fuzzing strategies exploit random search because it

finds bugs very effectively [Burckhardt et al., 2010,Joshi et al., 2009,Edelstein et al.,

2003, Dwyer et al., 2007, Sen, 2008, Sen, 2007]. Random search does not naturally

lend itself to systematic state space exploration with coverage guarantees. Parallel

Randomized State-Space Search in Java PathFinder, however, shows that searching

the state space in parallel from random locations within the state space is benefi-

cial [Dwyer et al., 2007,Visser et al., 2000a]. This work could similarly benefit from

randomized parallelization, as discussed in Chapter 9, but we leave that optimiza-

tion for future work. In Chapter 3, we use a random priority function to guide the

search randomly through the entire state space.

There is a long history of using heuristics in artificial intelligence and plan-

ning [Russell and Norvig, 2003, Pearl, 1984]. Our work is closely related and, in

part, motivated by the success of heuristics in model checking [Yang and Dill,

11



1998,Edelkamp et al., 2001,Edelkamp and Jabbar, 2006,Rungta and Mercer, 2009].

These directed model checking algorithms use sophisticated analysis of the input

program model to generate heuristics for guided search. These techniques have

been studied in an explicit-state or symbolic-state setting. Translating these heuris-

tics from stateful search to a stateless setting is not straightforward. For example,

Yang and Dill [Yang and Dill, 1998] use Hamming distance to prioritize states that

are closer to error states. Such heuristics are not applicable to stateless search.

In Chapter 3, however, we use user-provided heuristics similar to GuidePosts in

SpotLight [Yang and Dill, 1998].

Groce and Visser investigate guided model-checking for stateful search in

Java PathFinder, and use several heuristics that are more applicable in stateless

search [Groce and Visser, 2002]. For example, they include a thread interleaving

heuristic that favors more preemptions to increase the variation in thread schedules,

which allows their search to scale to more threads. We favor fewer preemptions

because we find these executions are most useful to developers, as the preemptions

often indicate the root cause of the bug. The state space is much smaller with fewer

preemptions, which makes it possible to find errors more quickly. Preliminary work

has been done in exploring heuristics in stateless search [Godefroid and Khurshid,

2002], but the genetic algorithms used in this work do not fare well when combined

with partial-order reduction techniques nor do they provide the same soundness and

progress guarantees.

These model checking strategies and concurrency testing heuristics from prior

work motivate both best-first search and bounded partial-order reduction. Best-

first search leverages these heuristics to guide the search towards new states quickly

while preserving correctness guarantees. Bounded partial-order reduction reduces

the state space while still guiding the search via the bound. In the next section, we

formalize the terms we use to describe concurrent programs and their executions.

12



2.2 Multithreaded Programs and Semantics

This section formalizes the terms we use to describe concurrent programs and their

executions. We use dynamic, stateless model checking to systematically explore the

state space of multithreaded programs. A runtime scheduler systematically forces

concurrent programs down different thread interleavings. The search stores only its

current state as a stack of explored transitions.

A concurrent program contains a fixed set Tid of thread identifiers and a

set T of transitions. A transition t ∈ T is a tuple, 〈tid, var, op〉, that transfers the

program from one state to another state. Thread t.tid ∈ Tid performs transition

t by executing operation t.op on variable(s) t.var. Examples of operations include

fork, join, lock acquire, lock release, and load/store operations. A transition may

access multiple variables. For example, a wait operation may wait for a signal from

multiple threads before it proceeds. For simplicity, we associate only one thread u

and one operation op with each transition.

Intuitively, each program state is a graph whose edges indicate dependences

between transitions. A state is a finite graph 〈T,H〉 where T ⊆ T is a set of

transitions and H is an irreflexive partial order on T such that for each thread u,

H is a total order on the set {t ∈ T | t.tid = u}. There exists a unique initial

state 〈T0, H0〉 where T0 is the empty set and H0 is the empty relation. A transition

t transfers the program from a state 〈T,H〉 to a successor state, 〈T ′, H ′〉, where

T ′ = T ∪ {t}, and H ′ is the partial order H with any additional orderings required

by t. Definition 2.1 defines the local state for a thread u in a state 〈T,H〉.

Definition 2.1. Local state.

The local state for a thread u in a state 〈T ,H〉 is the graph 〈TL, HL〉, defined as

13



s

t'' = next(s, v)

 Transition  State

t = last(S)

t' = next(s, u)

s = final(S)

Sequence of transitions

S

Figure 2.1: S is a sequence of transitions such that s = final(S). Threads u, v ∈
enabled(s).

follows where t is the last transition by u, if any:

TL =


∅ if t does not exist

{t′ ∈ T | (t′, t) ∈ H} ∪ {t} otherwise

HL =


∅ if t does not exist

{(t′′, t′) ∈ H | t′′ ∈ TL and t′ ∈ TL} otherwise

Intuitively, thread u’s local state in state s = 〈T,H〉 is the subgraph of s that

contains only those transitions that are ordered by s with respect to the most recent

transition by u. The algorithms we present guarantee reachability of local states

for finite, acyclic state spaces. For clarity, we use the term s as shorthand for an

arbitrary state 〈T ,H〉. The function local(s, u) returns the local state for thread u

in state s.

Figure 2.1 illustrates terms defined in this section. The term next(s, u) ∈ T

denotes the transition that thread u will execute next from state s. We assume

that the next transition for each thread from a given state is unique. A transition

is enabled in s if it can execute from s. A thread u is enabled in s if next(s, u) is

enabled in s. The function enabled(s) returns the set of all threads enabled in s. A

state s in which enabled(s) = ∅ is a terminal state.

14



The expression s
t−→ s′ indicates that transition t leads from state s to state

s′. Using Flanagan and Godefroid’s notation [Flanagan and Godefroid, 2005], a

transition sequence S is a finite sequence of transitions t1.t2. . . . tn such that there

exist states s1, . . . sn+1 where s1 is the initial state s0, and

s1
t1−→ . . .

tn−→ sn+1

The function dom(S) returns the domain of S, the set {1 . . . n}, and the length of S is

len(S) = n. The term final(S) refers to sn+1, the final state reached after executing

all transitions in S. Transition Si is the ith transition in S, i ∈ dom(S). Greek

symbols ω, α, β, and γ, represent arbitrary-length sequences of transitions. The

term S.t denotes the sequence of transitions that results when transition t executes

from final(S), and S.α is the sequence that results when arbitrary-length sequence

of transitions α executes from final(S). An execution is a sequence of transitions

where s0 = 〈T0, H0〉 and enabled(sn+1) = ∅.

The rest of our definitions exactly follow Flanagan and Godefroid [Flanagan

and Godefroid, 2005]. The behavior of a concurrent system is a transition system

AG = (State,∆, s0) where State is the set of all possible states, ∆ ⊆ State× State

is the transition relation defined by

(s, s′) ∈ ∆ iff ∃t ∈ T : s t−→ s′

and s0 is the system’s unique initial state. Bounded search and partial-order meth-

ods each explore only a subset of AG [Flanagan and Godefroid, 2005].

2.3 Traces

A trace is an equivalence class of sequences of transitions that can be obtained from

one another by reordering adjacent independent transitions [Mazurkiewicz, 1986].

15



Algorithm 1 Basic search that explores AG [Godefroid, 1996].
1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
# Recursively explore all enabled transitions.

3: for all u ∈ enabled(final(S)) do
4: Explore(S.next(final(S), u))
5: end for
6: end

We use [ω] to denote the trace that contains the sequence of transitions ω. Any

sequence of transitions in a trace uniquely denotes the trace.

Formally, using Godefroid’s definition of traces [Godefroid, 1996], the con-

current alphabet for a system is the pair Λ = (T , D) where T is the finite set of

transitions in the system, andD is the dependence relation. The relation IΛ = T 2\D

is the independency in Λ. Let ε denote the empty word. The relation ≡Λ is the

least congruence in the monoid [T ∗; ., ε] such that

(t, t′) ∈ IΛ =⇒ t.t′ ≡Λ t
′.t

We define a trace as follows,

Definition 2.2. Traces [Godefroid, 1996].

Equivalence classes of ≡Λ are called traces over Λ. The term [ω] denotes the trace

that contains the sequence of transitions ω.

We use the following theorem, proved by Godefroid, to reason about traces:

Theorem 1. Let final(S) be a state in AG. If final(S.ω) = s and final(S.ω′) = s′

in AG and [ω] = [ω′], then s = s′ [Godefroid, 1996].

2.4 Systematic Search

Algorithm 1 contains a basic search that explores AG, the entire state space reach-

16



able from initial state s0 for acyclic programs. We assume throughout this thesis

that the state space is finite. In each state s, Algorithm 1 recursively explores the

next transition by each thread enabled in s. All of the algorithms in this thesis build

off of this basic algorithm for systematically exploring the state space.

The number of states that Algorithm 1 explores is exponential in the number

of threads, and the length of the program. To check correctness properties for

concurrent programs despite this exponential growth, prior work explores only a

subset of the state space. In the next section we review partial-order methods that

search a reduced yet sufficient state space by exploring only one interleaving of

independent transitions.

2.5 Partial-Order Reduction

We introduce two classes of partial-order methods from prior work, which we com-

bine with bounded search: persistent sets and sleep sets [Godefroid and Pirottin,

1993,Godefroid, 1990]. Persistent sets and sleep sets allow the search to explore only

a subset of the enabled transitions in each state. By identifying transitions whose

orderings may affect the program’s behavior, the search provides safety guarantees

despite exploring only a reduced state space.

Persistent sets reason about dependent transitions that may occur in the

future, as the search explores the subsequent state space. Sleep sets, in contrast,

reason about the search’s past and guarantee that it does not return to a small

subset of previously visited local states. Persistent sets store transitions that the

search will explore because new states may be reachable via those transitions. Sleep

sets determine transitions that the search will not explore because they lead to local

states that the search has already explored.

Both persistent sets and sleep sets exploit independent transitions – transi-

tions that may be reordered without affecting the program’s behavior. A search that

17



identifies more independent transitions reduces the state space more effectively than

a search that identifies fewer independent transitions. Thus, detecting independence

has been an important focus of prior work [Godefroid, 1996].

Given a safety property and a set of assumptions about the state space, there

exists a set of valid dependence relations that identify transitions whose interactions

may affect that safety property. In this work, we present general techniques that

search a subset of the state space, and are applicable to any valid dependence

relation. In the next section, we define valid dependence relations, place restrictions

on valid dependence relations for bounded search with partial-order reduction, and

describe the particular dependence relation that we implement.

2.5.1 Dependence relation

A dependence relation identifies transitions whose interleavings may affect a multi-

threaded program’s behavior. The following definition characterizes any valid de-

pendence relation for the transitions of a concurrent system:

Definition 2.3. Valid dependence relation [Flanagan and Godefroid, 2005]

adapted from [Katz and Peled, 1992].

Let T be the set of transitions in a concurrent system and let D ⊆ T ×T be a binary,

reflexive, and symmetric relation. The relation D is a valid dependence relation for

the system if and only if for all t, t′ ∈ T , (t, t′) /∈ D (t and t′ are independent) implies

that the following properties hold for all states s of the system:

1. if t ∈ enabled(s) and s t−→ s′, then t′ ∈ enabled(s) if and only if t′ ∈ enabled(s′)

2. if t, t′ ∈ enabled(s), then there is a unique state s′ such that s t.t′−−→ s′ and

s
t′.t−−→ s′

Intuitively, the first property requires that independent transitions neither enable

nor disable one another, and the second property requires that enabled independent

18



transitions commute. Any valid dependence relation must meet these criteria. We

also assume that the dependence relation is constant, and do not consider conditional

dependence relations [Godefroid and Pirottin, 1993]. Applying the algorithms we

present to conditional dependence relations is beyond the scope of this work.

We implement the dependence relation in Definition 2.4. Definition 2.4 is

valid because it does not permit any communication among independent transitions

under our assumptions. We assume that if transitions do not communicate then

they can neither enable nor disable one another, and they must commute.

Definition 2.4. Dependence relation.

Transitions t, t′ ∈ T are dependent, t 6↔ t′, if and only if

1. t.tid = t′.tid, or

2. t.var ∩ t′.var 6= ∅ ∧ (IsWrite(t.op) ∨ IsWrite(t′.op))

If transition t is independent with transition t′ then we write t↔ t′. If t is dependent

with t′ then we write t 6↔ t′. We apply the same notation to sequences of transitions.

If all transitions in the sequence of transitions α are independent with transition t,

for example, then we write α↔ t.

2.5.2 Persistent Sets

A persistent set T in each state s is a sufficient set of transitions to execute from s

while preserving certain safety guarantees [Godefroid and Pirottin, 1993]. Persistent

sets divide the enabled transitions in s into two groups: those in T and those not in T .

All transitions reachable via transitions not in T , without executing any transitions

in T , must be independent with all transitions in T . Formally, Godefroid defines

persistent sets as follows:

Definition 2.5. Persistent sets [Godefroid and Pirottin, 1993].

A set T ⊆ T of transitions enabled in a state s is persistent in s if and only if for all

19



Algorithm 2 Selective search of AR using persistent sets [Godefroid, 1996].
1: Initially, Explore(ε) from S0

2: procedure Explore(S) begin
# Recursively explore transitions in a nonempty persistent set.

3: Let T = Persistent Set(final(S))
4: for all t ∈ T do
5: Explore(S.t)
6: end for
7: end

nonempty sequences α of transitions from s in AG such that ∀i ∈ dom(α) : αi 6∈ T

and for all t ∈ T , t↔ last(α).

A selective search explores only a subset of the enabled transitions in each state.

Algorithm 2 implements a selective search that explores a nonempty persistent set

of transitions in each state [Godefroid, 1996]. This search explores a reduced state

space AR ⊆ AG that includes all local and deadlock states, provided that the state

space is acyclic [Godefroid, 1996].

Figure 2.2(a) illustrates a transition t in the persistent set T in a state s. The

sequence of transitions α contains only transitions that are not in T . The interleaving

in gray need not be explored because the interleaving in black is equivalent and will

be explored if needed.

2.5.3 Sleep Sets

Sleep sets are form of limited state caching [Godefroid and Wolper, 1992]. Sleep sets

store visited transitions from prior states and prohibit them from executing again

until the search explores a dependent transition. Assume that the search explores a

transition t from a state s = final(S), backtracks t, then explores t′ from s instead.

If t↔ t′, then

local(final(S.t′.t), t.tid) = local(final(S.t), t.tid)

20



Transition

t ∈ T    ∀i ∈ dom(α) : αi ∉ T

st α

α t

State

(a) T is persistent in s.

t1     t2 t1     t3

st1

s't1

s''t1

t2

t3

Sequence of transitions

(b) t1 is in the sleep set in s′.

Figure 2.2: Persistent sets and sleep sets; transitions in gray may be pruned.

This equation holds until the search explores a transition that is dependent with

t. Thus, until the search explores a transition that is dependent with t, exploring

t will lead to a previously visited local state. To prevent the search from exploring

these redundant states, t “sleeps” until the search explores a dependent transition.

Figure 2.2(b) illustrates sleep sets. After the search explores t1 and all states

reachable via t1 from s, it places t1 in the sleep set for s. No new states become

reachable via t1 until the search performs a transition that is dependent with t1.

Thus, t1 propagates to the sleep set in state s′, because t1 ↔ t2. When the search

explores t3, however, it cannot propagate t1 to the sleep set in s′′ because t1 6↔ t3.

New states may be reachable via t1 from s′′, so the search must explore t1 from s′′.

A family of algorithms reduce the size of the state space using some variation

of persistent sets or sleep sets [Godefroid, 1996, Overman, 1981, Valmari, 1990].

Most of these algorithms are static; they use static analysis to determine which

transitions may be dependent with one another. As a result, these algorithms must

be conservative. Unless two transitions are known to always be independent, the

search must assume that they may be dependent. In the next section, we present

21



an alternative approach that exploits dynamic information to reduce the size of the

state space more aggressively.

2.6 Dynamic Partial-Order Reduction

Flanagan and Godefroid introduce Dynamic Partial-Order Reduction (DPOR), which

dynamically computes persistent sets [Flanagan and Godefroid, 2005]. Flanagan and

Godefroid show that DPOR computes smaller persistent sets than the best static

methods, and thus achieves more state space reduction. Because DPOR is dynamic,

it builds its persistent sets based on known dependences, while static partial-order

reduction methods must make conservative assumptions about dependences based

on static analysis of the source code. We provide intuition for DPOR here and

provide greater detail in Chapter 5, where we build on this algorithm.

DPOR performs a depth-first search of the state space, always exploring

the deepest unexplored transition. DPOR keeps track of the most recent access to

each shared variable as it explores new transitions. In each state s, DPOR adds

a backtrack point for the dependence between each thread’s next transition t, and

the most recently explored transition that is dependent with t, if such a dependence

exists. This backtrack point allows the search to explore the dependent transitions in

the opposite order in a future execution. Flanagan and Godefroid prove that DPOR

explores a persistent set of transitions in each state [Flanagan and Godefroid, 2005].

Figure 2.3 illustrates two executions of DPOR. First, DPOR explores the

transitions in Execution 1 until it reaches a deadlock state, where no transitions are

enabled. During this initial execution, DPOR adds the backtrack points shown in

Figure 2.3 under Execution 1. These backtrack points force DPOR to reorder the

dependent transitions in a future execution.

After reaching a deadlock state in Execution 1, DPOR backtracks to the

deepest backtrack point. Execution 2 shows the new execution that results. In

22



Thread u Thread w

w

v

Thread v

v

Execution 1

Explored transition Backtrack point Dependence

Thread u Thread w

w

v

Thread v

Execution 2

w

Figure 2.3: Two executions DPOR. Backtracking points appear prior to the first in
each pair of dependent transitions.

Execution 2, DPOR executes Thread v prior to the dependent transition by Thread

w, reversing the order of the dependent transitions. During Execution 2, DPOR adds

a new backtrack point for Thread w, prior to the dependent transition by Thread

v. This new backtrack point is redundant – it will swap the dependent transitions

back to their original order. Sleep sets will prevent this redundant backtrack point

because Thread w is in the sleep set prior to the dependent transition by Thread v.

DPOR reduces the state space more aggressively than static partial-order

reduction does while still preserving persistent sets’ safety guarantees. In con-

trast, bounded search reduces the state space, yet provides only bounded cover-

age. Bounded search explores only states that are reachable within the bound.

The next section introduces bounded search and defines several bound functions.

We describe their advantages and disadvantages, including how much partial-order

reduction they permit.

23



Algorithm 3 Bounded search that explores AG(Bv,c).

1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
# Recursively explore all transitions that do not exceed the bound.

3: for all u ∈ enabled(final(S)) do
4: if Bv(S.next(final(S), u)) ≤ c then
5: Explore(S.next(final(S), u))
6: end if
7: end for
8: end

2.7 Bounded Search

In contrast to partial-order methods, which provide full coverage, bounded search

provides bounded coverage for acyclic state spaces. Bounded search limits the size

of the state space because it does not explore transitions that exceed a bound. This

bound may be any property of a state, or of the sequence of transitions that led

to that state. The bound is computed by a bound evaluation function, Bv. The

function Bv(S) returns the bounded value for the transition sequence S. Bounded

search requires two parameters: the bound evaluation function Bv, and the bound

c, which may be any nonnegative, comparable value.

Algorithm 3 performs bounded search of AG(Bv,c), the full state space reach-

able with bound function Bv within bound c from initial state s0. This search

requires that the state space be acyclic. Algorithm 3 explores all enabled transi-

tions in each state s that do not exceed the bound from s. Algorithm 3 is similar

to Algorithm 1, but at Line 4, Algorithm 3 explores next(final(S), u) from final(S)

only if next(final(S), u) does not exceed the bound from final(S). The bounded state

space, AG(Bv,c) ⊆ AG, is an automaton

AG(Bv,c) = (State(Bv,c), s0,∆(Bv,c))

24



where State(Bv,c) is the set of all states reachable from initial state s0 via a sequence

S of transitions such that Bv(S) ≤ c. The relation ∆(Bv,c) ⊆ State × State is the

bounded transition relation defined by

(s, s′) ∈ ∆(Bv,c) iff ∃t ∈ T : s = final(S) ∧ s′ = final(S.t) ∧ Bv(S.t) ≤ c

We focus on monotonic bound evaluation functions, which we define as follows:

Definition 2.6. Monotonic bound functions [Musuvathi and Qadeer, 2007b].

A bound evaluation function Bv is monotonic if and only if for all sequences of

transitions S and for all transitions t ∈ enabled(final(S)), Bv(S) ≤ Bv(S.t).

Musuvathi and Qadeer show that monotonic bound evaluation functions provide

bounded coverage. With monotonic bound evaluation function Bv and bound c,

bounded search visits all states s such that there exists a sequence S of transi-

tions from s0 such that s = final(S) and Bv(S) ≤ c, i.e., all states reachable in

AG(Bv,c) [Musuvathi and Qadeer, 2007b]. Monotonicity is a sufficient condition for

Algorithm 3 to provide bounded coverage, provided that the state space is acyclic.

The size of the bounded state space grows exponentially with the number of

threads and with the bound. The bound is thus a useful parameter to control the

search’s state-space explosion. Because the size of the state space grows exponen-

tially with the bound, ideally most bugs should manifest with a small bound. The

bound also provides a useful coverage metric; the search guarantees its safety prop-

erty for all states reachable within the bound. Next, we describe several monotonic

bound evaluation functions and discuss their strengths and weaknesses.

2.7.1 Depth-Bounded Search

The depth bound limits the depth of each execution that the search explores. The

depth bound is defined recursively as follows:

25



0

1

2 2

1

3

4

3

2

44

5 5

u

u

u

v

v

v

u

v

v

5

u

v

3

44

5

u

v

v

5

u

u v

3

4

5

u

u

v

u

3

4

5

u

u

2

u

v

3

44

5

u

v

v

5

u

u v

3

4

5

u

u

Figure 2.4: Depth-bounded state space exploration.

Definition 2.7. Depth bound (Df).

Df(t) = 1

Df(S.t) = Df(S) + 1

Figure 2.4 illustrates depth-bounded search for a small program with two threads,

u and v. Circles represent states, arrows represent transitions, and the number in

each state is the bounded value for the sequence that led to that state. Light colored

states can be reached with smaller bounded values than dark colored states can.

Depth-bounded search is simple to implement and easy to understand. Any

two paths to the same global state have the same bounded value in depth-bounded

search, and partial-order reduction algorithms can exploit this property. Depth-

bounded search also provides a workaround for cyclic state spaces by pruning exe-

cutions after a given number of transitions.

Depth-bounded search also has several disadvantages. As shown in Fig-

ure 2.4, depth-bounded search arbitrarily biases the search towards early portions

of the state space. This bias is often undesirable, particularly for shared-memory

systems. Shared-memory systems often contain many accesses to shared data and

bugs are no more likely to manifest in early portions of an execution than they are

26



0

0

0 1

0

0

1

1

1

12

1 3

u

u

u

v

v

v

u

v

v

2

u

v

2

32

3

u

v

v

4

u

u v

1

2

2

u

u

v

u

1

1

1

u

u

0

u

v

1

21

2

u

v

v

3

u

u v

2

3

3

u

u

Figure 2.5: Context-bounded state space exploration.

in any other part of an execution. Depth-bounded search also inhibits local state

reachability. Two sequences of transitions that lead to the same local state may not

have the same depth.

2.7.2 Context-Bounded Search

Context-bounded search explores sequences of transitions that contain up to c con-

text switches [Musuvathi and Qadeer, 2007a]. Given a sequence of transitions S

from initial state s0, the context bound is defined recursively as follows:

Definition 2.8. Context bound (Cs).

Cs(t) = 0

Cs(S.t) =


Cs(S) + 1 if t.tid 6= last(S).tid

Cs(S) otherwise

Figure 2.5 illustrates context-bounded search. The context-bounded state space

becomes reachable within the bound from the top of the state space downward,

much like the depth-bounded state space does. The context bound increases more

slowly than the depth bound does, however, provided that the same thread executes

27



repeatedly. More of the state space is reachable with a small context bound than

is reachable with a small depth bound. This property is desirable because the size

of the state space grows exponentially with the bound. Both context and depth-

bounded search may reach states in which all threads exceed the bound, however,

systematically leaving deeper portions of the state space unreachable.

The size of the state space grows exponentially with the number of context

switches in context-bounded search, rather than the length of each execution. Thus,

context-bounded search may explore deep into the state space with a relatively small

bound. With a small bound, the search experiences less state space explosion. Thus,

context-bounded search can often explore more unique states than depth-bounded

search can before state-space explosion significantly slows progress.

Two paths to the same deadlock or local state may contain different numbers

of context switches. Thus, partial-order reduction algorithms do not combine easily

with context-bounded search. Because the context bound does not increase when

the same thread executes repeatedly, the context bound does not prune cycles in the

state space. Thus, cyclic state spaces pose a problem for context-bounded search.

2.7.3 Preemption-Bounded Search

Preemption-bounded search limits the number of preemptive context switches in

an execution [Musuvathi and Qadeer, 2007a]. The preemption bound is defined

recursively as follows by Musuvathi and Qadeer [Musuvathi and Qadeer, 2007b]:

Definition 2.9. Preemption bound (Pb).

Pb(t) = 0

Pb(S.t) =


Pb(S) + 1 if t.tid 6= last(S).tid and last(S).tid ∈ enabled(final(S))

Pb(S) otherwise

In contrast to depth-bounded and context-bounded search, preemption-bounded

28



0

0

0 1

0

0

0

1

1

12

0 2

u

u

u

v

v

v

u

v

v

1

u

v

2

32

2

u

v

v

3

u

u v

1

1

1

u

u

v

u

0

0

0

u

u

0

u

v

1

21

1

u

v

v

2

u

u v

2

2

2

u

u

Figure 2.6: Preemption-bounded state space exploration.

search, as shown in Figure 2.6, does not bias the search towards early portions of

the state space. Instead, preemption-bounded search explores the state space from

zero-preemption executions outwards.

Preemption-bounded search has several advantages over depth-bounded and

context-bounded search. The preemption bound always provides a zero-cost path

to a terminal state. As a result, more states are reachable within a small bound in

preemption-bounded search than in depth-bounded or context-bounded search. The

preemption bound often provides a more useful coverage metric than these bounds

do because the preemption bound does not arbitrarily bias the search towards early

portions of the state space. In addition, if few preemptions occur in practice, then

the preemption bound may bias the search towards executions that are likely to

occur in practice.

Preemption-bounded search has several disadvantages. Because different

paths to the same deadlock or local state may contain different numbers of preemp-

tions, preemption-bounded does not combine easily with partial-order reduction al-

gorithms. Additionally, the cost of a transition in preemption-bounded search varies

with the enabledness of the prior transition. Threads that enable or disable other

29



threads may therefore introduce dependences, which inhibit partial-order reduction.

Finally, preemption-bounded search does not prune cycles in the state space, and

thus cannot handle cyclic state spaces.

2.7.4 Delta-Bounded Search

Delta-bounded search limits the number of deltas from an initial, deterministic

execution. Delta-bounded search is similar to delay-bounded search, which limits

the number of delays that an otherwise-deterministic scheduler is allowed [Emmi

et al., 2011]. Emmi et al. find that delay-bounded search manifests bugs quickly,

requiring fewer executions than preemption-bounded search requires. The delta

bound we use is a specific type of delay bound.

Delta-bounded search increments the bounded value once for each difference

from an initial, deterministic execution. We implement delta-bounded search with a

round-robin scheduler. Initially, the search associates an arbitrary, unique priority

with each thread. In each state, the search explores the highest priority enabled

thread. To explore a thread u from a state s, the search rotates the thread priorities

in s such that u has the highest priority. The cost to make u the highest priority

thread in s is equal to the number of enabled threads in s with higher priority than

u. We define the delta bound recursively as follows:

Definition 2.10. Delta bound (De).

De(t) = PriorityDiff(s0, t.tid)

De(S.t) = De(S) + PriorityDiff(final(S), t.tid)

The function PriorityDiff(final(S), u) for state final(S) and thread u returns the

number of enabled threads in final(S) that have higher priority than u. Figure 2.7

illustrates delta-bounded search. The delta bound provides a single zero-cost path

to a terminal state. Delta-bounded and preemption-bounded search explore the

30



0

0

0 1

1

0

0

1

2

12

0 2

u

u

u

v

v

v

u

v

v

1

u

v

2

32

2

u

v

v

3

u

u v

1

1

1

u

u

v

u

1

1

1

u

u

1

u

v

2

32

2

u

v

v

3

u

u v

3

3

3

u

u

Figure 2.7: Delta-bounded state space exploration.

state space in a similar manner to one another. With the delta bound, however,

each enabled transition has a unique cost in each state.

We choose to increment the bound by the number of higher priority threads

rather than incrementing it by one to ensure that each thread’s cost is unique in each

state with the delta bound. We hypothesize that a unique cost for each transition

may make exploring the cheapest transition first a good heuristic for guiding delta-

bounded search to states via the cheapest path first. In Chapter 8, we reach mixed

conclusions about this decision. The unique cost is helpful for some state spaces,

but the search must significantly sacrifice partial-order reduction for others.

Delta-bounded search always provides a zero-cost path to a terminal state, so

it does not bias the search towards early portions of the state space. Delta-bounded

search does, however, bias the search towards executions that are similar to the

initial execution. If the default scheduler is similar to schedulers encountered in

practice, this bias may be an advantage. Additionally, the search may be parallelized

by searching from distinct initial schedules. The delta bound does not prune cycles

in the state space. Next, we introduce a bound that prunes unfair executions to

limit the number of times the search may unroll a cycle in a cyclic state space.

31



2.7.5 Fair-Bounded Search

Fair-bounded search limits the number of times that the search may unroll a cycle in

a cyclic state space. We adapt a fairness criteria from prior work to identify cycles

in stateless search given two assumptions [Musuvathi and Qadeer, 2008]:

1. a thread always yields the processor if it is not making progress

2. a thread never yields the processor if it is making progress

In each state s, fair-bounded search tracks the number of yield operations that

each thread u has performed, Yc(s, u). The fair bounded value in a state s =

final(S) is equal to the maximum observed difference between the executing thread’s

yield count and each other enabled thread’s yield count in each state reached by S.

Formally, we define the fair bound recursively as follows:

Definition 2.11. Fair bound (Fb).

Let Yc(S, u) return Thread u’s yield count in final(S).

Fb(t) = 0

Fb(S.t) = max(Fb(S),maxu∈enabled(final(S))(Yc(S, u)−Yc(S, t.tid)))

Figure 2.8 illustrates fair-bounded search in a cyclic state space. Given our assump-

tions about yield operations, the set of states reachable via the transitions with

bound zero is not meaningfully different from the set of states reachable with bound

one, etc. The search explores a cycle in the state space, returns to a previously

visited state, and begins to explore the entire state space reachable from that state

again. In Figure 2.8, Thread u repeatedly performs an operation that is dependent

with an operation by Thread v. For example, Thread u reads a shared variable re-

peatedly until Thread v changes the result. A non-preemptive scheduler will allow

Thread u to execute indefinitely, as shown by the leftmost path in Figure 2.8.

32



0

1

2 1

0

3 2

0

22

2

u

u

u v

u v

2

u

v

1

11

1

u

v

v

1

u

u v

1

1

1

u

u

v

u

0

0

0

u

u

0

u

v

0

0

0

u

v

u v

0

0

0

u

u

2

u v

...

Figure 2.8: Fair-bounded state space exploration.

Given the assumptions listed above, Thread u must perform a yield operation

during each cycle. Thus, eventually, Thread u will have a yield count that is enough

greater than Thread v’s yield count to exceed the fair bound. Fair-bounded search

allows Thread v to execute, breaking the cycle. Note that if Thread u does not

yield the processor, then the search continues to execute Thread u until it reaches a

depth bound and reports a livelock. This user-supplied depth bound must be very

large such that it constrains the search only when the search enters a cycle in the

state space that the fair bound cannot break.

When Thread v executes, it performs an action that breaks Thread u’s cycle.

The reachable state space in Figure 2.8 does not meaningfully change as Thread u

unrolls its cycle repeatedly. Given our assumptions regarding when threads yield the

processor, any bug that manifests after n+1 cycles will also manifest after n cycles.

Fair-bounded search prunes executions that unroll a cycle more than n times.

Two sequences of transitions that lead to the same local state may contain

different values for Yc(S, u), so the fair bound does not easily combine with partial-

order reduction. Additionally, a transition’s cost varies with the number of enabled

transitions with a lower yield count. Thus, the fair bound may introduce depen-

33



dences between otherwise independent transitions if they enable or disable threads

with a lower yield count.

There exist many fairness criteria that produce similar results. We selected

this fairness criterion primarily for its simplicity, but other fairness criteria can be

expressed as bounds, as well. We show that a fairness criterion can be implemented

as a bound function and that it combines with partial-order reduction similarly to

other bound functions. We restrict partial-order reduction to accommodate depen-

dences that the fairness criterion imposes on otherwise independent transitions.

Prior work uses fairness criteria for cyclic state spaces in stateful search. For

example, Holzmann and Peled include provisos to close cycles in the state space

only from states in which the search explores all enabled threads [Holzmann et al.,

1992,Peled, 1993,Peled, 1994]. We exploit similar insights to combine fair-bounded

search with DPOR. Dynamic search offers more opportunities to reduce the state

space, but stateless search makes cycle detection more challenging.

2.8 Discussion

Prior work evaluates the depth, context, and preemption bounds, and existing sys-

tems use them in practice [Musuvathi and Qadeer, 2007a, Holzmann, 1997, Musu-

vathi and Qadeer, 2008,Musuvathi et al., 2009]. All of these bounds prune portions

of the state space and may therefore fail to detect bugs in programs. Partial-order

methods, in contrast, explore the entire relevant state space and detect all bugs that

violate the correctness guarantee.

If the state space is very large, however, and the search does not terminate

within a reasonable time period, then partial-order methods do not provide any

guarantees. Ideally, combining these techniques would provide incremental coverage

guarantees for a reduced state space. The next section compares these techniques,

highlights their advantages and disadvantages, and shows why combining them is

34



not trivial. Then, we determine whether combining them will find bugs quickly by

exploiting best-first search.

35



Chapter 3

Best-First Search

This section uses best-first search to combine intuitions from bounded search and

dynamic partial-order reduction (DPOR). We first compare bounded search with

DPOR and show why näıvely combining these techniques sacrifices bounded cover-

age. We show that bounded search scales poorly without partial-order reduction,

and that DPOR is a better choice when the state space is small enough to be explored

in its entirety. If the state space is intractably large, however, then DPOR provides

no guarantees. These results motivate combining DPOR with bounded search to

provide incremental guarantees. To further motivate this approach, we prioritize

the state space for both bounded search and DPOR using best-first search, and

implement heuristics to detect bugs quickly with a tool called Gambit.

3.1 Partial-Order Reduction for Bounded Search

We compare bounded search with DPOR and show that bounded search requires

more time and explores less of the state space than DPOR does. We implement

DPOR, as described in Section 2.6, in Chess, a model checker for concurrent pro-

grams that also performs bounded search [Flanagan and Godefroid, 2005,Musuvathi

36



0 20 40 60 80 100

1

60

3600

% of Local States

Ti
m

e 
(s

) Cs
Pb
De
DPOR

(a) FFT

0 100 200 300 400

1

60

3600

Local states

Ti
m

e 
(s

)

Fb

(b) Fair

0 20 40 60 80 100

1

60

3600

% of Local States

Ti
m

e 
(s

) Cs
Pb
De
DPOR

(c) MRSE

Figure 3.1: Coverage vs. time for bounded search without partial-order reduction.

and Qadeer, 2007a]. We compare state space coverage over time for each technique

on small programs and show that bounded search provides little benefit without

partial-order reduction, except when the bound is very small.

Figure 3.1 compares bounded search to DPOR. The x-axis shows the percent

of all local states that the search visits, and the y-axis shows the time in seconds that

the search requires to explore them. Each data point represents an invocation of

Chess with a particular value for the bound, which we iteratively increase. These

results show the limitations of bounded search. Without partial-order reduction,

37



bounded search provides little benefit. DPOR explores the entire state space in less

time than bounded search requires to explore the small subset of the state space

reachable with a bound of one or two. The fair bound in Figure 3.1(b) offers an

exception to this rule. Without the fair bound, the cyclic state space that we test

in Figure 3.1(b) never terminates with DPOR, and thus we provide no results for

DPOR for this test.

Each test in Figure 3.1 is very small. A larger state space will benefit from

bounded search because the entire state space using DPOR becomes intractably

large. Without searching the entire space, DPOR provides no guarantees. Bounded

search, in contrast, may explore only a fraction of the state space, but it provides

an incremental guarantee that programmers may find useful.

Context and preemption-bounded search make large state spaces tractable,

but only with a bound of zero or possibly one. With higher bounds, the bounded

state space becomes too large, leaving most of the state space unexplored. DPOR

finds new states far more quickly than bounded search does. Without a bound, how-

ever, DPOR provides an all-or-nothing guarantee. If the state space is intractably

large, then DPOR runs for a very long time without providing any guarantees.

Practical bounded search requires DPOR’s aggressive state space reduction.

Unfortunately, the bounds introduced in Section 2.7 are unsound when näıvely com-

bined with DPOR. Sequences of transitions that lead to the same local or deadlock

state may have different bounded values, and the search therefore cannot guarantee

that it has taken the cheapest path to a given state. DPOR may prune transitions

that make new states reachable within the bound, sacrificing coverage.

Figure 3.2 illustrates a scenario in which preemption-bounded search with

DPOR is unsound. Although s′ is reachable within the bound via the sequence

of transitions t3.t1.t2, the search never reaches s′. DPOR never adds t3 to the

backtrack set in s because t3 is not dependent with t1; it is dependent with t2.

38



Thread u
t1    read x
t2    read y

Thread v
t3    write y

Transition Preemptive transitionState 

st1 t3

s'

t2 t3

t2t3

t1

Not 
persistent

✗

✗
Exceeds 
bound

Figure 3.2: Preemption-bounded search with näıve DPOR Although s′ is reachable
within the bound, the search never reaches it.

DPOR instead adds t3 to the backtrack set in final(S.t1). From there, however, t3

requires a preemption, so it exceeds the bound and the search does not explore it.

DPOR sacrifices bounded coverage because the bound introduces depen-

dences between instructions that are otherwise independent. If a transition t ex-

ceeds the bound in a state s then the search cannot explore t from s and t is, in

some sense, “disabled” in s. Any transition that alters t’s bounded value in s is thus

dependent with it, by Definition 2.3 of valid dependence relations.

The dependences that the bound introduces are not the same as depen-

dences within the program under test, however. Bound dependences are artificial.

Programmers do not generally care whether their programs are capable of exceeding

the bound or not, they care whether or not executions within the bound adhere to

the safety property.

If the search treats bound dependences equivalently to dependences in the

tested program, then the search must explore each state with all possible bounded

values, which is an enormous waste. Thus, we differentiate these dependences.

Bounded search need not explore both orders of bound dependent transitions if those

39



transitions are otherwise independent and all states reachable within the bound via

one are also reachable within the bound via the other. We therefore keep these

dependences separate from one another. A transition that exceeds the bound is not

disabled in the same way that a transition waiting for another thread to release a

lock is disabled. Still, the search must compensate for these bound dependences

when there exists a cheaper path to a given state.

We use best-first search to determine whether combining bounded search

with DPOR is beneficial. Best-first search guides DPOR towards executions with

a lower bounded value, and guides bounded search towards executions likely to

contain new partial orders. We evaluate various best-first heuristics to guide the

search, and we find that the heuristics that combine partial-order reduction with

bounded search are effective.

3.2 Best-First Search

We prioritize the state space for bounded search and DPOR using best-first search.

We implement heuristics to detect bugs quickly in a tool called Gambit and apply

them to both DPOR and bounded search. As shown in Section 3.1, bounded search

sacrifices bounded coverage with DPOR. Musuvathi and Qadeer show that deter-

mining the context bound of a state – the fewest context switches with which it is

possible to reach that state – is NP-complete [Musuvathi and Qadeer, 2007b].

Rather than compute the cheapest path to each state, DPOR with best-

first search prioritizes executions that do not exceed the bound. We choose the

preemption bound for these tests because prior work shows that it finds bugs quickly

if they are reachable with a small bound [Musuvathi and Qadeer, 2007a]. We also use

DPOR as a priority function. Rather than pruning transitions not in the backtrack

set, we use the backtrack set to guide best-first search toward executions likely to

contain new partial orders. Eventually, the search explores the entire full or bounded

40



state space and thus preserves coverage.

Best-first search maintains an open list and a closed list of nodes [Korf et al.,

2005]. We refer to the open list as the fringe. Nodes in the fringe have not yet

been explored, and their successors have not yet been generated. Closed nodes have

been explored and their successors have already been generated. Best-first search

selects the highest priority node from the fringe in each iteration, generates all of

its successors, and adds it to the closed list. Each newly generated successor that

is not already closed or in the fringe is added to the fringe. The search terminates

when all nodes are closed. Because best-first search’s storage overhead scales with

the size of the graph, we introduce a compressed representation of the state space

that exploits properties of bounded search and DPOR.

3.3 Execution Trees

An execution tree exploits the fact that DPOR and bounded search explore sparse

trees. We choose trees rather than graphs because the search is stateless and the

model checker is thus unaware when the search returns to a previously visited state.

The search tree is sparse in bounded search because bounded search cannot explore

any transitions that exceed the bound. The search tree is sparse with DPOR because

DPOR prunes many of its edges. Because the state space is a tree we do not need

to track closed nodes – we close nodes by deleting them and rely on the fair bound

for cyclic state spaces.

The execution tree’s storage overhead scales with the number of unique pro-

gram executions, rather than the total number of transitions. Figure 3.3 compares

the uncompressed state space for a simple program to its execution tree. The exe-

cution tree leverages systematic search by storing only deltas from prior executions.

The sequence of transitions next to each node is the execution that node represents.

Bold transitions highlight the step at which the delta occurs.

41



t1 t3

t1t3t2 t4

Thread u

t1
t2

Thread v

t3
t4

t3

t4

t2 t4 t2 t4

t4 t2 t4 t2 t2

t1

t1t2t3t4 t1t3t2t4 t1t3t4t2 t3t1t2t4 t3t1t4t2 t3t4t1t2

Partial execution Transition
t

(a) Uncompressed state space.

Thread u

t1
t2

Thread v

t3
t4

0,v 1,v

1,u

2,v

2,u

t1 t2 t3 t4

t3 t4 t1 t2 

t3 t1 t2 t4 

t3 t1 t4 t2 

t1 t3 t4 t2 

t1 t3 t2 t4 

Complete execution Delta from parent
step,tid

(b) Execution tree.

Figure 3.3: Compressed and uncompressed state space for two threads each per-
forming two operations.

We assume that the model checker systematically varies a default behavior.

By default, we use a non-preemptive round robin scheduler. This scheduler never

preempts the executing thread, and it always schedules the next enabled thread,

in order by thread identifier, when the executing thread blocks. The root node in

Figure 3.3(b) represents this unique default behavior. The two edges to its successors

indicate steps at which the search must explore a different transition: at steps 0 and

1, the search must explore a transition by thread v. The root node’s successor nodes

represent executions that always perform the default behavior except at these steps.

The model checker can replay any execution by performing the default be-

havior except at the steps indicated along the edges leading to that node. Each node

in Figure 3.3(b) is equivalent to a leaf node in Figure 3.3(a). The execution tree

compresses away steps at which the model checker performs its default behavior. In

a sparse search like DPOR or bounded search, this compression provides significant

benefit. We perform a best-first search on this execution tree.

42



Algorithm 4 Best-first search.
1: procedure BestFirstSearch() begin
2: Add root to fringe
3: while node := fringe.Next() do
4: Let S := Execute(node)
5: for i ∈ dom(S) do
6: for u ∈ enabled(pre(S, i)) do
7: if DoBacktrack(pre(S, i), u) then
8: succ := node.CreateSuccessor(i, u)
9: fringe.Insert(succ, GetPriority(S, i, u))

10: end if
11: end for
12: end for
13: if node.numSuccessors == 0 then
14: node.Detatch()
15: end if
16: end while
17: end

3.4 Best-First Search Algorithm

Algorithm 4 performs best-first search using execution trees. Each node stores a link

to its parent, its successor count, the step at which it diverges from its parent, and

the thread whose next transition it must explore at that step. The BestFirstSearch

procedure iterates through all nodes in the fringe beginning with the root node. The

Next method removes and returns the highest priority node in the fringe at Line 3.

The Execute procedure at Line 4 runs the program as indicated by node, and

returns the sequence of transitions that results.

Lines 4-10 iterate over each step i ∈ dom(S) and Lines 6-11 consider each

thread u ∈ enabled(pre(S, i)). Line 7 checks whether u must execute from pre(S, i).

DPOR’s DoBacktrack procedure returns true at Line 7 if u is in the backtrack

set in pre(S, i). Bounded search’s DoBacktrack procedure returns true at Line 7

if u’s next transition does not exceed the bound from pre(S, i). If Line 7 returns

true, then Line 8 creates a successor node for u at pre(S, i) and Line 9 adds it to

the fringe.

43



After generating new nodes, Line 14 deletes node if it has no successors. If

a node has no successors, then all of the state space reachable from it has been

explored and node is closed. The Detatch method at Line 14 removes node from

the execution tree by decreasing its parent’s successor count. If, as a result, its

parent has no successors, then node recursively detaches its parent. Thus, nodes

delete themselves as soon as they become unnecessary. When the search terminates,

the tree is empty aside from the root node. The tree discovers itself dynamically

and deletes itself dynamically, so the entire tree is never in memory. Every leaf node

is in the fringe and must still execute, and every interior node has already executed

and has at least one descendent leaf node in the fringe.

The space required by the execution tree scales with the number of open

nodes. Gambit can run for days using best-first search without running out of

memory. Gambit could write low priority nodes to disk and expand its state space

further – nodes in the fringe are not accessed until they are ready to execute, so

writing low priority ones to disk should have low performance impact. We do not

explore this option, however, because we find that when the size of the state space

becomes too large the time required to search the entire state space is also too large,

so the test does not terminate. We next explore priority functions that guide the

search toward bugs.

3.5 Priority Functions

A priority function dictates the order in which Gambit explores new executions.

Any priority function is admissible, but the best priority functions manifest bugs

quickly. A priority function can use any approach to target the search, for example:

1. Find new local states at a faster rate

2. Randomize the search with progress guarantees

44



3. Prioritize the search based on tester input

4. Target known bug patterns

We implement priority functions using the first three approaches. Heuristics from

prior work target known bug patterns [Park et al., 2009, Joshi et al., 2009], and

Gambit could use those heuristics as well, but we do not evaluate them here.

3.5.1 Prioritizing New Local States

We prioritize new local states in two ways. When searching the bounded state space,

bounded search does not reduce the state space with DPOR because doing so might

sacrifice bounded coverage. The priority function instead prioritizes transitions that

lead to new partial orders. Similarly, when searching the reduced state space with

DPOR, the search does not bound the number of preemptions in each execution

because doing so sacrifices coverage. The priority function instead prioritizes exe-

cutions with fewer preemptions. We use the following priority functions to explore

these options:

BF(Pb) prioritize transitions that require fewer preemptions

BF(Dpor) prioritize transitions that are in their state’s DPOR backtrack set

BF(Ss) prioritize transitions that are not in their state’s sleep set

where BF stands for “best-first”. These priority functions combine reduction tech-

niques to prioritize the search without sacrificing coverage. Note that BF(Dpor)

returns transitions that are not in their state’s DPOR backtrack set. In bounded

search, this set is not a persistent set, and thus we refer to the set of transitions

that DPOR selects as its backtrack set.

45



3.5.2 Random Search

Random search is often very effective at exploring large state spaces [Dwyer et al.,

2007]. A random stateless search provides no progress guarantees, however, and thus

sacrifices coverage. Gambit randomizes the search while guaranteeing progress and

coverage by randomly walking a program’s execution tree:

BF(Random) assign a random priority to each execution

This simple priority function ensures that the search does not linger in uninteresting

parts of the state-space, yet still guarantees progress because it randomizes only the

order of the search. The search is not entirely random; it is biased towards the

initial execution. Still, we show that it finds many bugs quickly.

3.5.3 Tester Input

Unit tests typically test a specific function, behavior, or data structure. Unit tests

for concurrent data structures may test how specific methods interact. For example,

a unit test may simultaneously Enqueue and Dequeue from a concurrent queue.

Regression testing often targets changes to specific methods or variables, as well. In

these scenarios, the tester can guide the search by specifying methods or variables

at the command line and using the following priority functions:

BF(Method) prioritize transitions within specified methods

BF(Var) prioritize transitions that access specified variables

BF(Var) may also help target known data races, because the tester can specifically

re-order the racy accesses. We provide these priority functions as examples, but

adding new priority functions is simple. We also make these individual priority

functions more powerful by combining them hierarchically.

46



3.5.4 Hierarchical Priority Functions

We combine individual priority functions hierarchically into a single value. The pri-

ority function listed first receives the highest priority. When the first priority value

is equivalent, ties are broken by the second priority function, etc. Commas indicate

hierarchical priority functions. For example, the priority function BF(Method,Pb)

prioritizes transitions first by favoring those in specified methods. When two tran-

sitions both occur in a specified method, the search explores the one that requires

fewer preemptions first. The tester can combine any number of priority functions.

When the priorities for two transitions are equal, the fringe always returns

the more recently added transition. This behavior mimics depth-first search and

helps keep space requirements reasonable. If an entire portion of the state space has

equal priority, then Gambit explores it in depth-first order and it consumes little

additional space.

3.6 Results

We evaluate Gambit on the unit tests in Table 8.1, which contain known bugs.

Column 2 contains the test name and the maximum number of transitions in a single

execution, which correlates with the size of the state space. Testers at Microsoft

developed these tests to test small components of large production software systems.

Figure 3.4 compares the time required to manifest the bugs in Table 8.1

using DPOR with various search strategies. We terminated any search that failed

to manifest the bug within one hour, which we indicate with a “+” at the top of

the bar in Figure 3.4. We present raw time on a logarithmic y-axis; we did not

normalize the results because the baseline often failed to manifest the bug in time.

The light-grey bars represent depth-first DPOR, and the dark grey bars show

DPOR with the fewer preemptions first heuristic, BF(Pb). Prioritizing executions

47



Program Unit test (size) Description

CCR Iterator (165)
Causality (2615)
ScatterGather (12156)
TaskCoverage (203)
GatherPost1 (142)
GatherPost2 (164)

Concurrent programming model based on
message-passing with orchestration prim-
itives that coordinate data and work.

Region
Ownership

RegOwn (277) Ownership-based separation of the heap
for parallel programs.

SYN Barrier1 (124)
Barrier2 (102)
ManualResetEvent (93)
Semaphore (120)

Low-level synchronization primitives.

CDS ConcBag1 (944)
ConcBag2 (336)
BlockingColl (936)

Parallel data structures for .NET 4.0.

TPL NQueens (1079) Imperative task-parallelism for .NET 4.0

PLINQ NQueens (972)
ParallelDo (2721)

Declarative data-parallelism in .NET 4.0.

Table 3.1: Programs and corresponding unit tests with the maximum number of
transitions in a single execution in parenthesis.

with fewer preemptions manifests most bugs an order of magnitude more quickly

by preventing depth-first search from lingering in uninteresting parts of the state

space. Note that we do not combine DPOR with sleep sets in these results.

The black bars in Figure 3.4 randomly prioritize executions. We seed the

random number generator with the current time and run each random test ten

times, reporting the average of those ten tests in Figure 3.4. One data point is miss-

ing – Barrier1 required anywhere from one second to over an hour depending on

the random seed, so we could not compute an average. Barrier1 demonstrates an

important shortcoming of random search – inconsistency. Without progress guaran-

tees, random search may never manifest a bug even though states that manifest it

are reachable. Gambit harnesses the benefit of random search without sacrificing

coverage by incorporating it into a search with progress guarantees.

48



Ite
ra

to
r

C
au

sa
lit
y

Sca
tte

rG
at

he
r

Tas
kC

ov
er

ag
e

G
at

he
rP

os
t1

G
at

he
rP

os
t2

R
eg

O
w
n

Bar
rie

r1

Bar
rie

r2

M
R
SE

Sem
ap

ho
re

C
on

cB
ag

1

C
on

cB
ag

2

Blo
ck

in
gC

ol
l

N
Q
ue

en
s

Par
al
le
lD

o

Unit test

1

60

3600
T

im
e

 t
o

 m
a

n
if
e

s
t 

b
u

g
 (

s
)

DPOR search

Depth-first

BF(pb)

BF(random)

Figure 3.4: Time required to find bugs using depth-first DPOR and DPOR with the
preemption bound heuristic. A “+” indicates that the depth-first search required
longer than one hour.

Figure 3.5 provides similar results for preemption-bounded search with bound

two. We use sleep sets and DPOR as best-first search heuristics. Some bugs, such as

those in GatherPost1, Barrier1, and NQueens, manifest more quickly with bounded

search than with DPOR, while others such as Semaphore and ConcBag manifest more

quickly with DPOR than with bounded search. Neither approach is clearly more

effective. Soundly combining bounded search with partial-order reduction, however,

shows great promise.

Execution trees require, on average, about 10x less space than the uncom-

pressed representation. We assume that the uncompressed trees also clean them-

selves up as efficiently as possible when nodes become unnecessary. Prior work

includes results for other priority functions [Coons et al., 2010]. The results in Fig-

ures 3.4 and 3.5 motivate soundly combining bounded search with DPOR to reduce

the state space.

49



Ite
ra

to
r

C
au

sa
lit
y

Sca
tte

rG
at

he
r

Tas
kC

ov
er

ag
e

G
at

he
rP

os
t1

G
at

he
rP

os
t2

R
eg

O
w
n

Bar
rie

r1

Bar
rie

r2

M
R
SE

Sem
ap

ho
re

C
on

cB
ag

1

C
on

cB
ag

2

Blo
ck

in
gC

ol
l

N
Q
ue

en
s

Par
al
le
lD

o

Unit test

1

60

3600
T

im
e

 t
o

 m
a

n
if
e

s
t 

b
u

g
 (

s
)

Preemption-bounded search, bound two 

Depth-first

BF(ss,dpor)

BF(random)

Figure 3.5: Time required to find bugs using preemption-bounded search with bound
two using depth-first search, and using a combined DPOR and sleep sets heuristic.
A “+” indicates that the depth-first search required longer than one hour.

3.7 Discussion

This chapter compared DPOR with bounded search and showed that bounded search

does not scale well as the bound increases. Bounded search could benefit from

partial-order reduction, yet combining DPOR with bounded search is difficult, as

shown in Section 3.1. To determine whether combining DPOR with bounded search

will help testers find bugs more quickly, we combine intuitions from these approaches

using best-first search.

We find that algorithms that combine intuitions from DPOR with best-first

search are very effective at finding bugs quickly while preserving coverage guarantees.

As the bound or the size of the state space increase, however, preserving coverage

guarantees requires too much time and space. To find bugs quickly and provide cov-

erage guarantees in a reasonable time period, bounded search requires partial-order

reduction. In the next chapter, we show that by conservatively adding backtrack

points to compensate for dependences introduced by the bound, we can combine

bounded search with partial-order reduction and guarantee bounded coverage.

50



Chapter 4

Bound Persistent Sets

In this chapter we combine bounded search with partial-order reduction by rea-

soning about dependences that the bound introduces between otherwise indepen-

dent transitions. To handle these dependences we introduce bound persistent sets.

Bound persistent sets reduce the size of the bounded state space while guaranteeing

bounded coverage. In the previous chapter we prioritized the bounded state space

using intuitions from partial-order reduction, but we did not reduce the state space.

In this chapter, we reduce the state space while preserving bounded coverage.

First, we establish sufficient conditions to provide two safety guarantees for

acyclic state spaces among executions that do not exceed the bound: absence of

deadlocks, and absence of local assertion failures. We show that the bound in-

troduces dependences between otherwise independent transitions, and these depen-

dences severely limit partial-order reduction with persistent sets.

These dependences suggest two properties of bound functions that allow

them to combine with partial-order reduction without sacrificing coverage. Bound

functions from prior work do not have these properties, and thus interact poorly with

partial-order reduction. We use these properties to identify cases where bounded

search must sacrifice partial-order reduction to maintain bounded coverage.

51



As we show in Section 3.1, dependences introduced by the bound are different

from dependences on shared data. While bound dependences can disable threads,

they cannot otherwise change the program’s state. We define bound persistent sets

for each bound function described in Section 2.7 to exploit this distinction and reduce

the state space while preserving bounded coverage. We define bound persistent sets

for each of the following bound functions:

1. Depth bound: bound the number of transitions

2. Context bound: bound the number of context switches

3. Preemption bound: bound the number of preemptive context switches

4. Delta bound: bound the number deltas from a deterministic execution

5. Fair bound: bound the difference in yield operations performed by the ex-

plored thread and each other enabled thread

Each bound function interacts differently with partial-order reduction. The depth

bound has the property that any two deadlock states have the same depth, but it

increments the bound at each step and thus leaves transitions unreachable within

the bound. The context bound permits more partial-order reduction than the depth

bound does. Transitions increment the bound less often in context-bounded search

and thus introduce fewer dependences. The preemption, delta, and fair bounds

permit partial-order reduction to varying degrees. We prove that selective search

with bound persistent sets reaches all deadlock and local states in an acyclic state

space for each bound function.

4.1 Sufficient Sets

A set of transitions is sufficient in a state s if any relevant state reachable via an

enabled transition from s is also reachable from s via at least one of the transitions

52



Algorithm 5 Generic selective search [Godefroid, 1996].
1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
3: T = Sufficient set(final(S))
4: for all t ∈ T do
5: Explore(S.t)
6: end for
7: end

Algorithm 6 Bounded selective search for bound function Bv with bound c.
1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
3: T = Sufficient set(final(S))
4: for all t ∈ T do
5: if Bv(S.t) ≤ c then
6: Explore(S.t)
7: end if
8: end for
9: end

in the sufficient set. The search can thus explore only the transitions in the sufficient

set from s because all relevant states still remain reachable. The set containing all

enabled threads is trivially sufficient in s, but smaller sufficient sets often reduce the

state space further and enable more efficient search.

Selective search [Godefroid, 1996] explores only a sufficient set of transitions

from each state and thus explores a reduced state space that preserves coverage

guarantees. Algorithm 5 performs selective search. Line 3 returns a nonempty

sufficient set of transitions in each state final(S), and Lines 4-6 recursively explore

only the transitions in that sufficient set.

Algorithm 6 performs bounded selective search. Like Algorithm 5, the Suffi-

cient set procedure returns a nonempty sufficient set of enabled transitions in each

state final(S). Algorithm 6 explores each transition, however, only if that transition

does not exceed the bound from final(S). Requirements for this sufficient set vary

with the bound evaluation function and with the desired safety guarantee.

53



Note that enabled transitions that exceed the bound in Algorithm 6 are not

disabled. The bound blocks threads and affects what portions of the state space

are reachable, but it cannot change the behavior of the tested program. The bound

is not part of the program under test; it is an artificial construct imposed by the

thread scheduler. Thus, we do not consider a thread blocked by the bound to be

disabled in the same sense that a thread waiting to acquire a lock is disabled.

A deadlock that constitutes a program error or terminal state is different

from a deadlock that is artificially imposed by the bound. The former concept is

useful to the tester whereas the latter concept most likely is not. Thus, a thread

that exceeds the bound is not disabled, and we account for dependences it introduces

differently than we account for dependences in the program under test.

The search explores co-enabled dependent transitions in the program under

test in both orders to guarantee coverage. The search need not explore dependences

introduced by the bound in both orders, however. Provided that the search reaches

each reachable state required by the safety guarantee, the search is sufficient. Thus,

we conservatively add backtrack points only when the taken transitions leave states

unreachable due to the bound. Dynamic search makes this information more accu-

rate and more easily accessible than it would be with static partial-order reduction.

We identify constraints on a sufficient set such that Algorithm 6 guarantees

absence of deadlocks and absence of local assertion failures for acyclic state spaces.

We use AG(Bv,c) to refer to a generic global state space that may or may not be

bounded – unbounded search is equivalent to bounded search with a nonnegative

bound and a bound function that always returns zero.

Definition 4.1. Deadlock sufficient sets.

A nonempty set T ⊆ T of transitions enabled in a state s in AG(Bv,c) is deadlock

sufficient in s if and only if for all deadlock states d reachable from s via a nonempty

sequence ω of transitions in AG(Bv,c), there exists a sequence ω′ of transitions from

54



s in AG(Bv,c) such that ω′ ∈ [ω], and ω′1 ∈ T .

Let AR(Bv,c) be the reduced state space that Algorithm 6 explores if Line 3 returns

a nonempty deadlock sufficient set in each state. We prove that all deadlock states

reachable in AG(Bv,c) are also reachable in AR(Bv,c). This theorem and its proof

are similar to one that proves that persistent sets provide deadlock state reachabil-

ity [Godefroid, 1996]. We generalize this concept and apply it to bounded search.

Theorem 2. Let s be a state in AR(Bv,c), and let d be a deadlock state reachable

from s in AG(Bv,c) by a sequence ω of transitions. Then, d is also reachable from s

in AR(Bv,c).

Proof. The proof is by induction on the length of ω.

Case 2.1. Base Case.

For len(ω) = 0 the result is immediate.

Case 2.2. Inductive case.

Assume that the theorem holds for all sequences of transitions of length n > 0, and

show that it holds for sequences ω of length n+ 1.

Assume that d is reachable from s by a sequence ω of transitions of length

n + 1 in AG(Bv,c). Let T be the nonempty deadlock sufficient set selected in s by

Algorithm 6, i.e., the set of transitions explored from s in AR(Bv,c). By Definition 4.1

of deadlock sufficient sets, there exists a sequence ω′ of transitions from s in AG(Bv,c)

such that ω′ ∈ [ω] and ω′1 ∈ T . By Theorem 1, ω′ also leads to d. Because ω′1 ∈ T , ω′1

is explored from s and the state final(S.ω′1) is reachable in AR(Bv,c). From final(S.ω′1),

d is reachable via a path of length n in AG(Bv,c). Thus, by the inductive hypothesis,

d is also reachable from s in AR(Bv,c).

Thus, Algorithm 6 explores all deadlock states reachable in the bounded state space

55



if it explores a nonempty deadlock sufficient set in each state.

To guarantee that a program will not violate any local assertions with the

given inputs, the search must additionally provide local state reachability. Local

state reachability places greater constraints on bounded search than deadlock state

reachability does. When the search requires only deadlock state reachability it must

ensure that any two sequences of transitions that lead to the same deadlock state

have the same bounded value. Thus, if two sequences of transitions lead to the same

deadlock state, the search may explore either sequence of transitions.

In contrast, to guarantee local state reachability the search must ensure that

any two sequences of transitions that lead to the same local state have the same

bounded value. Two paths to the same local state may not contain the same transi-

tions or the same number of transitions. Thus, simple bounds like the depth bound

hinder local-state reachability. We define local sufficient sets to ensure that the

search reaches all local states reachable within the bound in an acyclic state space.

Definition 4.2. Pref([ω]) [Godefroid, 1996].

Pref([ω]) returns the set containing all prefixes of all sequences in the Mazurkiewicz

trace defined by ω.

Definition 4.3. Local sufficient.

A nonempty set T ⊆ T of transitions enabled in a state s in AG(Bv,c) is local sufficient

in s if and only if for all sequences ω of transitions from s in AG(Bv,c), there exists

a sequence ω′ of transitions from s in AG(Bv,c) such that ω ∈ Pref([ω′]) and ω′1 ∈ T .

Let AR(Bv,c) be the reduced state space that Algorithm 6 explores if Line 3 returns

a nonempty local sufficient set in each state.

Theorem 3. Let s be a state in AR(Bv,c), and let l be a local state reachable from

s in AG(Bv,c) by a sequence ω of transitions. Then, l is also reachable from s in

AR(Bv,c).

56



Proof. The proof is by induction on the length of the longest sequence ω of transi-

tions from s that leads to l in AG(Bv,c).

Case 3.1. Base Case.

For len(ω) = 0 the result is immediate.

Case 3.2. Inductive case.

Let l be a local state such that the longest sequence of transitions ω from s to l has

length n+ 1. Let l = local(final(S.ω), u) for some thread u. Let T be the nonempty

local sufficient set selected in s by Algorithm 6, i.e., the set of transitions explored

from s in AR(Bv,c).

By Definition 4.3 of local sufficient sets, there exists a sequence ω′ of transi-

tions from s in AG(Bv,c) such that ω′1 ∈ T and ω ∈ Pref([ω′]). Thus, by Definition 4.2

of the prefix function, there exists a sequence β of transitions from final(S.ω) such

that ω.β ∈ [ω′]. Assume that none of the transitions in ω are by u. Then, by

definition of local states,

local(final(S.ω), u) = local(final(S), u)

and the result is immediate.

Assume that a transition in ω is by u. Let i ∈ dom(ω) be the maximum

value of i such that ωi.tid = u. Because ω.β ∈ [ω′], there must exist j ∈ dom(ω′)

such that ω′j = ωi. Let ω′ = α.t.γ such that t = ω′j . Because ω.β ∈ [ω′],

local(final(S.ω), u) = local(final(S.α.t), u)

Thus, ω′ leads to l. Because ω′1 is in T , it is explored from s and the state final(S.ω′1)

is reachable in AR(Bv,c). Because ω is the longest sequence of transitions that leads

57



to l in AG(Bv,c), len(S.α.t) ≤ len(ω). Thus, from final(S.ω′1), l is reachable via a

sequence of transitions of length n. By the inductive hypothesis, l is also reachable

from s in AR(Bv,c).

Thus, if Algorithm 6 returns a local sufficient set of transitions in each state at

Line 3, then Algorithm 6 explores all local states reachable within the bound. Next,

we show that any local sufficient set in a state s is also deadlock sufficient in s.

Theorem 4. If T is a nonempty local sufficient set in a state s in AR(Bv,c), then T

is deadlock sufficient in s.

Proof. Let s be a state in AR(Bv,c) and let d be a deadlock state reachable from

s in AG(Bv,c) via a nonempty sequence ω of transitions. By Definition 4.3 of local

sufficient sets, there exists a sequence ω′ from s in AG(Bv,c) such that ω ∈ Pref([ω′])

and ω′1 ∈ T . Because d is a deadlock state there can be no transitions enabled after

ω, and thus ω ∈ Pref([ω′]) implies ω ∈ [ω′]. Thus, by Definition 2.2 of a trace,

ω′ ∈ [ω] and T is deadlock sufficient in s.

Thus, any local sufficient set in a state s is also deadlock sufficient in s, and any al-

gorithm that provides local state reachability within a bound also provides deadlock

state reachability within that bound.

We derive Definition 4.3 of local sufficient sets from Godefroid’s definition

of a trace automaton [Godefroid, 1990]. A trace automaton provides local state

reachability from the initial state, s0. We first consider systems with a more stringent

requirement – local state reachability from every visited state. In Chapter 5, we ease

this requirement when we introduce sleep sets. For brevity we do not always specify

that the state space is acyclic, but we always assume that it is unless we explicitly

state otherwise. Similarly, we always assume that the state space is finite.

58



Next, we show that a nonempty persistent set in a state s is local sufficient

in s. Let AG be the global state space for a system. We derive this theorem and its

proof from the correctness proof for persistent sets [Godefroid, 1996], but we include

them here to clarify how they fit into this modified framework.

Theorem 5. A nonempty persistent set T in a state s is local sufficient in s.

Proof. Let l be a local state reachable from s in AG via a nonempty sequence ω

of transitions. Assume that ∀i ∈ dom(ω) : ωi 6∈ T . Let t be any transition in T .

By Definition 2.5 of persistent sets, t is independent with ω, t ↔ ω. Consider the

sequence ω′ = t.ω. Because t ↔ ω, by Definition 2.2 of a trace ω.t ∈ [ω′]. Thus,

ω ∈ Pref([ω′]), and T is local sufficient in s.

Assume that ω contains a transition t ∈ T . Let ω = α.t.γ such that ∀i ∈

dom(α) : αi 6∈ T . By Definition 2.5 of persistent sets, t↔ α. Consider the sequence

ω′ = t.α.γ, i.e., ω with t moved to the first position. Because t↔ α, by Definition 2.2

of a trace ω′ ∈ [ω]. Thus, ω ∈ Pref([ω′]), and T is local sufficient in s.

Thus, persistent sets are local sufficient and by Theorem 4, persistent sets are dead-

lock sufficient. Persistent sets can thus verify the absence of deadlocks and local as-

sertion failures in an acyclic state space. Persistent sets severely limit partial-order

reduction in bounded search, however, because the bound introduces dependences

between otherwise independent transitions. In the next section, we modify persis-

tent sets to accommodate bounded search while preserving partial-order reduction.

4.2 Bound Sufficient Sets

We introduce bound sufficient sets to reduce the bounded state space and guarantee

bounded coverage. While persistent sets are effective for unbounded search, they

inhibit partial-order reduction in bounded search because the bound introduces

59



dependences between otherwise independent transitions, as shown in Section 3.1.

Bound sufficient sets compensate for these dependences to guarantee bounded cov-

erage while preserving partial-order reduction.

We define sufficient sets for depth, context, preemption, delta, and fair-

bounded search, introduced in Section 2.7, and prove that these sets are sufficient.

Note that the criteria we propose for each bound function are sufficient to provide

local or deadlock state reachability within the bound, but these criteria may be op-

timized to further reduce the state space. Chapter 5 optimizes these sufficient sets

to permit additional partial-order reduction and preserve bounded coverage. First,

we describe two properties of bound functions that enable partial-order reduction.

4.2.1 Properties of Bound Functions

We identify two properties of bound functions that enable bounded partial-order

reduction. Unlike Definition 2.6 of monotonicity, bounded search does not require

these properties for correctness. These properties do affect the degree to which

partial-order methods may reduce the state space, however. The first property

enables deadlock state reachability, and the second property enables local state

reachability. We define each property for a generic bound function, Bv.

Definition 4.4. Stable bound functions.

Bound function Bv is stable if and only if for all sequences ω and ω′ in AG(Bv,c)

ω ∈ [ω′] =⇒ Bv(ω) = Bv(ω′)

Intuitively, a stable bound function requires that sequences of transitions that lead

to the same global state have the same cost. This property ensures that the bound

does not interfere with deadlock state reachability, as shown in Figure 4.1. This

property enables partial-order reduction because it preserves the commutativity of

60



s
ω'

d

ω

+n +n

TransitionState Sequence of transitions

Stability

S

Bv(S.ω) = Bv(S.ω')

Figure 4.1: Stable bound functions ensure that the bound does not interfere with
deadlock state reachability.

independent transitions with respect to the bound. Partial-order reduction leverages

this commutativity to reduce the state space.

When the bound function is not stable, two sequences of transitions that

lead to the same deadlock state may have different costs. If a portion of the state

space is unreachable within the bound via the path that the search explores first,

then the search must also explore the other path. Although additional states may

be reachable via the other path, many of the states reachable via that path will be

redundant, and this redundancy sacrifices partial-order reduction.

The search can prune the state space most effectively if it explores the cheap-

est sequence of transitions to each state first. Bounded partial-order reduction guides

the search toward this cheapest path to limit the overhead of exploring alternative

paths. We construct deadlock sufficient sets to guide the search toward the cheap-

est path to each state first, and to ensure that the search explores alternative paths

when necessary. First, we define a second property of bound functions that enables

bounded partial-order reduction.

Definition 4.5. Extensible bound functions.

Bound function Bv is extensible if and only if for all sequences of transitions S in

61



t       α

s

l

t

TransitionState Sequence of transitions

Extensibility

Bv(S.t.α) = max(Bv(S.t), Bv(S.α))

S

α
l

α

Figure 4.2: Extensible bound functions ensure that the bound does not interfere
with local state reachability.

AG(Bv,c), for all transitions t such that t.tid ∈ enabled(final(S)) and for all sequences

of transitions α from final(S) such that t↔ α,

Bv(S.t.α) = max(Bv(S.t),Bv(S.α))

Extensible bound functions enable local state reachability, as shown in Figure 4.2.

If the bound is not extensible, then exploring independent transitions may

make local states that were previously reachable within the bound unreachable.

Thus, to ensure local state reachability within the bound, the search must explore

otherwise independent transitions. These independent transitions sacrifice partial-

order reduction because they lead to many redundant states.

One trivial bound is both stable and extensible – the bound function that

always returns zero. This bound function is equivalent to unbounded search and

permits full partial-order reduction. In Chapter 7, we introduce other stable, ex-

tensible bound functions. Bounds from prior work are not extensible, and many

are not stable – they introduce artificial dependences among otherwise independent

transitions. We define deadlock sufficient and local sufficient sets for different bound

functions to compensate for these bound dependences.

62



4.2.2 Depth-Bounded Search

Depth-bounded search, introduced in Section 2.7.1, limits the depth – the number

of transitions – in each execution. The depth bound is stable but not extensible.

Because the depth bound is stable, persistent sets are deadlock sufficient in depth-

bounded search without accounting for the bound. We define depth-bound persistent

sets similarly to persistent sets (Definition 2.5), except that depth-bound persistent

sets require independence only from sequences reachable within the bound.

Definition 4.6. Depth-bound persistent sets.

A set T ⊆ T of transitions enabled in a state s = final(S) is depth-bound persistent

in s if and only if for all nonempty sequences α of transitions from s in AG(Df,c) such

that ∀i ∈ dom(α), αi 6∈ T and for all t ∈ T , t↔ last(α).

Let AR(Df,c) be the reduced state space explored by Algorithm 6 with bound function

Df and bound c. Assume that Line 3 returns a depth-bound persistent set T in each

state. We prove that T is deadlock sufficient.

Theorem 6. If T is a nonempty depth-bound persistent set in a state s in AR(Df,c),

then T is deadlock sufficient in s.

Proof. Let s be a state in AR(Df,c) and let d be a deadlock state reachable from s

in AG(Df,c) via a sequence ω of transitions. Assume that ∀i ∈ dom(ω) : ωi 6∈ T .

Then, by Definition 4.6 of depth-bound persistent sets, ∀t ∈ T : t ↔ ω. Thus, by

Definition 2.3 of valid dependence relations, all transitions in T remain enabled in

d. Thus, d is not a deadlock state and we have a contradiction.

Assume that at least one transition in ω is in T . Let ω = α.t.γ such that

∀i ∈ dom(α) : αi 6∈ T and t ∈ T . Consider the sequence ω′ = t.α.γ, i.e., ω with t

moved to the first position. By Definition 4.6 of depth-bound persistent sets, t↔ α.

Thus, by Definition 2.2 of a trace, ω′ ∈ [ω], and by Theorem 1, ω′ also leads to d.

By Definition 2.7 of the depth bound, Df(S.t.α.γ) = Df(S.α.t.γ) ≤ c, and T is thus

63



deadlock sufficient in s.

Thus, if T is a nonempty depth-bound persistent set in a state s in AR(Df,c), then

T is deadlock sufficient in s. In contrast, T may not be local sufficient in s because

the depth bound is not extensible. All transitions increment the bound and may

therefore leave local states unreachable within the bound. Thus, the search sacrifices

all partial-order reduction to guarantee local state reachability. We next define

sufficient sets for context-bounded search.

4.2.3 Context-Bounded Search

Context-bounded search, introduced in Section 2.7.2, limits the number of context

switches in each execution [Musuvathi and Qadeer, 2007a]. The context bound is

neither stable nor extensible. We show how to compensate for dependences that the

context bound introduces and provide both deadlock-state reachability and local-

state reachability. Deadlock-state reachability permits more partial-order reduction

than local-state reachability permits for context-bounded search. Unlike depth-

bounded search, however, context-bounded search provides local-state reachability

without sacrificing all partial-order reduction.

By guiding the search to each state via the cheapest path, context-bounded

search can prune portions of the state space that leave no additional states reachable.

We show that exploring the executing thread first in each state, if it is enabled in

that state, is effective for reaching new states via the cheapest path first. We exploit

this property of the context bound to provide limited partial-order reduction for

context-bounded search.

To provide deadlock state reachability for context-bounded search, we intro-

duce deadlock sufficient context-bound persistent sets. Note that deadlock sufficient

context-bound persistent sets do not provide local state reachability. The context

64



bound is not stable because different paths that lead to the same global state may

contain different numbers of context switches. To alleviate this problem, the search

can sometimes guarantee that it has reached a state via the cheapest path to that

state. To reach states via the cheapest path first, the search explores the transition

that does not require a context switch first in each state, if possible.

Intuitively, the following proofs treat sequences of transitions by the same

thread that do not contain any context switches as a unit. The search can reduce the

state space when all of those transitions are independent with reachable transitions

not in the deadlock sufficient context-bound persistent set. Otherwise, the search

must insert conservative backtrack points because a cheaper path may exist, and

new deadlock states may be reachable within the bound via that path.

Definition 4.7. ext(s, t).

Given a state s = final(S) and a transition t ∈ enabled(s), ext(s, t) returns the

unique sequence of transitions β from s such that

1. ∀i ∈ dom(β) : βi.tid = t.tid

2. t.tid 6∈ enabled(final(S.β))

Intuitively, ext(s, t) returns the sequence of transitions that results if t.tid executes

from s until it blocks.

Definition 4.8. Deadlock sufficient context-bound persistent sets.

A set T ⊆ T of transitions enabled in a state s = final(S) is deadlock sufficient

context-bound persistent in s if and only if for all nonempty sequences α of transitions

from s in AG(Cs,c) such that ∀i ∈ dom(α), αi 6∈ T and for all t ∈ T ,

1. Cs(S.t) ≤ Cs(S.α1)

2. if Cs(S.t) < Cs(S.α1), then t↔ last(α)

3. if Cs(S.t) = Cs(S.α1), then ext(s, t)↔ last(α)

65



Note that Requirement 2 would also be correct if it read “Cs(S.t) ≤ Cs(S.α1)”,

because Requirement 3 implies the equal case. We chose this definition because the

two definitions are equivalent, but this one simplifies the proofs.

Let AR(Cs,c) be the reduced state space explored by Algorithm 6 with bound

function Cs and bound c. Assume that in each state, Line 3 of Algorithm 6 returns

a nonempty deadlock sufficient context-bound persistent set, T . We prove a lemma

to manage the bound, then show that T is deadlock sufficient.

Lemma 7. Let s = final(S) be a state in AR(Cs,c) and let ω = α.β.γ be a sequence

of transitions from s in AG(Cs,c) such that α and β are nonempty and

1. Cs(S.β1) ≤ Cs(S.α1)

2. β ↔ α

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Cs(S.β1) = Cs(S.α1) and γ is nonempty, then γ1.tid 6= β1.tid

Then, β.α.γ is a sequence of transitions from s in AG(Cs,c).

Proof. By Assumption 2, β.α.γ is a sequence of transitions from s in AG. For each

context switch in S.β.α.γ, from left to right, show that there exists a unique context

switch in S.α.β.γ.

Assume that β1 requires a context switch from final(S). By Assumption 1,

α1 also requires a context switch from final(S). By Assumption 3, no transition in

β after β1 requires a context switch. Assume that α1 requires a context switch from

final(S.β). By Assumption 2, last(α).tid 6= β1.tid, and thus β1 requires a context

switch from final(S.α). Assume that a transition αi, 2 ≤ i ≤ len(α), requires a

context switch in S.β.α.γ. By Definition 2.8 of the context bound, αi also requires

a context switch in S.α.β.γ.

66



Assume that γ is nonempty and that γ1 requires a context switch from

final(S.β.α). If Cs(S.β1) < Cs(S.α1), then α1 requires a context switch from final(S)

and β1 does not, so this context switch is unique. Otherwise, by Assumption 1,

Cs(S.β1) = Cs(S.α1), and by Assumption 4, γ1.tid 6= last(β).tid. Thus, γ1 requires

a context switch from final(S.α.β). Assume that a transition γi, 2 ≤ i ≤ len(γ),

requires a context switch in S.β.α.γ. By Definition 2.8 of the context bound, γi also

requires a context switch in S.α.β.γ. Thus, for each context switch in S.β.α.γ there

exists a unique context switch in S.α.β.γ and

Cs(S.β.α.γ) ≤ Cs(S.α.β.γ) ≤ c

Thus, β.α.γ is a sequence of transitions from s in AG(Cs,c).

Theorem 8. If T is a nonempty deadlock sufficient context-bound persistent set in

a state s in AR(Cs,c), then T is deadlock sufficient in s.

Proof. Let s be a state in AR(Cs,c) and let d be a deadlock state reachable from s in

AG(Cs,c) via a nonempty sequence ω of transitions. Assume that ∀i ∈ dom(ω) : ωi 6∈

T . Then, by Requirements 2 and 3 of Definition 4.8 of deadlock sufficient context-

bound persistent sets, ∀t ∈ T : t ↔ ω. Thus, by Definition 2.3 of valid dependence

relations, all transitions in T remain enabled in d. Thus, d is not a deadlock state

and we have a contradiction. Therefore, at least one transition in ω is in T .

Let ω = α.β.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. β1 ∈ T

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Cs(S.β1) < Cs(S.α1), then len(β) = 1

67



5. if Cs(S.β1) = Cs(S.α1) and γ is nonempty, then γ1.tid 6= t.tid

Assume that α is empty. Then, T is deadlock sufficient in s because ω1 ∈ T and d is

reachable via ω. Assume that α is nonempty. Consider the sequence ω′ = β.α.γ, i.e.,

ω with β moved to the beginning. By Definition 4.8 of deadlock sufficient context-

bound persistent sets, Cs(S.β1) ≤ Cs(S.α1) and β ↔ α. Thus, by Definition 2.2 of a

trace, ω′ ∈ [ω] and by Theorem 1, ω′ also leads to d. By Lemma 7, ω′ is a sequence

of transitions from s in AG(Cs,c), and T is deadlock sufficient in s.

By Theorems 2 and 8, Algorithm 6 reaches all deadlock states reachable in AG(Cs,c)

if it explores a nonempty deadlock sufficient context-bound persistent set in each

state. The search may not reach all local states in AG(Cs,c), however. The context

switch bound is not extensible, and independent transitions may therefore leave

local states unreachable within the bound. In particular, if the search explores a

transition that requires a context switch from a state s, then the search must explore

all enabled threads from s to preserve local state reachability.

We introduce context-bound persistent sets to provide local state reachability

for context-bounded search. Context-bound persistent sets prune the state space

only in states where the executing thread is a valid single-transition persistent set.

In all other states, the search conservatively explores all enabled threads to preserve

local state reachability. With this requirement Algorithm 6 provides local state

reachability, but reduces the state space less aggressively than it does with deadlock

sufficient context-bound persistent sets.

Definition 4.9. Context-bound persistent sets.

A set T ⊆ T of transitions enabled in a state s = final(S) is context-bound persistent

in s if and only if for all nonempty sequences α of transitions from s in AG(Cs,c) such

that ∀i ∈ dom(α), αi 6∈ T and for all t ∈ T ,

68



1. Cs(S.t) < Cs(S.α1)

2. t↔ last(α)

Let AR(Cs,c) be the reduced state space that Algorithm 6 explores if Line 3 returns

a context-bound persistent set T in each state. We prove a lemma to manage the

bound, then prove that T is local sufficient.

Lemma 9. Let α be a nonempty sequence of transitions from s = final(S) in AG(Cs,c)

and let t be a transition enabled in s such that

1. Cs(S.t) < Cs(S.α1)

2. t↔ α

Then, t.α is a sequence of transitions from s in AG(Cs,c).

Proof. By Assumption 2, t.α is a sequence of transitions from s in AG. For each

context switch in S.t.α, from left to right, show that there exists a unique context

switch in S.α.

By Assumption 1, t does not require a context switch from final(S). Assume

that α1 requires a context switch from final(S.t). By Assumption 1, α1 requires a

context switch from final(S). Assume that a transition αi, 2 ≤ i ≤ len(α), requires

a context switch in S.t.α. By Definition 2.8 of the context switch bound, αi also

requires a context switch in S.α. Thus, for each context switch in S.t.α there exists

a unique context switch in S.α and

Cs(S.t.α) ≤ Cs(S.α) ≤ c

Thus, t.α is a sequence of transitions from s in AG(Cs,c).

69



Theorem 10. If T is a nonempty context-bound persistent set in a state s in

AR(Cs,c), then T is local sufficient in s.

Proof. Let s be a state in AR(Cs,c) and let l be a local state reachable from s in

AG(Cs,c) via a sequence ω of transitions. Assume that ∀i ∈ dom(ω) : ωi 6∈ T . Let

t be any transition in T . Consider the sequence ω′ = t.ω. By Definition 4.9 of

context-bound persistent sets, Cs(S.t) < Cs(S.ω1) and t ↔ ω. Thus, by Lemma 9,

ω′ is a sequence of transitions from s in AG(Cs,c), and by Definition 2.2 of a trace,

ω.t ∈ [ω′]. By Definition 4.2 of the prefix function, ω ∈ Pref([ω′]). Thus, T is local

sufficient in s.

Assume that a transition in ω is in T . Let ω = α.t.γ such that ∀i ∈ dom(α) :

αi 6∈ T and t ∈ T . Consider the sequence ω′ = t.α.γ, i.e., ω with t moved to the first

position. By Definition 4.9 of context-bound persistent sets, Cs(S.t) < Cs(S.α1)

and t ↔ α. Thus, by Lemma 7, ω′ is a sequence of transitions from s in AG(Cs,c),

and by Definition 2.2 of a trace, ω′ ∈ [ω]. By Definition 4.2 of the prefix function,

ω ∈ Pref([ω′]). Thus, T is local sufficient in s.

By Theorems 10 and 3, if Algorithm 6 explores a nonempty context-bound persistent

set in each state, then it explores all local states reachable in AG(Cs,c). By Theorem 4,

Algorithm 6 also explores all deadlock states reachable in AG(Cs,c). To provide local

state reachability, however, the search sacrifices partial-order reduction. In the next

section, we show that preemption-bounded search can provide local and deadlock

state reachability within the bound while reducing the state space more aggressively

than context-bounded search can.

4.2.4 Preemption-Bounded Search

Preemption-bounded search, introduced in Section 2.7.3, limits the number of pre-

emptive context switches in each execution [Musuvathi and Qadeer, 2008]. The

70



preemption bound is neither stable nor extensible. Like context-bounded search,

exploring the cheapest transition first in each state is a good heuristic for reaching

new states as cheaply as possible. If the set containing only the executing thread is

persistent in a state s, then the search may explore only the executing thread from

s. The executing thread can reach its subsequent states at least as cheaply as any

other thread enabled in s.

If the executing thread is blocked in a state s or if the search incurs a pre-

emption from s, then the search must be conservative in s. The preemption bound

is neither stable nor extensible. If the executing thread executes until it blocks,

however, then the bound does not increase and any transition may execute without

incurring a preemption. Thus, we treat sequences of transitions by the same thread,

until that thread blocks, as a unit so that the bound behaves as though it were

extensible. We introduce preemption-bound persistent sets to exploit this property

of the preemption bound and permit limited partial-order reduction with local state

reachability within the bound.

The preemption bound is unstable in one additional way – a transition’s cost

varies with the enabledness of the thread that performed the previous transition.

This property introduces dependences between otherwise independent transitions.

To compensate for these dependences, transitions in the preemption-bound persis-

tent set must be independent with the next transition by each thread that is not

persistent. This requirement ensures that transitions in the preemption-bound per-

sistent set cannot affect the cost of sequences of transitions that are not persistent,

leaving their local states unreachable.

Definition 4.10. Preemption-bound persistent sets.

A set T ⊆ T of transitions enabled in a state s = final(S) is preemption-bound

persistent in s if and only if for all nonempty sequences α of transitions from s in

AG(Pb,c) such that ∀i ∈ dom(α), αi 6∈ T and for all t ∈ T ,

71



1. Pb(S.t) ≤ Pb(S.α1)

2. if Pb(S.t) < Pb(S.α1), then t↔ last(α) and t↔ next(final(S.α), last(α).tid)

3. if Pb(S.t) = Pb(S.α1), then ext(s, t)↔ last(α) and

ext(s, t)↔ next(final(S.α), last(α).tid)

Let AR(Pb,c) be the reduced state space that Algorithm 6 explores with bound func-

tion Pb and bound c. Assume that in each state, Algorithm 6 returns a preemption-

bound persistent set. We prove two lemmas to manage the bound, then show that

a nonempty preemption-bound persistent set is local sufficient.

Lemma 11. Let α and β be nonempty sequences of transitions from s = final(S)

in AG(Pb,c) such that

1. β ↔ α

2. Pb(S.β1) ≤ Pb(S.α1)

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. β ↔ next(final(S.α1 . . . αi), αi.tid), 1 ≤ i ≤ len(α)− 1

5. if Pb(S.β1) = Pb(S.α1), then β1.tid 6∈ enabled(final(S.β))

Then, β.α is a sequence of transitions from s in AG(Pb,c).

Proof. By Assumption 1, β.α is a sequence of transitions from s in AG. For each

preemption in S.β.α, from left to right, show that there exists a unique preemption

in S.α. Assume that β1 requires a preemption from final(S). By Assumption 2, α1

also requires a preemption from final(S). By Assumption 3, no transition in β after

β1 requires a preemption.

Assume that α1 requires a preemption from final(S.β). Then,

β1.tid ∈ enabled(final(S.β))

72



and thus by Assumptions 2 and 5, Pb(S.β1) < Pb(S.α1). Thus, α1 requires a

preemption from final(S) and β1 does not, so this preemption is unique. Assume that

a transition αi, 2 ≤ i ≤ len(α), requires a preemption in S.β.α. By Assumption 4,

αi also requires a preemption in S.α. Thus, for each preemption in S.β.α there

exists a unique preemption in S.α and

Pb(S.β.α) ≤ Pb(S.α) ≤ c

Thus, β.α is a sequence of transitions from s in AG(Pb,c).

Lemma 12. Let T be a nonempty preemption-bound persistent set in a state s =

final(S) in AR(Pb,c) and let α.β.γ be a sequence of transitions from s in AG(Pb,c)

such that α and β are nonempty and

1. ∀i ∈ dom(α) : αi 6∈ T

2. β1 ∈ T

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is empty, then β1.tid 6∈ enabled(final(S.β))

6. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then γ1.tid 6= β1.tid

Then, β.α.γ is a sequence of transitions from s in AG(Pb,c).

Proof. By Assumptions 1-4 and by Requirements 2 and 3 of Definition 4.10 of

preemption-bound persistent sets, β ↔ α and

∀i ∈ dom(α) : β ↔ next(final(S.α1 . . . αi), αi.tid) (4.1)

73



Thus, β.α.γ is a sequence of transitions from s in AG. For each preemption in

S.β.α.γ, from left to right, show that there exists a unique preemption in S.α.β.γ.

Assume that β1 requires a preemption from final(S). Then, by Requirement 1 of

Definition 4.10 of preemption-bound persistent sets, α1 also requires a preemption

from final(S). By Assumption 3, no transition in β after β1 requires a preemption.

Assume that α1 requires a preemption from final(S.β). If Pb(S.β1) < Pb(S.α1),

then α1 requires a preemption from final(S) and β1 does not, so this preemption is

unique. Otherwise, by Requirement 1 of Definition 4.10 of preemption-bound persis-

tent sets, Pb(S.β1) = Pb(S.α1). Because α1 requires a preemption from final(S.β),

β1.tid ∈ enabled(final(S.β)) (4.2)

By Assumption 5, γ is nonempty, and by Assumption 6 γ1.tid 6= β1.tid. By Equa-

tion 4.2 and Requirement 3 of Definition 4.10 of preemption-bound persistent sets,

β1.tid ∈ enabled(final(S.α.β))

Thus, γ1 requires a preemption from final(S.α.β). Assume that a transition αi,

2 ≤ i ≤ len(α), requires a preemption in S.β.α.γ. By Equation 4.1, αi also requires

a preemption in S.α.β.γ.

Assume that γ1 requires a preemption from final(S.β.α). Then,

last(α).tid ∈ enabled(final(S.β.α))

By Equation 4.1,

last(α).tid ∈ enabled(final(S.α))

Because β ↔ α, β1.tid 6= last(α).tid. Thus, β1 requires a preemption from final(S.α).

Assume that a transition γi, 2 ≤ i ≤ len(γ), requires a preemption in S.β.α.γ. Be-

74



cause β ↔ α, final(S.α.β.γ1) = final(S.β.α.γ1). Thus, by Definition 2.9 of the

preemption bound, γi also requires a preemption in S.α.β.γ. Thus, for each pre-

emption in S.β.α.γ there exists a unique preemption in S.α.β.γ and

Pb(S.β.α.γ) ≤ Pb(S.α.β.γ) ≤ c

Thus, β.α.γ is a sequence of transitions from s in AG(Pb,c).

Theorem 13. If T is a nonempty preemption-bound persistent set in a state s in

AR(Pb,c), then T is local sufficient in s.

Proof. Let s be a state in AR(Pb,c) and let l be a local state reachable from s in

AG(Pb,c) via a nonempty sequence ω of transitions.

Case 13.1. ∀i ∈ dom(ω) : ωi 6∈ T .

Let t be any transition in T . By Requirement 1 of Definition 4.10 of preemption-

bound persistent sets, Pb(S.t) ≤ Pb(S.ω1). Let β = t if Pb(S.t) < Pb(S.ω1), and

let β = ext(s, t) otherwise. Consider the sequence ω′ = β.ω. By Requirements 2

and 3 of Definition 4.10 of preemption-bound persistent sets, β ↔ ω and ∀i ∈

dom(ω) : β ↔ next(final(S.ω1 . . . ωi), ωi.tid). Thus, by Lemma 11 β.ω is a sequence

of transitions from s in AG(Pb,c) and by Definition 2.2 of a trace, ω.β ∈ [ω′]. By

Definition 4.2 of the prefix function, ω ∈ Pref([ω′]). Thus, T is local sufficient in s.

Case 13.2. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.β.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. β1 ∈ T

3. ∀i ∈ dom(β) : βi.tid = β1.tid

75



4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then γ1.tid 6= β1.tid

Assume that α is empty. Then, T is local sufficient in s because ω1 ∈ T and l is

reachable via ω. Assume that α is nonempty. By Requirement 1 of Definition 4.10

of preemption-bound persistent sets, Pb(S.β1) ≤ Pb(S.α1).

Case 13.2a. γ is nonempty, or γ is empty and β1.tid 6∈ enabled(final(S.β)),

or Pb(S.β1) < Pb(S.α1).

Consider the sequence ω′ = β.α.γ, i.e., ω with β moved to the beginning. By

Requirements 2 and 3 of Definition 4.10 of preemption-bound persistent sets, β ↔ α

and ∀i ∈ dom(α) : β ↔ next(final(S.α1 . . . αi), αi.tid). Thus, by Lemma 12 ω′ is a

sequence of transitions from s in AG(Pb,c) and by Definition 2.2 of a trace ω′ ∈ [ω].

By Definition 4.2 of the prefix function ω ∈ Pref([ω′]), so T is local sufficient in s.

Case 13.2b. γ is empty, β1.tid ∈ enabled(final(S.β)), and Pb(S.β1) = Pb(S.α1).

Let β′ = ext(s, β1). Consider the sequence ω′ = β′.α. By Requirement 3 of Defi-

nition 4.10 of preemption-bound persistent sets, β′ ↔ α and ∀i ∈ dom(α) : β′ ↔

next(final(S.α1 . . . αi), αi.tid). Thus, by Lemma 11 β′.ω is a sequence of transitions

from s in AG(Pb,c) and by Definition 2.2 of a trace ω.β′ ∈ [ω′]. By Definition 4.2 of

the prefix function ω ∈ Pref([ω′]), so T is local sufficient in s.

By Theorems 13 and 3, if Algorithm 6 explores a nonempty preemption-bound

persistent set in each state, then it reaches all local states reachable in AG(Pb,c). By

Theorem 4, Algorithm 6 also reaches all deadlock states reachable in AG(Pb,c).

Preemption-bounded search reduces the state space more effectively than

context-bounded search does because preemption-bounded search can more fre-

quently prove that it has reached states via the cheapest possible path. In par-

76



ticular, when all transitions require a context switch in context-bounded search, the

search cannot guarantee that any enabled transition is sufficient to reach all local

states reachable via any other enabled transition. In preemption-bounded search,

however, the search can sometimes guarantee that all local states reachable via one

transition are also reachable via another transition, even if those transitions have the

same cost. In delta-bounded search, two enabled transitions in a state s never have

the same cost in s. In the next section we show how this property of delta-bounded

search affects partial-order reduction.

4.2.5 Delta-Bounded Search

Delta-bounded search, introduced in Section 2.7.4, limits the number of deltas from

an initial execution. The delta bound is neither stable nor extensible. We choose

this bound function because the context and preemption bounds sacrifice partial-

order reduction when enabled transitions have equivalent costs. When the search

explores a transition with equal or greater cost than other transitions, it sacrifices

partial-order reduction because that transition may leave local states unreachable

within the bound. The delta bound has the property that each enabled transition

has a unique cost. We choose the delta bound to test whether this property is useful.

We implement delta-bounded search with a round robin scheduler that stores

fixed priorities for each thread at each step. The scheduler modifies the priorities

only by rotating them – moving the highest priority thread to the lowest priority

thread. If the highest priority thread is disabled, this rotation is free. Otherwise,

each rotation increments the bounded value by one. Each transition’s cost varies

with the number of higher priority enabled threads, so operations that block or en-

able threads introduce dependences among otherwise independent transitions. The

search must compensate for these dependences to maintain local state reachability

within the bound.

77



The delta bound is neither stable nor extensible, but exploring the cheapest

transition first from each state is an effective heuristic for reaching subsequent states

via the cheapest possible path. Because the cost of each transition is unique in each

state, delta-bounded search does not need to compensate for states in which different

transitions have the same cost. If the search must explore a transition other than the

cheapest transition, however, then it must explore all cheaper transitions because

any of them may reach the same local states with lower cost.

Delta-bounded search must additionally account for release operations be-

cause, like preemption-bounded search, the enabledness of other threads affects a

transition’s cost. In particular, release operations may increase the cost of other

transitions by enabling higher priority threads. The search may need to explore such

transitions prior to the release operation because the release operation may leave

states unreachable within the bound. Note that acquire operations may decrease

the cost of other transitions by disabling higher priority threads, but decreasing

the cost of other sequences of transitions does not leave portions of the state space

unreachable. To provide local and deadlock state reachability for delta-bounded

search, we introduce delta-bound persistent sets.

Definition 4.11. Delta-bound persistent sets.

A set T ⊆ T of transitions enabled in a state s = final(S) is delta-bound persistent

in s if and only if for all nonempty sequences α of transitions from s in AG(De,c) such

that ∀i ∈ dom(α) : αi 6∈ T and for all t ∈ T ,

1. De(S.t) < De(S.α1)

2. if t is a release operation, then ∀u ∈ enabled(s) : next(s, u) ∈ T

3. t↔ last(α)

Let AR(De,c) be the reduced state space that Algorithm 6 explores with bound func-

tion De and bound c. Assume that in each state, Line 3 of Algorithm 6 returns a

78



delta-bound persistent set. We prove two lemmas to manage the bound, then show

that a nonempty delta-bound persistent set is local sufficient.

Lemma 14. Let α be a nonempty sequence of transitions from s = final(S) in

AG(De,c) and let t be a transition enabled in s such that

1. De(S.t) < De(S.α1)

2. t is not a release operation

3. t↔ α

Then, t.α is a sequence of transitions from s in AG(De,c).

Proof. Because t ↔ α, t.α is a sequence of transitions from s in AG. Because t is

not a release operation,

∀i ∈ dom(α) : enabled(final(S.t.α1 . . . αi)) ⊆ enabled(final(S.α1 . . . αi))

Thus, by Definition 2.10 of the delta bound, the transitions in α cost no more in

S.t.α than they do in S.α. By Assumption 1, t has higher priority than α1 has in

s. Thus, by Definition 2.10 of the delta bound,

De(S.t.α) ≤ De(S.α) ≤ c

and t.α is a sequence of transitions from s in AG(De,c).

Lemma 15. Let T be a nonempty delta-bound persistent set in a state s = final(S)

in AR(De,c) and let α.t.γ be a sequence of transitions from s in AG(De,c) such that

α is nonempty, ∀i ∈ dom(α) : αi 6∈ T , and t ∈ T . Then, t.α.γ is a sequence of

transitions from s in AG(De,c).

79



Proof. By Requirement 3 of Definition 4.11 of delta-bound persistent sets t ↔ α.

Thus, t.α.γ is a sequence of transitions from s in AG. By Requirements 1 and 2

of Definition 4.11 of delta-bound persistent sets De(S.t) < De(S.α1) and t is not a

release operation, because if t were a release operation then α1 would be in T and

we would have a contradiction. Thus, by Lemma 14,

De(S.t.α) ≤ De(S.α)

To execute γ1 from final(S.t.α), the highest priority thread must rotate from last(α).tid

to γ1.tid. To execute t.γ1 from final(S.α), the highest priority thread must rotate

from last(α).tid to t.tid and then to γ1.tid, which requires at least as many rotations.

Because t is not a release operation, these rotations cannot cost more in S.t.α.γ than

they do in S.α.t.γ. Thus,

De(S.t.α.γ1) ≤ De(S.α.t.γ1)

Assume that a transition γi, 2 ≤ i ≤ len(γ), requires a priority change in S.t.α.γ.

By Definition 2.10 of the delta bound, γi requires a priority change of equal cost in

S.α.t.γ and thus

De(S.t.α.γ) ≤ De(S.α.t.γ) ≤ c

Thus, t.α.γ is a sequence of transitions from s in AG(De,c).

Theorem 16. If T is a nonempty delta-bound persistent set in a state s in AR(De,c),

then T is local sufficient in s.

Proof. Let s be a state in AR(De,c) and let l be a local state reachable from s in

AG(De,c) via a nonempty sequence ω of transitions.

Case 16.1. ∀i ∈ dom(ω) : ωi 6∈ T .

80



Let t be any transition in T . Consider the sequence ω′ = t.ω. By Requirement 1

of Definition 4.11 of delta-bound persistent sets, De(S.t) < De(S.ω1). By Require-

ment 3 of Definition 4.11 of delta-bound persistent sets, t ↔ ω. By Requirement 2

of Definition 4.11 of delta-bound persistent sets, t is not a release operation because

otherwise ω1 ∈ T and we have a contradiction. Thus, by Lemma 14, t.ω is a sequence

of transitions from s in AG(De,c). Because t↔ ω, ω.t ∈ [ω′] and ω ∈ Pref([ω′]). Thus,

T is local sufficient in s.

Case 16.2. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that ∀i ∈ dom(α) : αi 6∈ T and t ∈ T . Assume that α is empty.

Then, T is local sufficient in s because ω1 ∈ T and l is reachable via ω. Assume

that α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with t moved to the

first position. By Requirement 3 of Definition 4.11 of delta-bound persistent sets,

t ↔ α. Thus, ω′ ∈ [ω] and ω ∈ Pref([ω′]). By Lemma 15, t.α.γ is a sequence of

transitions from s in AG(De,c), and T is local sufficient in s.

By Theorems 16 and 3, if Algorithm 6 explores a nonempty delta-bound persistent

set in each state then it reaches all local states reachable in AG(De,c). By Theorem 4,

Algorithm 6 reaches all deadlock states reachable in AG(De,c), as well.

Delta-bounded search sometimes permits more partial-order reduction than

preemption-bounded search permits because in every state the delta bound provides

a unique cheapest transition. Cheaper transitions always reach subsequent states

with a lower bounded value than more expensive transitions that lead to the same

state. If the search must explore higher cost threads, however, then it must explore

all cheaper threads as well, so sometimes delta-bounded search achieves less partial-

order reduction than preemption-bounded search.

We have defined sufficient sets that achieve local-state reachability for depth,

81



context, preemption, and delta-bounded search. These bounds do not provide local

state reachability for cyclic state spaces, however. To prune cycles in a cyclic state

space, we define local sufficient sets for fair-bounded search.

4.2.6 Fair-Bounded Search

Fair-bounded search, introduced in Section 2.7.5, limits the maximum difference

between the number of yield operations performed by each thread. In particular,

fair-bounded search bounds the difference between the taken thread’s yield count

and each other enabled thread’s yield count in each state. The fair bound is neither

stable nor extensible. This bound prunes cycles in cyclic state spaces by pruning

executions in which a thread yields the processor repeatedly. We assume that if a

thread yields the processor repeatedly, then it is not doing work that will change

the program’s behavior in a meaningful way. Thus, the state space reachable after

it performs additional yield operations is not interesting to the tester.

The fair bound is neither stable nor extensible. Like the preemption and

delta bounds, the fair bound is unstable with respect to release operations. A release

operation may enable threads with a lower yield count, and thus increase the cost of

another enabled transition. Yields and operations that block other threads cannot

increase the cost of another transition – they can only decrease it.

To provide local and deadlock state reachability for fair-bounded search,

we introduce fair-bound persistent sets. Fair-bound persistent sets compensate for

the fair bound’s instability by conservatively scheduling all threads prior to release

operations. We use the term “release operation” below to refer to any transition

that may enable another thread, including lock release operations, fork operations,

and event set operations.

Definition 4.12. Fair-bound persistent sets.

A set T ⊆ T of transitions enabled in a state s = final(S) is fair-bound persistent

82



in s if and only if for all sequences α of transitions from s in AG(Fb,c) such that

∀i ∈ dom(α) : αi 6∈ T and for all t ∈ T ,

1. Fb(S.t) ≤ c

2. if t is a release operation, then ∀u ∈ enabled(s) : next(s, u) ∈ T

3. t↔ last(α)

While other bounds require that each transition t ∈ T cost less than or equal to

transitions not in T , the fair bound requires only that t be within the bound. The

fair bound (Definition 2.11) tracks the maximum value observed, not the cumulative

value, as other bounds do. Thus, the search need not explore the cheapest transition

from a state s, provided that it explores a transition that is within the bound.

Let AR(Fb,c) be the reduced state space explored by Algorithm 6 with bound

function Fb and bound c. Assume that in each state, Algorithm 6 returns a fair-

bound persistent set. We prove two lemmas to manage the bound, then show that

a nonempty fair-bound persistent set is local sufficient.

Lemma 17. Let α be a nonempty sequence of transitions from s = final(S) in

AG(Fb,c) and let t be a transition enabled in s such that

1. Fb(S.t) ≤ c

2. t is not a release operation

3. t↔ α

Then, t.α is a sequence of transitions from s in AG(Fb,c).

Proof. Because t ↔ α, t.α is a sequence of transitions from s in AG. Because t is

not a release operation,

∀i ∈ dom(α) : enabled(final(S.t.α1 . . . αi)) ⊆ enabled(final(S.α1 . . . αi))

83



Thus, by Definition 2.11 of the fair bound, the transitions in α cost no more in S.t.α

than they do in S.α. By Assumption 1, t is within the bound from s. Thus, by

Definition 2.11 of the fair bound,

Fb(S.t.α) ≤ c

and t.α is a sequence of transitions from s in AG(Fb,c).

Lemma 18. Let T be a nonempty fair-bound persistent set in a state s = final(S)

in AR(Fb,c) and let α.t.γ be a sequence of transitions from s in AG(Fb,c) such that

α is nonempty, ∀i ∈ dom(α) : αi 6∈ T , and t ∈ T . Then, t.α.γ is a sequence of

transitions from s in AG(Fb,c).

Proof. By Requirement 3 of Definition 4.12 of fair-bound persistent sets, t ↔ α.

Thus, t.α.γ is a sequence of transitions from s in AG. By Requirements 1 and 2

of Definition 4.12 of fair-bound persistent sets, Fb(S.t) ≤ c and t is not a release

operation. Thus, by Lemma 17,

Fb(S.t.α) ≤ Fb(S.α)

Assume that γ1 exceeds the bound from final(S.t.α), yet t does not exceed the bound

from final(S.α) and γ1 does not exceed the bound from final(S.α.t). Then, t must be

a release operation that enables a transition t′ such that t′.tid has a lower yield count

than γ1.tid has in final(S.t.α), because otherwise γ1 would also exceed the bound

from final(S.α). Because t is not a release operation, we have a contradiction. Thus,

Fb(S.t.α.γ1) ≤ c

Because t ↔ α, final(S.t.α.γ1) = final(S.α.t.γ1) and thus each transition in γ exe-

84



cutes from exactly the same state in S.t.α.γ as it does in S.α.t.γ. Thus, by Defini-

tion 2.11 of the fair bound,

Fb(S.t.α.γ) ≤ c

Thus, t.α.γ is a sequence of transitions from s in AG(Fb,c).

Theorem 19. If T is a nonempty fair-bound persistent set in a state s in AR(Fb,c),

then T is local sufficient in s.

Proof. Let s be a state in AR(Fb,c) and let l be a local state reachable from s in

AG(Fb,c) via a nonempty sequence ω of transitions.

Case 19.1. ∀i ∈ dom(ω) : ωi 6∈ T .

Let t be any transition in T . Consider the sequence ω′ = t.ω. By Requirement 3

of Definition 4.12 of fair-bound persistent sets, t ↔ ω. Thus, ω.t ∈ [ω′], and

ω ∈ Pref([ω′]). By Requirements 1 and 2 of Definition 4.12 of fair-bound persistent

sets, Fb(S.t) ≤ c and t is not a release operation. Thus, by Lemma 17, t.ω is a

sequence of transitions from s in AG(Fb,c) and T is local sufficient in s.

Case 19.2. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that ∀i ∈ dom(α) : αi 6∈ T and t ∈ T . Assume that α is empty.

Then, T is local sufficient in s because ω1 ∈ T and l is reachable via ω.

Assume that α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with

t moved to the first position. By Requirement 3 of Definition 4.12 of fair-bound

persistent sets, t ↔ α. Thus, ω′ ∈ [ω] and ω ∈ Pref([ω′]). By Lemma 18, t.α.γ is a

sequence of transitions from s in AG(Fb,c), and T is local sufficient in s.

By Theorems 19 and 3, if Algorithm 6 explores a nonempty fair-bound persistent

set in each state then it reaches all local states reachable in AG(Fb,c). By Theorem 4,

85



Algorithm 6 reaches all deadlock states reachable in AG(Fb,c), as well.

The fair bound often permits more partial-order reduction than the con-

text, preemption, or delta bounds do because it bounds a maximum, rather than

a cumulative value in each state. Fewer transitions increment the bound, so fewer

transitions leave portions of the state space unreachable within the bound. The fair

bound prunes only cycles in the state space, however. Thus, the fair bound does

not provide a useful incremental guarantee. The fair bound is primarily useful to

prune cycles in cyclic state spaces. In Chapter 6, we combine fair-bounded search

with other bounds to provide incremental coverage guarantees, as well.

4.3 Discussion

We defined two properties of bound functions that enable partial-order reduction.

Stable bound functions permit deadlock-state reachability, and extensible bound

functions permit local state reachability. Most bound functions from prior work are

neither stable nor extensible and thus interact poorly with partial-order reduction.

These bound functions introduce artificial dependences between otherwise indepen-

dent transitions, and the search must sacrifice partial-order reduction to compensate

for these dependences.

We have identified constraints on sufficient sets for depth, context, preemp-

tion, delta, and fair-bounded search that permit limited partial-order reduction.

These sufficient sets are not optimal. More aggressive partial-order reduction might

be possible by more precisely identifying bound dependences. In Chapter 6, we

discuss several ways to reduce the state space further. The primary purpose of this

chapter is to show that partial-order reduction and bounded search can be combined

by identifying dependences that the bound introduces and ensuring that the bound

persistent set for that bound function accounts for these dependences.

In the next chapter, we present an algorithm to dynamically compute bound

86



persistent sets for each bound function at runtime. We present a general algorithm

adapted from prior work [Flanagan and Godefroid, 2005] that must be specialized for

each bound function. We generalize this dynamic partial-order reduction algorithm

to search a bounded state space. Then, we specialize this algorithm for each bound

function, and we prove that these specialized algorithms provide bounded coverage.

87



Chapter 5

Computing Bound Persistent

Sets

In this section we present algorithms that explore a bound persistent set of tran-

sitions in each state. We present a general algorithm that we adapt from prior

work, then specialize that algorithm for each bound function. First, we present

a simplified version of Flanagan and Godefroid’s dynamic partial-order reduction

(DPOR) algorithm [Flanagan and Godefroid, 2005]. We prove that this simplified

algorithm explores a persistent set from each state, and thus explores all local and

deadlock states reachable in an acyclic state space. Then, we introduce bounded

dynamic partial-order reduction (BPOR), a modified version of DPOR that com-

putes a bound persistent set in each state. We specialize BPOR for various bound

functions, and prove safety guarantees for each algorithm.

The modified DPOR algorithm that we present is different from the orig-

inal DPOR algorithm in several ways. First, we omit several optimizations from

the original algorithm and introduce them in Chapter 6 instead. In particular,

the optimizations in Sections 6.1, 6.2, and 6.3 were all included in the original

DPOR algorithm. We present these as optimizations for several reasons. First, our

88



results differentiate their effects on partial-order reduction so we can assess their

importance. Second, the simplified proofs are easier to follow. Finally, we want to

highlight how each optimization interacts with the bound function.

The second significant difference between the simplified algorithm and the

original DPOR algorithm is that this simplified algorithm backtracks the most recent

dependent transition by each thread. The original DPOR algorithm, in contrast,

backtracks the most recent dependent transition among all threads. We include

this change because some of the bounded algorithms require it and it simplifies

the algorithm and the proofs. We also differentiate read operations from write

operations. The original DPOR paper assumed that all accesses to the same variable

conflict, whereas Definition 2.4 assumes that reads of the same variable commute.

5.1 Dynamic Partial-Order Reduction

Algorithm 7 is a simplified version of Flanagan and Godefroid’s dynamic partial-

order reduction (DPOR) algorithm [Flanagan and Godefroid, 2005]. First, we step

through Algorithm 7. Then, we prove that Algorithm 7 computes a persistent set

in each state, and thus explores all reachable local and deadlock states for acyclic

state spaces by Theorem 5 and Theorem 4, respectively.

The procedure Explore in Algorithm 7 recursively explores the state space

from a state s = final(S). Lines 4-10 create backtrack points. For each thread u,

Line 6 computes the most recent transition in S by each thread v that is dependent

with next(s, u). For each such dependence, Line 7 creates a backtrack point to

reverse the order of the dependent transitions in a future execution.

Lines 11-16 recursively explore the state space from s. Line 11 initializes the

backtrack set with an arbitrary thread enabled in s. Line 15 recursively explores the

next transition by each thread in the backtrack set. During this recursive search,

additional threads may be added to the backtrack set in s.

89



Algorithm 7 Dynamic partial-order reduction [Flanagan and Godefroid, 2005].
1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
3: Let s = final(S)

# Add backtracking points for each thread’s next transition.
4: for all u ∈ Tid do
5: for all v ∈ Tid | v 6= u do

# Find most recent dependent transition.
6: if ∃i = max({i ∈ dom(S) | Si 6↔ next(s, u) and Si.tid = v}) then
7: Backtrack(S, i, u)
8: end if
9: end for

10: end for
# Continue the search by exploring successor states.

11: choose one thread u ∈ enabled(s) and add to backtrack(s)
12: Let visited = ∅
13: while ∃u ∈ (enabled(s) ∩ backtrack(s) \ visited) do
14: add u to visited
15: Explore(S.next(s, u))
16: end while
17: end
18: procedure Backtrack(S, i, u) begin
19: if u ∈ enabled(pre(S, i)) then
20: Add u to backtrack(pre(S, i))
21: else
22: backtrack(pre(S, i)) = enabled(pre(S, i))
23: end if
24: end

The procedure Backtrack creates a backtrack point to reverse the order of

the dependent transitions Si and next(final(S), u). If u is enabled in pre(S, i), the

state prior to Si, then Line 20 adds u to the backtrack set in pre(S, i). Otherwise,

Line 22 conservatively adds all enabled threads to the backtrack set in pre(S, i).

To prove that Algorithm 7 computes a persistent set in each state, we in-

troduce a postcondition that Algorithm 7 guarantees before leaving each state s.

Algorithm 7 explores the next transition by each thread in the backtrack set, then

pops the most recent transition off the stack and returns to the previous state. Be-

90



fore returning to the previous state, Algorithm 7 guarantees postcondition PC. This

post-condition is adapted from the postcondition that the original DPOR algorithm

guarantees in each state [Flanagan and Godefroid, 2005].

Definition 5.1. PC for Explore(S) for DPOR.

∀u∀ω : Post(S.ω, len(S), u)

Definition 5.2. Post(S, k, u) for DPOR.

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i ≤

k then

if u ∈ enabled(pre(S, i)) then u ∈ backtrack(pre(S, i))

else backtrack(pre(S, i)) = enabled(pre(S, i))

Postcondition PC guarantees that for each sequence ω of transitions from s in AG

and for each thread u, condition Post holds. Intuitively, Post(S.ω, len(S), u) requires

backtrack points for the dependence between next(final(S.ω), u) and its most recent

dependent transition in S by each thread v, if such a dependence exists.

Post(S, k, u) identifies the most recent transition in S by each thread v that

is dependent with next(final(S), u), if any. Note that PC sends the argument S.ω

to Post, but Post refers to it internally as S. If u is enabled in pre(S, i), the state

prior to dependent transition Si, then Post requires that u be in the backtrack set

in pre(S, i). Otherwise, Post conservatively requires that all enabled threads be in

the backtrack set in pre(S, i). Next, we prove that the set of transitions explored

from s is persistent in s, provided that PC holds for each recursive call to Explore.

Lemma 20, Lemma 21, and Theorem 22 are all adapted from the original DPOR

algorithm’s correctness proof [Flanagan and Godefroid, 2005].

Lemma 20. Whenever Algorithm 7 backtracks a state s = final(S), the set T of

transitions explored from s is persistent in s, provided that postcondition PC holds

for every recursive call Explore(S.t) for all t ∈ T .

91



Proof. Let T = next(s, u) | u ∈ backtrack(s). Proceed by contradiction. Assume

that there exists a nonempty sequence α of transitions from s in AG and a transition

t ∈ T such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. t is dependent with last(α)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

3. t↔ ω

Let u = last(α).tid. Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.

Assume that t.tid 6= u. Consider the postcondition

Post(S.t.ω, len(S) + 1, u)

for the recursive call Explore(S.t). Because t ↔ ω, t is the most recent transition

by t.tid that is dependent with next(final(S.t.ω), u). Thus, by Definition 5.2 of Post,

either u ∈ backtrack(s), or backtrack(s) = enabled(s) and thus α1 ∈ T . In either

case, we have a contradiction.

Thus, if postcondition PC holds in each state s explored by Algorithm 7, then the

set of transitions explored from s is persistent in s.

We next prove that postcondition PC holds in each state s explored by

Algorithm 7. First, we prove a lemma that simplifies the inductive step. This lemma

92



is more general than needed because DPOR requires only the first of the two cases,

where ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u). We prove the more general case

for this lemma because some bounds do require the more general case. This lemma

proves that the inductive hypothesis in the subsequent proof, Post(S.ω′, len(S+1), u)

is sufficient to obtain the desired conclusion, Post(S.ω, len(S), u).

Lemma 21. Let s = final(S) be a state in AR, let ω and ω′ be nonempty sequences

of transitions from s in AG, and let u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or

2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that for some thread v in Definition 5.2 of Post(S.ω, len(S), u), i > k. Then,

Post does not require any backtrack points for v.

Assume that for some thread v in Definition 5.2 of Post(S.ω, len(S), u),

i ≤ k. Then, because β ↔ next(final(S.ω), u), i is the same for thread v in

Post(S.ω′, len(S), u). Thus, by Definition 5.2 of Post,

Post(S.ω, len(S), u) iff Post(S.ω′, len(S), u) (5.1)

Because Definition 5.2 of Post requires that i be less than or equal to k,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

93



Thus, by Equation 5.1,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 22. Whenever Algorithm 7 backtracks a state s = final(S) in an acyclic

state space, the postcondition Post for Explore(S) is satisfied, and the set T of

transitions explored from s is persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

Because the search is finite and performed in depth-first order, the first backtracked

state must be a deadlock state in which no transition is enabled. Thus, the post-

condition for the first backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-10 in Algorithm 7.

Inductive case.

Assume that each call to Explore(S.t) satisfies its postcondition. By Lemma 20, T

is persistent in s. Show that Explore(S) satisfies its postcondition for any sequence

ω of transitions from s in AG and for any thread u.

Case 22.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).

Because u ∈ backtrack(s), next(s, u) ∈ T . Thus, by Definition 2.5 of persistent sets,

next(s, u)↔ ω, and

next(final(S.ω), u) = next(s, u)

94



Thus, next(final(S.ω), u)↔ ω, and therefore Post(S.ω, len(S), u) iff Post(S, len(S), u).

The latter is directly established by Lines 4-10 in Algorithm 7.

Case 22.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).

Let t be any transition in T . Consider the sequence ω′ = t.ω. By Definition 2.5 of

persistent sets, t↔ ω, and thus

ω.t ∈ [ω′]

By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

Assume that t is dependent with next(final(S.ω′), u). Because t ↔ ω, t is the

most recent transition by t.tid that is dependent with next(final(S.ω′), u). Thus, by

Definition 5.2 of Post, either u ∈ backtrack(s) or backtrack(s) = enabled(s) and thus

ω1 ∈ T . In either case, we have a contradiction.

Assume that t ↔ next(final(S.ω′), u). Because t ∈ T and u 6∈ backtrack(s),

t.tid 6= u. Thus, next(final(S.ω), u) = next(final(S.ω′), u) and

t↔ next(final(S.ω), u)

Thus, by Lemma 21 where β = t and ω.t ∈ [ω′],

Post(S.ω, len(S), u)

Case 22.3. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. t ∈ T

95



Consider the sequence ω′ = t.α.γ, i.e., ω with t moved to the beginning. By Defini-

tion 2.5 of persistent sets, t↔ α. Thus, by Definition 2.2 of a trace,

ω′ ∈ [ω]

By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 21 where β is empty and ω ∈ [ω′],

Post(S.ω, len(S), u)

Thus, Algorithm 7 explores a persistent set T of transitions from each state s. By

Theorem 5, T is local sufficient in s, and by Theorem 4, T is deadlock sufficient in

s. Thus, Algorithm 7 explores all reachable deadlock and local states in an acyclic

state space. We next modify Algorithm 7 to compute a bound persistent set in each

state for various bound evaluation functions.

5.2 Bounded Partial-Order Reduction

Algorithm 8 presents bounded dynamic partial-order reduction (BPOR), a modi-

fied version of DPOR (Algorithm 7) that computes a bound persistent set in each

state. We specialize BPOR to compute bound persistent sets for the depth, con-

text, preemption, delta, and fair bounds. We prove that the resulting algorithms

guarantee bounded coverage. First, we highlight differences between Algorithm 8

and Algorithm 7.

The procedure Explore in Algorithm 8 is common to all bound evaluation

96



Algorithm 8 BPOR with bound function Bv and bound c.
1: Initially, Explore(ε) from s0

2: procedure Explore(S) begin
3: Let s = final(S)

# Add backtracking points for each thread’s next transition.
4: for all u ∈ Tid do
5: for all v ∈ Tid | v 6= u do

# Find most recent dependent transition.
6: if ∃i = max({i ∈ dom(S) | (Si,next(s, u)) ∈ D and Si.tid = v}) then
7: Backtrack(S, i, u)
8: end if
9: end for

10: end for
# Continue the search by exploring successor states.

11: Initialize(S)
12: Let visited = ∅
13: while ∃u ∈ (enabled(s) ∩ backtrack(s) \ visited) do
14: add u to visited
15: if Bv(S.next(s, u)) ≤ c then
16: Explore(S.next(s, u))
17: end if
18: end while
19: end

functions. Explore is similar to the Explore procedure from Algorithm 7, except

that Algorithm 8 explores only transitions that do not exceed the bound. Line 15

ensures that thread u’s next transition is within bound c.

The Backtrack and Initialize procedures are specific to each bound evalu-

ation function. We define these procedures for each bound evaluation function but

do not specify their behavior for the generic algorithm. The Backtrack procedure

adds backtrack points for dependent transitions, and for bound dependences. Ini-

tialize initializes backtrack(final(S)) with at least one enabled transition that does

not exceed the bound, if one exists. The initial transition affects the size of the final

bound persistent set, so each bound function carefully selects the initial transition

to maximize its likelihood of reaching each state via the cheapest sequence of tran-

97



sitions first. We provide specialized versions of Backtrack and Initialize as we

discuss each bound evaluation function.

BPOR computes local sufficient sets for each bound, but it cannot compute

deadlock sufficient sets that are not also local sufficient. BPOR relies on local state

reachability because it is dynamic – it must explore subsequent dependent transi-

tions to realize that they require backtrack points. Without local state reachability,

BPOR may never reach subsequent dependent transitions and may thus never ex-

plore backtrack points that lead to new deadlock states within the bound. DPOR

also requires local state reachability. Flanagan and Godefroid assume that the state

space is acyclic. Persistent sets are local sufficient in an acyclic state space so this

distinction does not matter [Godefroid, 1996].

Local sufficient sets for bound functions that are not extensible require addi-

tional backtrack points to guarantee local state reachability within the bound. Each

bound’s Initialize and Backtrack procedures incorporate these additional back-

track points. In the next section, we intuitively describe the types of conservative

backtrack points that various bound functions require.

5.2.1 Conservative Backtrack Points

The Initialize and Backtrack procedures for each bound function add conser-

vative backtrack points to accommodate dependences that the bound introduces.

With these conservative backtrack points, BPOR guarantees bounded coverage even

though the search does not explore transitions that exceed the bound. We overview

dependences that the bound introduces and the backtrack points that they require.

The cheapest enabled transition is often more likely than other enabled tran-

sitions to reach new states via the cheapest path. For some bound functions, the

cheapest transition always reaches subsequent states via the cheapest path. For

example, the cheapest transition in a state s always provides the cheapest path to

98



subsequent states for the context, preemption, and delta bounds, provided that the

cheapest transition in s is unique. More expensive transitions leave states that are

reachable within the bound unreachable, so the search must conservatively backtrack

cheaper transitions when it explores a more expensive one.

When a transition increments the bound, the cheapest alternative path to the

states it reaches may require a conservative backtrack point in a prior state. If the

search does not explore that alternative path, then it may lose bounded coverage.

Transitions that cost more as a result of a prior transition are dependent with that

prior transition, so some bound functions insert conservative backtrack points earlier

in the stack to compensate for these dependences.

When the enabledness of threads is an input to a bound function, transitions

that enable and disable other threads may introduce dependences among otherwise

independent transitions. For example, release operations may be dependent with

subsequent transitions whose cost they affect. Some bound functions backtrack all

enabled threads prior to release operations to compensate for these dependences.

Identifying the specific dependent transitions instead is challenging, but doing so

could further optimize the search.

Each bound function requires some combination of these conservative back-

track points to maintain coverage. We discuss each bound function in Chapter 4,

and describe the conservative backtrack points that it requires. We next show how

to compute bound persistent sets for each bound function.

5.2.2 Computing Depth-Bound Persistent Sets

BPOR cannot compute depth-bound persistent sets unless it also supplies local

state reachability because, as described in Section 4.2.2, depth-bound persistent

sets are deadlock sufficient but not local sufficient. Depth-bounded search sacrifices

all partial-order reduction to achieve local state reachability. Thus, the Initialize

99



Algorithm 9 BPOR procedures for depth-bounded search.
1: procedure Initialize(S) begin
2: backtrack(final(S)) = enabled(final(S))
3: end
4: procedure Backtrack(S, i, u) begin

# Do nothing.
5: end

Thread u
t1    acq m
t2    acq n
t3    rel n
t4    rel m

Thread v
t5    read x
t6    acq n
t7    acq m
t8    rel m
t9    rel n

Transition State 

st1 t5

t2 t5 t1

t2

d

t6

t6

t1 t7

✗

✗

t5✗

t8t3

t3

t4 t5✗✗

Figure 5.1: Counter-example for depth-bounded DPOR with bound 3. DPOR may
not reach deadlock state d even though d is reachable within the bound.

procedure in Algorithm 9 adds all enabled threads to the backtrack set in each state.

The Backtrack procedure does nothing because the Initialize procedure already

added all enabled threads to the backtrack set. BPOR computes a local sufficient

set for depth-bounded search in each state with these procedures, but it performs

no partial-order reduction.

Figure 5.1 illustrates why BPOR must sacrifice partial-order reduction to

compute depth-bound persistent sets. Assume that the depth bound in this example

is three. Deadlock state d is reachable from initial state s0 within the bound via

various sequences of transitions, for example t5.t6.t1. BPOR may never explore

d, however. Assume that BPOR first explores the sequence t1.t2.t3. Then, both

enabled transitions t4 and t5 exceed the bound, so the search does not explore t4 or

100



Algorithm 10 BPOR procedures for context-bounded search.
1: procedure Initialize(S) begin
2: if last(S).tid ∈ enabled(final(S)) then
3: add last(S).tid to backtrack(final(S))
4: else
5: backtrack(final(S)) = enabled(final(S))
6: end if
7: end
8: procedure Backtrack(S, i, u) begin
9: backtrack(pre(S, i)) = enabled(pre(S, i))

10: end

t5. The next transition by thread v, t5, is not dependent with any of the explored

transitions, and thus BPOR does not explore t5 from any visited state. Thus, the

search does not explore d, and the search is not deadlock sufficient. If the search were

local sufficient it would explore d, but it cannot guarantee local state reachability

without sacrificing partial-order reduction.

Depth-bound persistent sets do provide deadlock state reachability in depth-

bounded search. The BPOR algorithm cannot guarantee that it has explored a

depth-bound persistent set without exploring a local sufficient set, however. BPOR

prunes a transition t in a state s under the assumption that after exploring a series

of independent transitions, t will still be reachable. In depth-bounded search, every

explored transition increments the bounded value and may leave a portion of the

state space unreachable. Thus, BPOR sacrifices partial-order reduction, as shown in

Algorithm 9, to guarantee deadlock state reachability for depth-bounded search. In

Chapter 6, we optimize BPOR and allow limited partial-order reduction with depth-

bounded search and in Chapter 7, we show how to reach all local states within the

depth-bounded without sacrificing partial-order reduction at all.

5.2.3 Computing Context-Bound Persistent Sets

In this section we specialize Algorithm 8 to compute context-bound persistent sets.

101



Deadlock sufficient context-bound persistent sets are deadlock sufficient but not local

sufficient, as shown in Section 4.2.3. To compute deadlock sufficient context-bound

persistent sets, BPOR must compute local sufficient sets because BPOR relies on

local state reachability, as described in Section 5.2.2. Thus, we specialize BPOR for

context-bound persistent sets and prove this algorithm’s safety guarantees.

Algorithm 10 contains the Initialize and Backtrack procedures to com-

pute context-bound persistent sets. The Initialize procedure adds last(S).tid to

the backtrack set in final(S), if it is enabled there, because its next transition does

not require a context switch and is thus free. Otherwise, Initialize adds all en-

abled threads to the backtrack set because they all require a context switch and

by Definition 4.9 of context-bound persistent sets, transitions in the context-bound

persistent set must be cheaper than transitions not in the context-bound persistent

set. Similarly, the Backtrack procedure adds all enabled threads to the backtrack

set in pre(S, i).

Assume that Algorithm 8 uses the procedures in Algorithm 10. To prove

that Algorithm 8 computes a context-bound persistent set in each state, we modify

the postconditions from Section 5.1 for context-bounded search. Before popping the

most recent transition off the stack and returning to the previous state, Algorithm 8

guarantees postcondition PC.

Definition 5.3. PC for Explore(S) for context-bounded BPOR.

∀u∀ω : if Cs(S.ω) ≤ c then Post(S.ω, len(S), u)

Definition 5.4. Post(S, k, u) for context-bounded BPOR.

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i ≤

k then

backtrack(pre(S, i)) = enabled(pre(S, i))

Definition 5.3 is similar to Definition 5.1, except that it requires that Post hold only

102



for sequences of transitions that are within the context bound. Definition 5.4 is

similar to Definition 5.2, but Definition 5.4 requires that all enabled transitions be

in the backtrack set in pre(S, i), prior to dependent transition Si. Next, we prove

that the set of transitions explored from s is context-bound persistent in s, provided

that PC holds for each recursive call to Explore.

Lemma 23. Whenever Algorithm 8 backtracks a state s = final(S), the set T of

transitions explored from s is context-bound persistent in s, provided that postcon-

dition PC holds for every recursive call Explore(S.t) for all t ∈ T .

Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if T violates any require-

ment in Definition 4.9 of context-bound persistent sets, then we have a contradiction.

Case 23.1. T violates Requirement 1.

Proceed by contradiction. Assume that there exist transitions t ∈ T and t′ 6∈ T such

that t.tid, t′.tid ∈ enabled(s) and Cs(S.t′) ≤ Cs(S.t). Assume Cs(S.t′) < Cs(S.t).

Then, the Initialize procedure adds t′ to the backtrack set at Line 3 in Algorithm 10,

so t′ ∈ T and we have a contradiction.

Assume that Cs(S.t′) = Cs(S.t). Then, either all transitions require a context

switch from s, or the search added t to the backtrack set from the Backtrack

procedure. If all transitions require a context switch, then Line 5 of Algorithm 10

adds t′ to the backtrack set. Otherwise, Line 9 of Algorithm 10 must have added

t to the backtrack set, and it must therefore have added t′ to the backtrack set as

well. In either case, t′ ∈ T and we have a contradiction.

Case 23.2. T violates Requirement 2.

Proceed by contradiction. Assume that there exists a nonempty sequence α of

transitions from s in AG(Cs,c) and a transition t ∈ T such that

1. Cs(S.t) < Cs(S.α1)

2. ∀i ∈ dom(α) : αi 6∈ T

103



3. t is dependent with last(α)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

4. t↔ ω

Let u = last(α).tid. Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction. Assume that t.tid 6= u. Consider

the postcondition

Post(S.t.ω, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 9, t.ω is a sequence of transitions

from s in AG(Cs,c). Because t ↔ ω, t is the most recent transition by t.tid that is

dependent with next(final(S.t.ω), u). Thus, by Definition 5.4 of Post, backtrack(s) =

enabled(s) and thus α1 ∈ T , and we have a contradiction.

Thus, if postcondition PC holds in each state s that Algorithm 8 explores with

the Backtrack procedure from Algorithm 10, then the set of transitions it explores

from s is context-bound persistent in s. Next, we prove that postcondition PC holds

in each state s that Algorithm 8 explores. First, we prove a lemma to simplify the

inductive step that is very similar to Lemma 21 and its proof.

Lemma 24. Let s = final(S) be a state in AR(Cs,c), let ω and ω′ be nonempty

sequences of transitions from s in AG(Cs,c), and let u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or

2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

104



Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that for some thread v in Definition 5.4 of Post(S.ω, len(S), u), i > k. Then,

Post does not require any backtrack points for v.

Assume that for some thread v in Definition 5.4 of Post(S.ω, len(S), u),

i ≤ k. Then, because β ↔ next(final(S.ω), u), i is the same for thread v in

Post(S.ω′, len(S), u). Thus, by Definition 5.4 of Post,

Post(S.ω, len(S), u) iff Post(S.ω′, len(S), u) (5.2)

Because Definition 5.4 of Post requires that i be less than or equal to k,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

Thus, by Equation 5.2,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 25. Whenever a state s = final(S) is backtracked during the search

performed by Algorithm 8 in an acyclic state space, the postcondition Post for

Explore(S) is satisfied, and the set T of transitions explored from s is context-

bound persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

105



Because the search is acyclic and is performed in depth-first order, the first back-

tracked state must be either a deadlock state in which no transition is enabled, or

a state in which all transitions exceed the bound. Thus, the postcondition for the

first backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-10 in Algorithm 8.

Inductive case.

Assume that each call to Explore(S.t) satisfies its postcondition. By Lemma 23, T

is context-bound persistent in s. Show that Explore(S) satisfies its postcondition

for any sequence ω of transitions from s in AG(Cs,c) and for any thread u.

Case 25.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).

Because u ∈ backtrack(s), next(s, u) ∈ T . Thus, by Definition 4.9 of context-bound

persistent sets, next(s, u)↔ ω, and thus

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u)↔ ω, and therefore Post(S.ω, len(S), u) iff Post(S, len(S), u).

The latter is directly established by Lines 4-10 in Algorithm 8.

Case 25.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).

Let t be any transition in T . Consider the sequence ω′ = t.ω. By Definition 4.9 of

context-bound persistent sets, Cs(S.t) < Cs(S.ω1) and t ↔ ω. Thus, by Lemma 9,

ω′ is a sequence of transitions from s in AG(Cs,c). By the inductive hypothesis for

the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

106



Assume that t is dependent with next(final(S.ω′), u). Because t ↔ ω, t is the

most recent transition by t.tid that is dependent with next(final(S.ω′), u). Thus, by

Definition 5.4 of Post, backtrack(s) = enabled(s) and thus ω1 ∈ T and we have a

contradiction.

Assume that t↔ next(final(S.ω′), u). Because t↔ ω, ω.t ∈ [ω′]. Because t ∈

T and u 6∈ backtrack(s), t.tid 6= u. Thus, next(final(S.ω), u) = next(final(S.ω′), u)

and

t↔ next(final(S.ω), u)

Thus, by Lemma 24 where β = t and ω.t ∈ [ω′],

Post(S.ω, len(S), u)

Case 25.3. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. t ∈ T

Assume that α is empty. Then, ω1 ∈ T , and by the inductive hypothesis

Post(S.ω, len(S) + 1, u)

Thus, because Definition 5.4 of Post requires that i ≤ k,

Post(S.ω, len(S), u)

as required.

Assume that α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with

t moved to the beginning. By Definition 4.9 of context-bound persistent sets,

107



Cs(S.t) < Cs(S.α1) and t ↔ α. Thus, by Definition 2.2 of a trace, ω′ ∈ [ω].

By Lemma 7, ω′ is a sequence of transitions from s in AG(Cs,c). By the inductive

hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 24 where β is empty and ω ∈ [ω′],

Post(S.ω, len(S), u)

Thus, Algorithm 8 explores a context-bound persistent set in each state with the

procedures from Algorithm 10. By Theorem 10 and Theorem 4, Algorithm 8 explores

all local and deadlock states reachable within the bound. This search performs

relatively little partial-order reduction, however. If all transitions in a state s require

a context switch or if the search explores multiple transitions from s, then the search

must explore all enabled transitions from s. Preemption-bounded search improves

over this result because there exists a zero-cost transition in every state. In the next

section, we specialize BPOR to compute preemption-bound persistent sets.

5.2.4 Computing Preemption-Bound Persistent Sets

BPOR can reduce the state space by computing preemption-bound persistent sets

because preemption-bound persistent sets are local sufficient. Algorithm 11 contains

the Initialize and Backtrack procedures for preemption-bounded search. Initial-

ize adds the executing thread to the backtrack set in final(S) if it is enabled there.

Otherwise, Initialize adds any u ∈ enabled(final(S)) to the backtrack set. Initial-

ize adds only one enabled thread to the backtrack set because the search may be

able to prove that all local states reachable within the bound are reachable via that

108



Algorithm 11 BPOR procedures for preemption-bounded search.
1: procedure Initialize(S) begin
2: if last(S).tid ∈ enabled(final(S)) then
3: add last(S).tid to backtrack(final(S))
4: else
5: add any u ∈ enabled(final(S)) to backtrack(final(S))
6: end if
7: end
8: procedure Backtrack(S, i, u) begin
9: AddBacktrackPoint(S, i, u)

10: if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j < i}) then
11: AddBacktrackPoint(S, j, u)
12: end if
13: end
14: procedure AddBacktrackPoint(S, i, u) begin
15: if u ∈ enabled(pre(S, i)) then
16: Add u to backtrack(pre(S, i))
17: else
18: backtrack(pre(S, i)) = enabled(pre(S, i))
19: end if
20: end

initial transition.

The Backtrack procedure adds two backtrack points: at Line 9 it adds

one prior to the most recent dependent transition Si, and at Line 11 it adds one

prior to the most recent transition to Si at which the executing thread changed.

The first backtrack point satisfies Requirement 2 of Definition 4.10 of preemption-

bound persistent sets, and the second backtrack point satisfies Requirement 3 of

Definition 4.10. The procedure AddBacktrackPoint adds u to the backtrack set

if it is enabled in pre(S, i); otherwise, it conservatively adds all enabled threads to

the backtrack set.

To prove that Algorithm 8 computes a preemption-bound persistent set in

each state, we modify the postconditions from Section 5.1 for preemption-bounded

search. Before popping the most recent transition off the stack and returning to the

109



previous state, Algorithm 8 guarantees postcondition PC.

Definition 5.5. PC for Explore(S) for preemption-bounded BPOR.

∀u∀ω : if Pb(S.ω) ≤ c then Post(S.ω, len(S), u)

Definition 5.6. Post(S, k, u) for preemption-bounded BPOR.

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) then

1. if i ≤ k then

if u ∈ enabled(pre(S, i)) then u ∈ backtrack(pre(S, i))

else backtrack(pre(S, i)) = enabled(pre(S, i))

2. if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j < i}) and j <

k then

if u ∈ enabled(pre(S, j)) then u ∈ backtrack(pre(S, j))

else backtrack(pre(S, j)) = enabled(pre(S, j))

Definition 5.5 is similar to Definitions 5.1 and 5.3, except that it requires that Post

hold only for sequences of transitions that are reachable within the preemption

bound. Definition 5.6 differs from Definitions 5.2 and 5.4 because it requires an

additional backtrack point. This extra backtrack point guarantees that ext(s, t) will

be independent with transitions not in the local sufficient set when transitions cost

the same amount.

Post(S, k, u) identifies the most recent transition by each thread v that is

dependent with next(final(S), u), if any. Requirement 1 of Post requires a backtrack

point in pre(S, i), the state prior to dependent transition Si. This backtrack point

satisfies Requirement 2 of Definition 4.10 of preemption-bound persistent sets. If u

is enabled in pre(S, i), u must be in the backtrack set in pre(S, i). Otherwise, all

enabled threads must conservatively be in the backtrack set in pre(S, i). Require-

ment 2 of Post requires a backtrack point prior to the most recent transition to Si at

110



which the executing thread changed. This backtrack point satisfies Requirement 3

of Definition 4.10 of preemption-bound persistent sets.

We show that the set T of transitions explored from s is preemption-bound

persistent in s, provided that PC holds for each recursive call to Explore.

Lemma 26. Whenever a state s = final(S) is backtracked by Algorithm 8, the set

T of transitions explored from s is preemption-bound persistent in s, provided that

postcondition PC holds for every recursive call Explore(S.t) for all t ∈ T .

Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if T violates any re-

quirement in Definition 4.10 of preemption-bound persistent sets, then we have a

contradiction.

Case 26.1. T violates Requirement 1.

Proceed by contradiction. Assume that there exist transitions t ∈ T and t′ 6∈ T such

that t and t′ are both enabled in s and Pb(S.t′) < Pb(S.t). By Definition 2.9 of the

preemption bound

t′.tid = last(S).tid

Thus, by Line 3 of Algorithm 11, t′.tid ∈ backtrack(s) and thus t′ ∈ T , and we have

a contradiction.

Case 26.2. T violates Requirement 2.

Proceed by contradiction. Assume that there exists a nonempty sequence α of

transitions from s in AG(Pb,c) and a transition t ∈ T such that, if we let u =

last(α).tid:

1. ∀i ∈ dom(α) : αi 6∈ T

2. Pb(S.t) < Pb(S.α1)

3. t is dependent with last(α) or with next(final(S.α), u)

111



Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

4. t↔ ω and ∀i ∈ dom(ω) : t↔ next(final(S.ω1 . . . ωi), ωi.tid)

Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.

Assume that t.tid 6= u. Let ω′ = ω if t is dependent with last(α), and

let ω′ = α if t ↔ α and t is dependent with next(final(S.α), u). Consider the

postcondition

Post(S.t.ω′, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 11, t.ω′ is a sequence of transitions

from s in AG(Pb,c). Because t ↔ ω′, t is the most recent transition by t.tid that

is dependent with next(final(S.t.ω′), u). Thus, by Definition 5.6 of Post, either

u ∈ backtrack(s), or backtrack(s) = enabled(s) and thus α1 ∈ T . In either case,

we have a contradiction.

Case 26.3. T violates Requirement 3.

Proceed by contradiction. Assume that there exists a nonempty sequence α of

transitions from s in AG(Pb,c) and a transition t ∈ T such that, if we let u =

last(α).tid and let β = ext(s, t):

1. Pb(S.t) = Pb(S.α1)

2. ∀i ∈ dom(α) : αi 6∈ T

3. a transition in β is dependent with last(α) or with next(final(S.α), u)

112



Let n = len(α), and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

4. β ↔ ω and ∀i ∈ dom(ω) : β ↔ next(final(S.ω1 . . . ωi), ωi.tid)

Assume that β1.tid = u. Because β ↔ ω,

β1 = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.

Assume that β1.tid 6= u. Let βk be the last transition in β that is dependent

with last(α) or with next(final(S.α), u). Let ω′ = ω if βk is dependent with last(α),

and let ω′ = α if β ↔ α and βk is dependent with next(final(S.α), u). By Lemma 11,

β.ω′ is a sequence of transitions from s in AG(Pb,c). Consider the postcondition

Post(S.β.ω′, len(S) + 1, u)

for the recursive call Explore(S.β1). Because β ↔ ω′, βk is the most recent tran-

sition by β1.tid that is dependent with next(final(S.β.ω′), u). Because Pb(S.β1) =

Pb(S.α1), by Definition 2.9 of the preemption bound either β1.tid 6= last(S).tid, or S

is empty. Because all transitions in β are by the same thread, β1 is the most recent

such location to βk. Thus, by Requirement 2 of Definition 5.6 of postcondition Post,

either u ∈ backtrack(s), or backtrack(s) = enabled(s) and thus α1 ∈ T . In either

case, we have a contradiction.

Thus, if postcondition PC holds in each state s that Algorithm 8 explores with the

Backtrack procedure from Algorithm 11, then the set of transitions Algorithm 8

explores from s is preemption-bound persistent in s.

113



Next, we prove that postcondition PC holds in each state s that Algorithm 8

explores. First, we prove a lemma that simplifies the inductive step. Lemma 27

differs from Lemmas 21 and 24 because it must account for preemption-bounded

search’s more complex postcondition in Definition 5.6.

Lemma 27. Let s = final(S) be a state in AR(Pb,c), let ω and ω′ be nonempty

sequences of transitions from s in AG(Pb,c) such that Pb(S.ω′1) ≤ Pb(S.ω1), and let

u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or

2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that in Definition 5.6 of postcondition Post, i ≤ k for Post(S.ω, len(S), u).

Then, i and j have the same values in Post(S.ω′, len(S), u) that they have in

Post(S.ω, len(S), u) because β ↔ next(final(S.ω), u).

Assume that i > k for Post(S.ω, len(S), u). Because Pb(S.ω′1) ≤ Pb(S.ω1),

by Definition 2.9 of the preemption bound either S is empty or ω1.tid 6= last(S).tid.

Thus, j ≥ k for Post(S.ω, len(S), u), so Definition 5.6 of Post does not require any

backtrack points. In either case,

Post(S.ω′, len(S), u) =⇒ Post(S.ω, len(S), u) (5.3)

Because Requirement 1 of Definition 5.6 of Post requires that i ≤ k and Require-

114



ment 2 of Definition 5.6 of Post requires that j < k

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

Thus, by Equation 5.3,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 28. Whenever a state s = final(S) is backtracked during the search

performed by Algorithm 8 in an acyclic state space, the postcondition Post for

Explore(S) is satisfied, and the set T of transitions explored from s is preemption-

bound persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

Because the search is acyclic, is performed in depth-first order, and the preemption

bound provides a zero-cost transition in each state, the first backtracked state must

be a deadlock state in which no transition is enabled. Thus, the postcondition for

the first backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-10 in Algorithm 8.

Inductive case.

Assume that each recursive call to Explore(S.t) satisfies its postcondition. By

Lemma 26, T is preemption-bound persistent in s. Show that Explore(S) satisfies

its postcondition for any sequence ω of transitions from s in AG(Pb,c) and for any

115



thread u.

Case 28.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).

Because u ∈ backtrack(s), next(s, u) ∈ T . By Definition 2.9 of preemption-bound

persistent sets, next(s, u)↔ ω, and thus

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u)↔ ω, and therefore Post(S.ω, len(S), u) iff Post(S, len(S), u).

The latter is directly established by Lines 4-10 in Algorithm 8.

Case 28.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).

Because u 6∈ backtrack(s), next(s, u) 6∈ T . Let t be any transition in T , and thus

t.tid 6= u. Let β = t if Pb(S.t) < Pb(S.ω1), and let β = ext(s, t) otherwise. Consider

the sequence ω′ = β.ω. By Definition 4.10 of preemption-bound persistent sets,

1. Pb(S.t) ≤ Pb(S.ω1)

2. β ↔ ω

3. ∀i ∈ dom(ω) : β ↔ next(final(S.ω1 . . . ωi), ωi.tid)

By Lemma 11, ω′ is a sequence of transitions from s in AG(Pb,c). Because β ↔ ω,

ω.β ∈ [ω′]. By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

Assume that a transition in β is dependent with next(final(S.ω′), u). Because β ↔ ω,

the most recent dependent transition to next(final(S.ω′), u) by β1.tid must be in β. If

β1 is the most recent dependent transition, then by Requirement 1 of Definition 5.6

of Post either u ∈ backtrack(s), or backtrack(s) = enabled(s) and thus ω1 ∈ T . If the

most recent dependent transition is another transition in β, then Pb(S.t) = Pb(S.ω1)

116



because otherwise β would contain only a single transition, and thus either S is

empty or last(S).tid 6= β1.tid. Thus, j must be len(S) in Definition 5.6, and thus

either u ∈ backtrack(s), or backtrack(s) = enabled(s) and thus ω1 ∈ T . In either

case, we have a contradiction.

Assume that β ↔ next(final(S.ω′), u). Because β1.tid 6= u, next(final(S.ω), u) =

next(final(S.ω′), u) and

β ↔ next(final(S.ω), u)

Thus, by Lemma 27 where ω.β ∈ [ω′],

Post(S.ω, len(S), u)

Case 28.3. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.β.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. β1 ∈ T

3. ∀i ∈ dom(β) : βi.tid = β1.tid

4. if Pb(S.β1) < Pb(S.α1) then len(β) = 1

5. if Pb(S.β1) = Pb(S.α1) and γ is nonempty, then γ1.tid 6= β1.tid

Assume that α is empty. Then, ω1 ∈ T and by the inductive hypothesis,

Post(S.ω, len(S) + 1, u)

Because Requirement 1 of Definition 5.6 of Post requires that i ≤ k and Require-

ment 2 of Definition 5.6 of Post requires that j < k,

Post(S.ω, len(S), u)

117



as required.

Assume that α is nonempty. By Requirement 1 of Definition 4.10 of preemption-

bound persistent sets, Pb(S.β1) ≤ Pb(S.α1).

Case 28.3a. γ is nonempty, or γ is empty and β1.tid 6∈ enabled(final(S.β)),

or Pb(S.β1) < Pb(S.α1).

Consider the sequence ω′ = β.α.γ, i.e., ω with β moved to the beginning. By

Requirements 2 and 3 of Definition 4.10 of preemption-bound persistent sets, β ↔ α

and ∀i ∈ dom(α) : β ↔ next(final(S.α1 . . . αi), αi.tid). Thus, by Definition 2.2 of a

trace, ω′ ∈ [ω]. By Lemma 12, ω′ is a sequence of transitions from s in AG(Pb,c). By

the inductive hypothesis for the recursive call Explore(S.β1),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 27 where β is empty and ω′ ∈ [ω],

Post(S.ω, len(S), u)

Case 28.3b. γ is empty, β1.tid ∈ enabled(final(S.β)), Pb(S.β1) = Pb(S.α1),

and u ∈ backtrack(s).

Because γ is empty, ω = α.β. Consider the sequence ω′ = β. By Requirement 3 of

Definition 4.10 of preemption-bound persistent sets, β ↔ α and thus

ω′.α ∈ [ω]

Because u ∈ backtrack(s), next(s, u) ∈ T and next(s, u) ↔ α. If β1.tid = u,

then next(final(S.ω), u) is a transition in ext(s, β1) and by Requirement 3 of Defini-

tion 4.10 of preemption-bound persistent sets next(final(S.ω), u)↔ α. If β1.tid 6= u,

118



then next(s, u) = next(final(S.ω), u). In either case,

next(final(S.ω), u)↔ α

Because Pb(S.β1) = Pb(S.α1) and all transitions in β are by the same thread and

thus do not require a preemption, ω′ is a sequence of transitions from s in AG(Pb,c).

By the inductive hypothesis for the recursive call Explore(S.β1),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 27 where β = α and ω′.α ∈ ω,

Post(S.ω, len(S), u)

Case 28.3c. γ is empty, β1.tid ∈ enabled(final(S.β)), Pb(S.β1) = Pb(S.α1),

and u 6∈ backtrack(s).

Because γ is empty, ω = α.β. Let β′ be the unique, nonempty sequence of transitions

from final(S.β) such that β.β′ = ext(s, β1). Consider the sequence ω′ = β.β′.α. By

Requirement 3 of Definition 4.10 of preemption-bound persistent sets, β.β′ ↔ α and

∀i ∈ dom(α) : β.β′ ↔ next(final(S.α1 . . . αi), αi.tid). Thus, by Lemma 11, ω′ is a

sequence of transitions from s in AG(Pb,c). Because β.β′ ↔ α,

ω.β′ ∈ [ω′]

By the inductive hypothesis for the recursive call Explore(S.β1),

Post(S.ω′, len(S) + 1, u)

Assume that a transition in β′ is dependent with next(final(S.ω′), u). Then, because

119



β.β′ ↔ α, the most recent dependent transition to next(final(S.ω′), u) by β1.tid is

in β′. Thus, by Definition 5.6 of Post, either u ∈ backtrack(s) or backtrack(s) =

enabled(s) and thus ω1 ∈ T . In either case, we have a contradiction.

Assume that β′ ↔ next(final(S.ω′), u). Because β1 ∈ T and u 6∈ backtrack(s),

β1.tid 6= u. Thus, next(final(S.ω), u) = next(final(S.ω′), u), and

β′ ↔ next(final(S.ω), u)

Thus, by Lemma 27 where β = β′ and ω.β′ ∈ [ω′],

Post(S.ω, len(S), u)

Thus, Algorithm 8 explores a preemption-bound persistent set in each state with

the procedures from Algorithm 11. By Theorem 13, Algorithm 8 explores all local

states reachable within the bound. By Theorem 4, Algorithm 8 also explores all

deadlock states reachable within the bound.

Algorithm 8 permits more partial-order reduction with preemption-bounded

search than it does with context-bounded search because preemption-bounded search

can more frequently guarantee that it has reached states as cheaply as possible. If

the executing thread is blocked in a state s, then preemption-bounded search can ex-

plore any transition without incrementing the bound. Preemption-bounded search

may therefore be able to explore the subsequent state space without leaving states

unreachable within the bound that would be reachable within the bound via an

unexplored, independent transition. Next, we show how to compute delta-bound

persistent sets, which provide a unique cheapest transition in every state.

5.2.5 Computing Delta-Bound Persistent Sets

120



Algorithm 12 BPOR procedures for delta-bounded search.
1: procedure Initialize(S) begin
2: Backtrack(S, len(S), u) where u is the cheapest enabled thread in final(S)
3: end
4: procedure Backtrack(S, i, u) begin
5: if u ∈ enabled(pre(S, i)) and next(pre(S, i), u) is not a release operation then
6: add all equal or higher priority threads than u to backtrack(pre(S, i))
7: else
8: backtrack(pre(S, i)) = enabled(pre(S, i))
9: end if

10: end

In this section we specialize Algorithm 8 to compute delta-bound persistent sets.

Algorithm 12 contains the Initialize and Backtrack procedures for delta-bounded

search. Assume that Algorithm 8 calls these procedures at Lines 7 and 11, respec-

tively. The Initialize procedure adds the highest priority enabled thread, which

always costs zero, to the backtrack set.

The Backtrack procedure adds u and all higher priority threads to the back-

track set if u is enabled in pre(S, i) and Si is not a release operation. If u is disabled

in pre(S, i) or if Si is a release operation, then the search conservatively adds all

enabled threads to the backtrack set. To prove that Algorithm 8 computes a delta-

bound persistent set in each state, we modify the postconditions from Section 5.1

for delta-bounded search.

Definition 5.7. PC for Explore(S) for delta-bounded BPOR.

∀u∀ω : if De(S.ω) ≤ c then Post(S.ω, len(S), u)

Definition 5.8. Post(S, k, u) for delta-bounded BPOR.

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i ≤

k then

if u ∈ enabled(pre(S, i)) and Si is not a release operation then

backtrack(pre(S, i)) contains all equal or higher priority threads than u

121



else backtrack(pre(S, i)) = enabled(pre(S, i))

Definition 5.7 requires that Post hold only for sequences of transitions that are

within the delta bound. If u is enabled in pre(S, i) and Si is not a release operation,

then Definition 5.8 requires that u and all threads whose next transition is cheaper

than u be in backtrack(pre(S, i)). Otherwise, Definition 5.8 conservatively requires

that all enabled threads be in the backtrack set in pre(S, i).

Lemma 29. Whenever Algorithm 8 backtracks a state s = final(S), the set T of

transitions explored from s is delta-bound persistent in s, provided that postcondition

PC holds for every recursive call Explore(S.t) for all t ∈ T .

Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if T violates any require-

ment in Definition 4.11 of delta-bound persistent sets, then we have a contradiction.

Case 29.1. T violates Requirement 1.

Proceed by contradiction. Assume that there exist transitions t ∈ T and t′ 6∈ T

such that t.tid, t′.tid ∈ enabled(s) and De(S.t) ≥ De(S.t′). Because t ∈ T , t.tid ∈

backtrack(s) and thus either Line 6 or Line 8 in Algorithm 12 must have added

t.tid to backtrack(s). If Line 6 added t.tid to backtrack(s) then it also added t′.tid

to backtrack(s) because De(S.t) ≥ De(S.t′). If Line 8 added t.tid to backtrack(s)

then it also added t′.tid to backtrack(s) because t′.tid ∈ enabled(s). In either case,

t′.tid ∈ backtrack(s) and t′ ∈ T , so we have a contradiction.

Case 29.2. T violates Requirement 2.

Proceed by contradiction. Assume that there exists a transition t ∈ T such that t is

a release operation and a thread u ∈ enabled(s) such that next(s, u) 6∈ T . Because t

is a release operation Line 8 in Algorithm 12 must add it to backtrack(s). Because

u ∈ enabled(s), Line 8 also adds u to backtrack(s) and thus next(s, u) ∈ T and we

have a contradiction.

122



Case 29.3. T violates Requirement 3.

Proceed by contradiction. Assume that there exists a nonempty sequence α of

transitions from s in AG(De,c) such that ∀i ∈ dom(α) : αi 6∈ T , and a transition

t ∈ T such that

1. De(S.t) < De(S.α1)

2. t is not a release operation

3. t is dependent with last(α)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

3. t↔ ω

Let u = last(α).tid. Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.

Assume that t.tid 6= u. Consider the postcondition

Post(S.t.ω, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 14, t.ω is a sequence of transitions

from s in AG(De,c). Because t↔ ω, t is the most recent transition by t.tid that is de-

pendent with next(final(S.t.ω), u). Thus, by Definition 5.8 of Post, u ∈ backtrack(s)

and thus a transition in α must be in T so we have a contradiction.

Thus, if postcondition PC holds in each state s explored by Algorithm 8 with the

Backtrack procedure from Algorithm 12, then the set of transitions explored from

123



s is delta-bound persistent in s. Next, we prove that postcondition PC holds in

each state s explored by Algorithm 8. First, we provide a lemma to simplify the

inductive step. This lemma and its proof are very similar to Lemmas 21 and 24 and

their proofs.

Lemma 30. Let s = final(S) be a state in AR(De,c), let ω and ω′ be nonempty

sequences of transitions from s in AG(De,c), and let u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or

2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that for some thread v in Definition 5.8 of Post(S.ω, len(S), u), i > k. Then,

Post does not require any backtrack points for v.

Assume that for some thread v in Definition 5.8 of Post(S.ω, len(S), u),

i ≤ k. Then, because β ↔ next(final(S.ω), u), i is the same for thread v in

Post(S.ω′, len(S), u). Because i ≤ len(S), the thread priorities in pre(S, i) are the

same, as well. Thus, by Definition 5.8 of Post,

Post(S.ω, len(S), u) iff Post(S.ω′, len(S), u) (5.4)

Because Definition 5.8 of Post requires that i be less than or equal to k,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

124



Thus, by Equation 5.4,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 31. Whenever a state s = final(S) is backtracked during the search

performed by Algorithm 8 in an acyclic state space, the postcondition Post for

Explore(S) is satisfied, and the set T of transitions explored from s is delta-bound

persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

Because the search is acyclic, is performed in depth-first order, and the delta bound

always provides a zero-cost transition, the first backtracked state must be a dead-

lock state in which no transition is enabled. Thus, the postcondition for the first

backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-10 in Algorithm 8.

Inductive case.

Assume that each call to Explore(S.t) satisfies its postcondition. By Lemma 29,

T is delta-bound persistent in s. Show that Explore(S) satisfies its postcondition

for any sequence ω of transitions from s in AG(De,c) and for any thread u. If ω is

empty then the postcondition is directly established by Lines 4-10 in Algorithm 8,

so assume that ω is nonempty.

Case 31.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).

Because u ∈ backtrack(s), next(s, u) ∈ T . Thus, by Requirement 3 of Definition 4.11

125



of delta-bound persistent sets, next(s, u)↔ ω, and thus

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u)↔ ω, and therefore Post(S.ω, len(S), u) iff Post(S, len(S), u).

The latter is directly established by Lines 4-10 in Algorithm 8.

Case 31.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).

Let t be any transition in T . Consider the sequence ω′ = t.ω. By Definition 4.11 of

delta-bound persistent sets, De(S.t) < De(S.ω1) and t↔ ω. Because ω is nonempty

and ω1 6∈ T , by Requirement 2 of Definition 4.11 of delta-bound persistent sets, t is

not a release operation. Thus, by Lemma 14, ω′ is a sequence of transitions from s

in AG(De,c). Because t↔ ω,

ω.t ∈ [ω′]

By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

If t is dependent with next(final(S.ω′), u), then because t↔ ω, ω′1 must be the most

recent dependent transition to next(final(S.ω′), u) by t.tid. Thus, by Definition 5.8

of Post, either u ∈ backtrack(s) or backtrack(s) = enabled(s), in which case ω1 ∈ T .

In either case, we have a contradiction. Thus, t ↔ next(final(S.ω′), u) and t ↔

next(final(S.ω), u). Thus, by Lemma 30 where β = t and ω.t ∈ [ω′],

Post(S.ω, len(S), u)

Case 31.3. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that

126



1. ∀i ∈ dom(α) : αi 6∈ T

2. t ∈ T

Assume that α is empty. Then, ω1 ∈ T , and by the inductive hypothesis

Post(S.ω, len(S) + 1, u)

Thus, because Definition 5.8 of Post requires that i ≤ k,

Post(S.ω, len(S), u)

as required.

Assume that α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with t

moved to the beginning. By Definition 4.11 of delta-bound persistent sets, De(S.t) <

De(S.α1) and t↔ α. Thus, by Definition 2.2 of a trace,

ω′ ∈ [ω]

By Lemma 15, ω′ is a sequence of transitions from s in AG(De,c). By the inductive

hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 30 where β is the empty set and ω′ ∈ ω,

Post(S.ω, len(S), u)

Thus, Algorithm 8 explores a delta-bound persistent set in each state with the

127



Algorithm 13 BPOR procedures for fair-bounded search.
1: procedure Initialize(S) begin
2: if len(S) > MAX DEPTH then
3: report livelock and exit
4: end if
5: Backtrack(S, len(S), u) where u is a lowest cost enabled thread in final(S)
6: end
7: procedure Backtrack(S, i, u) begin
8: if u ∈ enabled(pre(S, i)) and next(pre(S, i), u) is not a release operation then
9: add u to backtrack(pre(S, i))

10: else
11: backtrack(pre(S, i)) = enabled(pre(S, i))
12: end if
13: end

Backtrack and Initialize procedures from Algorithm 12. By Theorem 16 and

Theorem 4, Algorithm 8 explores all local and deadlock states reachable within

the bound. Context, preemption, and delta-bounded search permit varying degrees

of partial-order reduction. These bounds do not handle cycles in the state space,

however. To handle cycles in the state space, we show how to compute fair-bound

persistent sets.

5.2.6 Computing Fair-Bound Persistent Sets

This section specializes Algorithm 8 to compute fair-bound persistent sets. Algo-

rithm 13 contains Initialize and Backtrack procedures for fair-bound persistent

sets. Assume that Algorithm 8 uses these procedures. The Initialize procedure

checks whether the size of the stack exceeds a user-specified bound. This depth

bound should be very large, much larger than the user expects to see in practice. If

the stack depth exceeds this bound, then the search has entered a cycle in the state

space despite the fairness criterion and should terminate reporting a livelock.

After checking whether the search has exceeded the stack depth, the Ini-

tialize procedure adds any minimum-cost enabled thread to the backtrack set. The

128



Backtrack procedure adds u to the backtrack set in pre(S, i) if it is enabled there

and if u’s next transition there is not a release operation. Otherwise, Line 11 con-

servatively adds all enabled threads to the backtrack set.

The procedures in Algorithm 13 are similar to those in Algorithm 12 for the

delta bound. These bounds are similar – both place a bound on the relative priorities

of enabled transitions. As a result, both bounds must reason about transitions that

enable or disable other transitions.

The fair bound differs from the delta bound, however, because the fair bound

is the maximum difference in yield count across all transitions, not the sum of the

differences as in the delta bound. Thus, fewer transitions increment the fair bound,

and the fair bound can be less conservative as a result. Rather than backtrack all

cheaper transitions at Line 9, the fair bound can add only u to the backtrack set.

To prove that Algorithm 8 computes a fair-bound persistent set in each state, we

modify the postconditions from Section 5.1 for fair-bounded search.

Definition 5.9. PC for Explore(S) for fair-bounded BPOR.

∀u∀ω : if Fb(S.ω) ≤ c and len(S.ω) ≤ MAX DEPTH then Post(S.ω, len(S), u)

Definition 5.10. Post(S, k, u) for fair-bounded BPOR.

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i ≤

k then

if u ∈ enabled(pre(S, i)) and Si is not a release operation then

u ∈ backtrack(pre(S, i))

else backtrack(pre(S, i)) = enabled(pre(S, i))

Definition 5.9 requires that Post hold only for sequences of transitions that are within

the fair bound and do not exceed the max depth. If u is enabled in pre(S, i), then

Definition 5.10 requires that u be in backtrack(pre(S, i)). Otherwise, Definition 5.10

conservatively requires that all enabled threads be in the backtrack set in pre(S, i).

129



Lemma 32. Whenever Algorithm 8 backtracks a state s = final(S), the set T of

transitions explored from s is fair-bound persistent in s, provided that postcondition

PC holds for every recursive call Explore(S.t) for all t ∈ T .

Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if T violates any require-

ment in Definition 4.12 of fair-bound persistent sets, then we have a contradiction.

Case 32.1. T violates Requirement 1.

Proceed by contradiction. Assume that for some t ∈ T , Fb(S.t) > c. By Line 15

in Algorithm 8, the search explores only transitions that do not exceed the bound

from s. Thus, we have a contradiction.

Case 32.2. T violates Requirement 2.

Proceed by contradiction. Assume that there exists a transition t ∈ T such that t is

a release operation and a thread u ∈ enabled(s) such that next(s, u) 6∈ T . Because t

is a release operation Line 11 in Algorithm 13 must add it to backtrack(s). Because

u ∈ enabled(s), Line 11 also adds u to backtrack(s) and thus next(s, u) ∈ T and we

have a contradiction.

Case 32.3. T violates Requirement 3.

Proceed by contradiction. Assume that there exists a nonempty sequence α of

transitions from s in AG(Fb,c) such that ∀i ∈ dom(α) : αi 6∈ T , and a transition t ∈ T

such that

1. Fb(S.t) ≤ c

2. t is not a release operation

3. t is dependent with last(α)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

130



3. t↔ ω

Let u = last(α).tid. Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction.

Assume that t.tid 6= u. Consider the postcondition

Post(S.t.ω, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 17, t.ω is a sequence of transitions

from s in AG(Fb,c). Because t↔ ω, t is the most recent transition by t.tid that is de-

pendent with next(final(S.t.ω), u). Thus, by Definition 5.10 of Post, u ∈ backtrack(s)

and thus a transition in α must be in T so we have a contradiction.

Thus, if postcondition PC holds in each state s explored by Algorithm 8 with the

Backtrack procedure from Algorithm 13, then the set of transitions explored from

s is fair-bound persistent in s. Next, we prove that postcondition PC holds in each

state s explored by Algorithm 8. First, we prove a lemma to simplify the inductive

step. This lemma and its proof are very similar to Lemma 30 and its proof.

Lemma 33. Let s = final(S) be a state in AR(Fb,c), let ω and ω′ be nonempty

sequences of transitions from s in AG(Fb,c), and let u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or

2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

131



Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that for some thread v in Definition 5.10 of Post(S.ω, len(S), u), i > k.

Then, Post does not require any backtrack points for v.

Assume that for some thread v in Definition 5.10 of Post(S.ω, len(S), u),

i ≤ k. Then, because β ↔ next(final(S.ω), u), i is the same for thread v in

Post(S.ω′, len(S), u). Because i ≤ len(S), the yield counts for all threads are the

same in pre(S, i), as well. Thus, by Definition 5.10 of Post,

Post(S.ω, len(S), u) iff Post(S.ω′, len(S), u) (5.5)

Because Definition 5.10 of Post requires that i be less than or equal to k,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

Thus, by Equation 5.5,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 34. Whenever a state s = final(S) is backtracked during the search per-

formed by Algorithm 8, the postcondition Post for Explore(S) is satisfied, and the

set T of transitions explored from s is fair-bound persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

If the stack depth exceeds MAX DEPTH , then the search terminates and reports

132



a livelock. Thus, the state space that the search may explore without reporting

a livelock is a subset of the cyclic state space. Assume that the test does not

contain a livelock. Because the search is performed in depth-first order, and the fair

bound always provides a zero-cost transition, the first backtracked state must be a

deadlock state in which no transition is enabled. Thus, the postcondition for the

first backtracked state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-10 in Algorithm 8.

Inductive case.

Assume that each call to Explore(S.t) satisfies its postcondition. By Lemma 32,

T is fair-bound persistent in s. Show that Explore(S) satisfies its postcondition

for any sequence ω of transitions from s in AG(Fb,c) and for any thread u. If ω is

empty then the postcondition is directly established by Lines 4-10 in Algorithm 8,

so assume that ω is nonempty.

Case 34.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).

Because u ∈ backtrack(s), next(s, u) ∈ T . Thus, by Requirement 3 of Definition 4.12

of fair-bound persistent sets, next(s, u)↔ ω, and thus

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u)↔ ω, and therefore Post(S.ω, len(S), u) iff Post(S, len(S), u).

The latter is directly established by Lines 4-10 in Algorithm 8.

Case 34.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).

Let t be any transition in T . Consider the sequence ω′ = t.ω. By Definition 4.12

of fair-bound persistent sets, Fb(S.t) ≤ c and t ↔ ω. Because ω is nonempty and

ω1 6∈ T , by Requirement 2 of Definition 4.12 of fair-bound persistent sets, t is not

133



a release operation. Thus, by Lemma 17, ω′ is a sequence of transitions from s in

AG(Fb,c). Because t↔ ω,

ω.t ∈ [ω′]

By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

If t is dependent with next(final(S.ω′), u), then because t↔ ω, ω′1 must be the most

recent dependent transition to next(final(S.ω′), u) by t.tid. Thus, by Definition 5.10

of Post, either u ∈ backtrack(s) or backtrack(s) = enabled(s), in which case ω1 ∈ T .

In either case, we have a contradiction. Thus, t ↔ next(final(S.ω′), u) and t ↔

next(final(S.ω), u). Thus, by Lemma 33 where β = t and ω.t ∈ [ω′],

Post(S.ω, len(S), u)

Case 34.3. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. t ∈ T

Assume that α is empty. Then, ω1 ∈ T , and by the inductive hypothesis

Post(S.ω, len(S) + 1, u)

Thus, because Definition 5.10 of Post requires that i ≤ k,

Post(S.ω, len(S), u)

as required.

134



Assume that α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with t

moved to the beginning. By Definition 4.12 of fair-bound persistent sets, Fb(S.t) ≤ c

and t↔ α. Thus, by Definition 2.2 of a trace,

ω′ ∈ [ω]

By Lemma 18, ω′ is a sequence of transitions from s in AG(Fb,c). By the inductive

hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

and thus by Lemma 33 where β is empty and ω′ ∈ [ω],

Post(S.ω, len(S), u)

Thus, Algorithm 8 explores a fair-bound persistent set in each state with the Back-

track and Initialize procedures in Algorithm 13. By Theorem 19 and Theorem 4,

Algorithm 8 explores all local and deadlock states reachable within the bound.

Fair-bounded search permits more partial-order reduction than depth, con-

text, preemption, or delta-bounded search do, and it prunes cycles in the state space.

The fair bound does not, however, otherwise limit the state space. The fair bound

must be combined with other bounds to provide incremental guarantees. The next

section optimizes Algorithm 8 to further reduce the bounded state space. We then

add sleep sets to the search and while maintaining bounded coverage. Finally, we

combine multiple bound functions so that fair-bounded search may provide better

incremental guarantees.

135



Chapter 6

Optimizations

This chapter optimizes bounded partial-order reduction (BPOR), introduced in

Chapter 5, to provide additional state space reduction while maintaining bounded

coverage. We first review several optimizations from prior work and show how they

apply to bounded search. We then introduce optimizations designed specifically to

reduce the overhead of bounded search. For each optimization, we discuss how it

changes the algorithms in Chapter 5, and how it affects the correctness proofs for

those algorithms. We implement the following optimizations to further reduce the

state space with BPOR:

1. Transitive Reduction: Add backtrack points only for dependences that are

in the transitive reduction of the partial order on dependent transitions

2. Alternative Thread: When a thread is disabled, rather than backtrack all

threads, backtrack a thread that performs a dependent transition

3. Release: Do not backtrack all threads prior to release operations; instead,

backtrack prior to the most recent acquire

4. Bound: Explore conservative backtrack points only if the search exceeds the

bound in the subsequent state space

136



5. Sleep sets: Use a modified version of the sleep sets algorithm [Godefroid,

1990] to reduce the bounded state space

The first three optimizations were included in the original DPOR algorithm [Flana-

gan and Godefroid, 2005]. We show how they interact with bounded search. The

bound optimization is specific to the bound. This optimization is particularly effec-

tive as the bound approaches saturation, where the entire state space is reachable

within the bounded value. Although all of our tests use a conservative form of sleep

sets with bounded search, the sleep sets optimization makes sleep sets less conser-

vative for bounded search. The degree to which these optimizations are effective

varies with the test, and also with the bound. We show in Chapter 8 how each op-

timization reduces the state space individually, and find that the optimizations are

complementary. Applying all of them reduces the state space more than applying

any one optimization individually.

6.1 Transitive Reduction Optimization

BPOR may introduce unnecessary backtrack points if it backtracks dependences

that are not part of the transitive reduction on the program’s partial-order. The

transitive reduction of a partial-order is the minimal graph that represents the same

partial-order. We modify BPOR to backtrack only dependences that are part of the

transitive reduction. Flanagan and Godefroid implement a similar optimization for

DPOR [Flanagan and Godefroid, 2005].

The non-minimal graph in Figure 6.1 shows a simple program containing

two threads, with two pairs of dependent transitions. Thread u’s write to x and

Thread v’s read of x are dependent, yet this dependence is not part of the transitive

reduction. Even if these transitions were not dependent with one another, Thread

u’s write to x would still happen before Thread v’s read of x because Thread u’s

end operation is dependent with Thread v’s join operation. The second picture in

137



Thread u Thread v

Non-Minimal Graph

Transition

Transitive Reduction

Thread u Thread v

write x

Dependence

Redundant Execution

Thread u Thread v

write a

end u

join u
write b

read x

write x
write a

end u

join u
write b

read x

write x

write a

end u
join u

write b

read x

Figure 6.1: A non-minimal graph, its transitive reduction, and the redundant exe-
cution that the transitive reduction optimization prunes.

Figure 6.1 shows the transitive reduction for the same graph. The partial-order for

this graph is the same; a transition t happens before a transition t′ in the graph on

the left if and only if t also happens before t′ in the graph on the right. To detect

edges that are part of the transitive reduction we introduce the following relations:

Definition 6.1. Transitive dependence [Flanagan and Godefroid, 2005].

The relation →S is the smallest relation on dom(S) such that

1. if i ≤ j and ti is dependent with tj , then i→S j

2. →S is transitively closed.

Definition 6.2. Transitive thread dependence [Flanagan and Godefroid, 2005].

Let S be a sequence of transitions. The relation i →S u holds for i ∈ dom(S) and

thread u if and only if there exists j ∈ dom(S) such that i < j, i →S j, and

Sj 6↔ next(final(S), u).

Intuitively, i→S u if and only if ti would be transitively dependent with next(final(S), u)

if it were to execute from final(S). We define this relation with respect to u’s next

transition from final(S), next(final(S), u), because next(final(S), u) may or may not

138



Thread u Thread v

Non-Minimal Graph Redundant Execution

Thread u Thread vThread u Thread v

Backtrack First Dependence

Transition Dependence

write y
write x

write a
write b

read x
read y write y

write x

write a

write b

read c
read y

write x
write y
write a

write b

read c
read y

Figure 6.2: The transitive reduction optimization prunes the execution on the right
because it does not place a backtrack point prior to Thread u’s write to y.

be enabled in final(S). Whether or not next(final(S), u) is enabled in final(S), the

algorithm must reason about its transitive dependences.

The transitive reduction optimization is beneficial because it may prevent

the search from exploring redundant executions. For example, the picture on the

right in Figure 6.1 shows the execution that results if the search explores Thread v

prior to Thread u’s write to x. Thread v blocks because its join operation must wait

for Thread u to terminate. The partial-order that results is the same as the partial-

order for the figure on the left, and thus the execution on the right is redundant.

The bulk of the benefit from the transitive reduction optimization is due to scenarios

similar to the one in Figure 6.1.

Figure 6.2 illustrates a different scenario in which the transitive reduction

optimization is beneficial. The execution on the left shows the non-minimal graph for

a short program that contains no blocking operations. Because none of the threads

block, the order of the dependent transitions can be reversed. In the execution

in the center, the search reorders Thread u’s write to y and Thread v’s read of

y. As a result, Thread v observes a new value for y and its behavior changes in

response. Rather than write x, Thread v reads c. This transition is not dependent

139



Algorithm 14 Backtrack (Context-bounded BPOR, transitive reduction).
1: procedure Backtrack(S, i, u) begin
2: if i 6→S u then
3: if i = 0 or u 6= Si−1.tid or u 6∈ enabled(pre(S, i)) then
4: backtrack(pre(S, i)) = enabled(pre(S, i))
5: else
6: add u to backtrack(pre(S, i))
7: end if
8: end if
9: end

with any transition by Thread u. Because the search already added a backtrack

point for Thread v prior to Thread u’s write to x, however, the search performs the

redundant execution on the right. If Thread v’s behavior did not change, however,

then the search would still have the opportunity to insert a backtrack point prior to

Thread u’s write to x after the execution in the center.

To prevent the search from exploring unnecessary transitions like the ones

in Figures 6.1 and 6.2, we add backtrack points only for dependences that are

part of the transitive reduction. This optimization applies to both DPOR and

BPOR. Flanagan and Godefroid include a similar optimization in the original DPOR

algorithm [Flanagan and Godefroid, 2005]. Because they add backtrack points for

only the most recent dependent transition, however, they use the transitive reduction

slightly differently. At Line 6 in Algorithm 7, they choose the most recent dependent

transition that is in the transitive reduction. Because we add the most recent

transition by each thread, we incorporate the transitive reduction check later, during

the Backtrack procedure.

Algorithm 14 shows the modified Backtrack procedure for context-bounded

BPOR. Line 2 checks whether the dependence being backtracked is in the transitive

reduction before adding a backtrack point. Thus, the postcondition for context-

bounded search changes.

140



Algorithm 15 Backtrack (Preemption-bounded BPOR, transitive reduction).
1: procedure Backtrack(S, i, u) begin
2: if i 6→S u then
3: AddBacktrackPoint(S, i, u)
4: if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j < i}) then
5: AddBacktrackPoint(S, j, u)
6: end if
7: end if
8: end

Definition 6.3. Post(S, k, u) (Context-bounded BPOR, transitive reduction).

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i ≤

k and i 6→S u then

backtrack(pre(S, i)) = enabled(pre(S, i))

Definition 6.3 is identical to Definition 5.4, except that Definition 6.3 checks both

that i ≤ k, and that i 6→S u.

Algorithm 15 provides the Backtrack procedure for preemption-bounded

BPOR with the transitive reduction optimization. At Line 2, Algorithm 15 checks

whether the dependence being backtracked is in the transitive reduction. If the

dependence is in the transitive reduction, then Algorithm 15 inserts two backtrack

points: one prior to the most recent dependent transition and one prior to the most

recent cheaper transition. Otherwise, Algorithm 15 inserts neither backtrack point.

Definition 6.4 shows the modified postcondition for preemption-bounded BPOR.

Both backtrack points require that i 6→S u.

Definition 6.4. Post(S, k, u) (Preemption-bounded BPOR, transitive reduction).

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i 6→S

u then

1. if i ≤ k then

if u ∈ enabled(pre(S, i)) then u ∈ backtrack(pre(S, i))

141



else backtrack(pre(S, i)) = enabled(pre(S, i))

2. if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j < i}) and j <

k then

if u ∈ enabled(pre(S, j)) then u ∈ backtrack(pre(S, j))

else backtrack(pre(S, j)) = enabled(pre(S, j))

Next, we describe how the transitive reduction optimization modifies the correct-

ness proofs for preemption-bounded BPOR. Many parts of these proofs remain the

same because the transitive reduction does not affect them. Thus, we highlight

only the parts of each proof that are explicitly affected by the transitive reduction

optimization. Because this optimization changes the postcondition Post, we discuss

each use of the postcondition below. We do not describe changes to the context-

bounded BPOR proofs because they are similar to yet simpler than the changes to

the preemption-bounded BPOR proofs.

Cases 26.2 and 26.3 of Lemma 26 change slightly to accommodate the tran-

sitive reduction optimization. In Case 26.2, when we consider the postcondition

Post(S.t.ω′, len(S) + 1, u)

for the recursive call Explore(S.t), we must show that the dependence between

t and next(final(S.t.ω′), u) is in the transitive reduction. Let i = len(S). We are

given that t ↔ ω′. Thus, there cannot exist j ∈ dom(S.t.ω′) such that i < j and

i →S.t.ω′ j. Thus, by Definition 6.2 of transitive dependence, i 6→S.t.ω′ u, so the

dependence between t and next(final(S.t.ω′), u) is in the transitive reduction. A

similar argument applies to postcondition Post(S.t.ω, len(S) + 1, u) in Case 23.2 of

Lemma 23 for context-bounded BPOR.

142



In Case 26.3, when we consider the postcondition

Post(S.β.ω′, len(S) + 1, u)

for the recursive call Explore(S.β1), we must show that the dependence between

βk and next(final(S.β.ω′), u) is in the transitive reduction. Let i = len(S) + k. We

are given that β ↔ ω′, and that βk is the last transition in β that is dependent

with next(final(S.β.ω′), u). Thus, if there exists j ∈ dom(S.β.ω′) such that i < j

and i→S.β.ω′ j, then j must be the index of a transition in β, and the transition at

index j therefore cannot be dependent with next(final(S.β.ω′), u). Thus, by Defini-

tion 6.2 of transitive dependence, i 6→S.β.ω′ u, and the dependence between βk and

next(final(S.β.ω′), u) is in the transitive reduction.

Consider Lemma 27. We must show that for any i ≤ len(S), if i 6→S.ω u,

then i 6→S.ω′ u, because then any backtrack point that Post(S.ω, len(S), u) requires,

Post(S.ω′, len(S), u) also requires. Assume that for some i ≤ len(S), i 6→S.ω u.

Because β ↔ next(final(S.ω), u) and either ω.β ∈ [ω′] or ω′.β ∈ [ω], i 6→S.ω′ u. A

similar argument applies for context-bounded BPOR in Lemma 24 with the transi-

tive reduction optimization.

Although we do not provide the entire modified version of each proof with

this optimization, the examples we provide demonstrate how the proofs change to

accommodate the optimization. Next, we introduce an optimization that limits the

number of conservative backtrack points that the search must include when a thread

is disabled. We show how the optimization affects the Backtrack procedure and

provide intuition for how it modifies the correctness proofs.

143



6.2 Alternative Thread Optimization

When the Backtrack procedures backtrack threads that are disabled, they conser-

vatively schedule all threads. Flanagan and Godefroid observe that when a thread

u is blocked, a single transition, rather than all enabled transitions, often suffices

for maintaining coverage [Flanagan and Godefroid, 2005]. We apply this optimiza-

tion to BPOR. First, we define a set of threads in each state that are sufficient to

backtrack thread u.

The helper function E(S, i, u) returns a set of threads whose next transition

from pre(S, i) backtracks a dependence between Si and next(final(S), u). This set

includes u, if it is enabled in pre(S, i), and any threads whose next transition from

pre(S, i) is transitively dependent with next(final(S), u) according to Definition 6.2.

Exploring any of these transitions from pre(S, i) allows next(final(S), u) to execute

prior to Si, if possible, changing the partial order. We define E(S, i, u) as follows:

Definition 6.5. E(S, i, u) [Flanagan and Godefroid, 2005].

E(S, i, u) = {v ∈ enabled(pre(S, i)) | u = v or

∃j ∈ dom(S) : i < j, v = Sj .tid and j →S u

We modify the Backtrack procedure for preemption-bounded BPOR to ensure that

the thread in E(S, i, u) with the cheapest next transition is in backtrack(pre(S, i)),

if E(S, i, u) is nonempty. This optimization does not apply to context-bounded

BPOR because in each state, context-bounded BPOR must explore only the exe-

cuting thread or it must explore all threads. No alternative to the executing thread

will suffice because any other thread may leave otherwise reachable local states

unreachable within the bound.

Algorithm 16 shows the Backtrack procedure for preemption-bounded BPOR

with the alternative thread optimization. Lines 2-6 in Algorithm 16 select the

thread in E(S, i, u) with the lowest cost next transition to backtrack, if E(S, i, u)

144



Algorithm 16 Backtrack (Preemption-bounded BPOR, alternative thread).
1: procedure Backtrack(S, i, u) begin
2: if E(S, i, u) 6= ∅ then
3: Let v be the thread in E(S, i, u) with the minimum cost from pre(S, i)
4: else
5: Let v = u
6: end if
7: AddBacktrackPoint(S, i, v)
8: if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j ≤ i}) then
9: AddBacktrackPoint(S, j, v)

10: end if
11: end

is nonempty. Otherwise, if E(S, i, u) is empty, then u is disabled and no suitable

alternative can be found, so Algorithm 16 backtracks u. Because u is disabled,

AddBacktrackPoint backtracks all threads in pre(S, i). This alternative thread

applies to both of the two backtrack points that Backtrack creates.

The postcondition for preemption-bounded BPOR must reflect this change.

Definition 6.6 checks whether E(S, i, u) is nonempty, and if so requires that at least

one of the transitions in E(S, i, u) be in backtrack(pre(S, i)). The same check applies

to j, the location of the most recent cheaper transition.

Definition 6.6. Post(S, k, u) (Preemption-bounded BPOR, alternative thread).

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) then

1. if i ≤ k then

if E(S, i, u) 6= ∅ then backtrack(pre(S, i)) ∩ E(S, i, u) 6= ∅

else backtrack(pre(S, i)) = enabled(pre(S, i))

2. if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j < i}) and j <

k then

if E(S, i, u) 6= ∅ then backtrack(pre(S, j)) ∩ E(S, i, u) 6= ∅

else backtrack(pre(S, j)) = enabled(pre(S, j))

145



The alternative thread optimization affects the correctness proofs for DPOR and

BPOR significantly, but the change that the optimization requires is similar across

all of the proofs. We provide an example for preemption-bounded BPOR, but do

not provide the detailed proof for each bound function or for each case where the

alternative thread optimization affects the proof, because these cases are all similar

to one another.

Consider Case 26.2 of Lemma 26. Because Post(S.t.ω′, len(S) + 1, u) holds

and t is the most recent dependent transition to next(final(S.t.ω′), u), the proof

for Lemma 26 concludes that either u ∈ backtrack(s) or backtrack(s) = enabled(s),

in which case α1 ∈ T . Either of these cases leads to a contradiction. With the

alternative thread optimization, however, it may be the case that u is disabled

in s and some other thread is in backtrack(s), rather than all enabled threads. By

Definition 6.5 of E(S.t.ω′, len(S), u), however, for any thread v in E(S.t.ω′, len(S), u)

there must exist j ∈ dom(S.t.ω′) such that len(S) < j, v = Sj .tid, and j →S.t.ω′ u.

Any such j must therefore be in ω′, and because none of the transitions in ω′ are in

backtrack(s), we still have a contradiction.

In Case 26.3 of Lemma 26, a similar argument applies. Rather than a single

transition t prior to ω′, there exists a series of transitions β all by t.tid that execute

prior to ω′. The most recent dependent transition to next(final(S.β.ω′), u) is βk.

Again, any thread in E(S.β.ω′, len(S) + k, u), if it is nonempty, must either be u or

be the thread that performs a transition in α. In either case, we have a contradiction.

A similar argument applies for each use of the postcondition.

6.3 Release Optimization

Flanagan and Godefroid optimize backtrack points prior to release operations by

placing them prior to the corresponding acquire operation, instead [Flanagan and

Godefroid, 2005]. A dependent acquire operation will never be enabled until the

146



Algorithm 17 Backtrack (Context-bounded BPOR, release optimization).
1: procedure Backtrack(S, i, u) begin
2: if Si is a release and next(final(S), u) is an acquire then
3: Backtrack(S,GetAcquire(i), u)
4: else
5: if i = 0 or u 6= Si−1.tid or u 6∈ enabled(pre(S, i)) then
6: backtrack(pre(S, i)) = enabled(pre(S, i))
7: else
8: add u to backtrack(pre(S, i))
9: end if

10: end if
11: end

release operation completes, so backtracking an acquire prior to a release does not

explore any new states. Assume that the most recent dependent transition to an

acquire of lock m is a release of m by a thread u. Immediately prior to the release,

u still holds the lock. Thus, placing a backtrack point prior to u’s release operation

will not reverse the order of the dependent transitions; it will lead to a redundant,

wasted execution. Instead, Flanagan and Godefroid place a backtrack point prior

to the most recent dependent transition that may be co-enabled. For a lock release

operation, this transition is the most recent acquire.

For context-bounded BPOR, this optimization requires only a small change,

as shown in Algorithm 17. We assume that a lock acquire and a lock release to

the same variable may not be co-enabled, and that a thread begin and a thread

fork operation may not be co-enabled. There cannot exist any dependent transition

with which a thread begin operation may be co-enabled, so we do not insert any

backtrack points for this operation when the release optimization is enabled.

For a release operation, Algorithm 17 must backtrack prior to the most recent

dependent, co-enabled transition. At Line 2 in Algorithm 17, if Si is a release and

next(final(S), u) is an acquire of the same variable, then Line 3 backtracks prior to

the appropriate acquire operation. The procedure GetAcquire(i) returns the index

147



of the most recent dependent acquire operation to Si. If the programming language

supports nested acquire operations by a single thread, then GetAcquire(i) returns

the index of the acquire at the same level of nesting.

Definition 6.7 provides the postcondition for context-bounded BPOR with

the release optimization. This postcondition requires that i be the index of the most

recent dependent transition that may be co-enabled with next(final(S), u).

Definition 6.7. Post(S, k, u) (Context-bounded BPOR, release optimization).

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u), Si and next(final(S), u) may

be co-enabled, and Si.tid = v}) then

if i ≤ k then backtrack(pre(S, i)) = enabled(pre(S, i))

Preemption-bounded BPOR cannot exploit the release optimization in the same

way that context-bounded BPOR does. Recall from Definition 4.10 of preemption-

bound persistent sets that the transitions in the preemption-bound persistent set

must be independent not only with all sequences of transitions α such that ∀i ∈

dom(α) : αi 6∈ T , but also with next(final(S.α), last(α).tid) for all such α. Due

to this requirement, preemption-bounded BPOR must sometimes place backtrack

points prior to release operations.

Figure 6.3 illustrates a scenario where preemption-bounded BPOR requires a

backtrack point prior to a release operation. Execution 1 requires two preemptions,

shown with pink, horizontal lines in Figure 6.3. The first preemption allows Thread

v to write x before Thread u does. The second preemption allows Thread u to

write x before Thread v writes x a second time. Execution 2 has precisely the same

partial-order that Execution 1 has, yet Execution 2 requires only one preemption.

By scheduling Thread v prior to Thread u’s release operation, the search ensures that

Thread v’s acquire operation blocks. Thus, the search can perform a context switch

for free, because the executing thread is disabled. As a result, preemption-bounded

BPOR cannot optimize away all backtrack points prior to release operations.

148



Execution 1:  2 Preemptions

Transition Dependence

Thread u Thread v

Execution 2:  1 Preemption

rel m

write x

write x

write x

acq m

+1

+1

acq m

Thread u Thread v

rel m
write x

write x

write x
acq m

+1
acq m

rel m rel m

Figure 6.3: Scenario that requires a preemption prior to a release operation for
preemption-bounded search.

Preemption-bounded BPOR need not backtrack prior to all release opera-

tions, however, and it need not backtrack all enabled threads prior to a release

operation as it would with the algorithms in Chapter 5. BPOR must backtrack

prior to a release operation only if that backtrack point allows a preemptive con-

text switch that the search explored to occur without a preemption. By exploiting

dynamic information about the subsequent state space, the search could backtrack

prior to release operations less frequently while preserving bounded coverage. A

similar optimization could apply to delta and fair-bounded search, which also must

backtrack release operations. We leave these optimizations for future work.

6.4 Bound Optimization

The bound optimization ensures that with a sufficiently high bound, BPOR behaves

exactly like DPOR. This optimization ensures that BPOR does not perform work

specific to the bound when the bound has not been exceeded. With a sufficiently

149



high bound, BPOR never excludes a transition because it exceeds the bound. In

this scenario, BPOR need not add conservative backtrack points to account for

the bound. This optimization applies to all bound functions, including the depth,

context, and preemption bound.

In each state s, the bound optimization keeps track of whether the search

has excluded a transition because it exceeds the bound in the state space reachable

from s. If the search never excludes a transition because it exceeds the bound in the

state space reachable from s, then the search explores only those backtrack points

that DPOR requires from s. Otherwise, the search explores all backtrack points

that BPOR requires from s. This optimization ensures that BPOR never explores

bound-specific backtrack points until the search exceeds the bound. If the search

does not exceed the bound, then all states are reachable within the bound from s,

so backtrack points that compensate for the bound are unnecessary.

Algorithm 18 contains a modified version of the Explore procedure for

BPOR that uses the bound optimization. This procedure keeps track of a vari-

able, boundExceeded , that indicates whether any transition reachable from final(S)

exceeds the bound. Explore returns this result as a boolean value. Line 4 initializes

boundExceeded to false. Lines 5-11 in Algorithm 18 are unchanged from Algorithm 8,

though we do modify the Backtrack procedure, as discussed below. Lines 14-21

iterate through each thread u in backtrack(s). If next(final(S), u) does not exceed

the bound, then Line 17 explores it, and updates boundExceeded with the result. If

next(final(S), u) exceeds the bound, then Line 19 sets boundExceeded to true.

After exploring all transitions in backtrack(s), Line 22 checks whether bound-

Exceeded is set. If boundExceeded is set, Lines 23-28 explore all threads in pending(s).

The Backtrack method must add all threads that are not required by DPOR to

pending(s) to differentiate them from backtrack points required by DPOR. Algo-

rithm 19 shows this modified Backtrack method for preemption-bounded search.

150



Algorithm 18 BPOR with bound optimization.
1: Initially, Explore(ε) from s0

2: procedure bool Explore(S) begin
3: Let s = final(S)
4: boundExceeded = false

# Add backtracking points for each thread’s next transition.
5: for all u ∈ Tid do
6: for all v ∈ Tid | v 6= u do

# Find most recent dependent transition.
7: if ∃i = max({i ∈ dom(S) | (Si,next(s, u)) ∈ D and Si.tid = v}) then
8: Backtrack(S, i, u)
9: end if

10: end for
11: end for

# Continue the search by exploring successor states.
12: Initialize(S)
13: Let visited = ∅
14: while ∃u ∈ (enabled(s) ∩ backtrack(s) \ visited) do
15: add u to visited
16: if Bv(S.next(s, u)) ≤ c then
17: boundExceeded |= Explore(S.next(s, u))
18: else
19: boundExceeded = true
20: end if
21: end while
22: if boundExceeded then
23: while ∃u ∈ (enabled(s) ∩ pending(s) \ visited) do
24: add u to visited
25: if Bv(S.next(s, u)) ≤ c then
26: Explore(S.next(s, u))
27: end if
28: end while
29: end if
30: return boundExceeded
31: end

151



Algorithm 19 Backtrack (Preemption-bounded BPOR, bound optimization).
1: procedure Backtrack(S, i, u) begin
2: AddBacktrackPoint(S, i, u, false)
3: if j = max({j ∈ dom(S) | j = 0 or Sj−1.tid 6= Sj .tid and j < i}) then
4: AddBacktrackPoint(S, j, u, true)
5: end if
6: end
7: procedure AddBacktrackPoint(S, i, u, isConservative) begin
8: if u ∈ enabled(pre(S, i)) then
9: if isConservative then

10: Add u to pending(pre(S, i))
11: else
12: Add u to backtrack(pre(S, i))
13: end if
14: else
15: if isConservative then
16: pending(pre(S, i)) = enabled(pre(S, i))
17: else
18: backtrack(pre(S, i)) = enabled(pre(S, i))
19: end if
20: end if
21: end

6.5 Sleep Sets

A sleep set is like a visited set that is allowed to propagate to subsequent states. We

introduced sleep sets in Section 2.5.3. Assume that the search explores a transition

t, and the entire state space reachable from t, from a state s. Then, the search pops

t off the stack and explores another transition from s. Until the search explores a

transition that is dependent with t, exploring t again will lead only to states that

the search has already visited. The search explores an alternative transition t′ from

s because transitions that are dependent with t are reachable via t′, yet t′ itself may

not be dependent with t. Sleep sets prevent the search from reordering t and t′ back

to their original order in this scenario.

Combining sleep sets with DPOR is not trivial. Flanagan and Godefroid

152



suggest that sleep sets combine with DPOR in a straight-forward manner [Flanagan

and Godefroid, 2005], but we showed that their interactions are more subtle, which

the authors acknowledged [Flanagan and Godefroid, 2011]. We focus here on the

interaction between sleep sets and bounded search.

The key reason that the search may place t in the sleep set after exploring it

from s is that the search has already explored the entire state space reachable via

t prior to backtracking it. Thus, one obvious way to use sleep sets with BPOR is

to never place a transition in the sleep set when exploring a conservative backtrack

point. The conservative backtrack point was necessary because the entire search

space was not accessible via t – the search believes it can reach states more cheaply

via the conservative backtrack point. If t is in the sleep set, it may never reach those

states. The simplest way we combine sleep sets with BPOR is to track whether each

backtrack point was placed conservatively to offer a cheaper path to a previously

visited state. If so, we do not add any transitions to the sleep set.

The bound optimization, described in Section 6.4, both enables sleep sets

and complicates sleep sets. The bound optimization enables sleep sets because it

tracks when the entire state space is reachable within the bound. If the entire

state space was reachable, then the search does not add any conservative backtrack

points. Conservative backtrack points limit sleep sets, so the bound optimization

makes sleep sets more effective at reducing the state space. When we use the bound

optimization, we apply this optimization to sleep sets as well. We incorporate this

limited form of sleep sets in all of our DPOR and BPOR experiments.

Never placing transitions in the sleep set at a conservative backtrack point is

unnecessarily conservative, however. For example, in preemption-bounded search, a

conservative backtrack point backtracks a dependence with any of the transitions in

an entire sequence of transitions by the executing thread. To optimize sleep sets for

preemption-bounded search, the search can add all transitions in the sequence to

153



which the conservative backtrack point applies to the sleep set. If the search explores

a transition that is dependent with any of those transitions, then it removes the

corresponding thread from the sleep set and explores it when the next dependent

transition occurs. We include this more aggressive algorithm as an optimization.

6.6 Combining Bound Functions

Combining bound functions may be advantageous if the bounds serve fundamentally

different purposes. In particular, we would like to combine the fairness bound with

any of the other bounds so that we can both reduce the size of the state space, and

limit the number of times the search unrolls cycles in the state space. To combine

bounds without sacrificing coverage, however, we must account for any interactions

between those bounds and the dependences they introduce.

Fairness is particularly problematic when combined with bounds that reason

about the enabledness of other threads, because the fairness criterion may enable

and disable threads as their relative yield counts change. Although a transition that

exceeds the bound is not “disabled” for the purposes of deadlock detection, a transi-

tion that exceeds the bound does leave part of the state space unreachable, so other

bounds must account for another thread’s being fair blocked. The context bound,

in contrast, does not reason about the enabledness of other threads. The context

bound cares only about which thread performed the prior transition, regardless of

whether it, or any other thread, is enabled in the current state. Thus, context-

bounded search combines more easily with fair-bounded search than preemption or

delta-bounded search do.

To combine preemption and delta-bounded search with fairness, we introduce

additional backtrack points to ensure that the search does not sacrifice bounded

coverage. In addition to conservative backtrack points prior to release operations,

we also place conservative backtrack points prior to acquire operations and any other

154



operation that may block. In delta-bounded search, for example, if a transition with

a lower yield count but a higher thread priority is enabled, it may change the cost

of other threads. This conservative approach ensures that all relevant states remain

reachable within the bound, but it reduces the state space less aggressively than

either bound does alone.

When using multiple bounds, it is also more likely that the search will reach

a state in which all transitions exceed at least one of the bounds. For example, a

preemption-bounded, fair-bounded search will often leave all transitions exceeding

the bound, unless you assume that fair blocked threads get a free preemption. If

all transitions exceed the bound, then the search must conservatively schedule all

threads at their most recent cheaper locations to ensure that no states are left

unexplored.

We conservatively place additional backtrack points whenever a thread’s en-

abledness changes to eliminate these interactions. By exploiting dynamic infor-

mation about the subsequent state space, however, these conservative assumptions

could likely be optimized. We leave these additional optimizations to future work.

6.7 Discussion

The degree to which the optimizations described in this section reduce the state

space varies with the benchmark and with the bound. Chapter 8 shows how these

optimizations reduce the state space with each bound function. The benefit of

these optimizations varies with the bound function and with the benchmark. Their

benefits are complementary and applying all optimizations improves performance

more than applying any one of them individually.

The optimizations in this chapter help BPOR reduce the state space more ag-

gressively while providing bounded coverage. Ideally, however, BPOR would achieve

as much partial-order reduction as unbounded search while still providing bounded

155



coverage. This ideal scenario is not possible because the bound introduces depen-

dences between otherwise independent transitions. Unless a bound function is both

stable and extensible, the search cannot guarantee that it has reached all states

reachable within the bound without introducing conservative backtrack points. In

the next section, we consider bound functions that are stable and extensible.

156



Chapter 7

Partial-Order Bounds

We propose a class of bound functions called partial-order bounds that bound the

partial-order on a program’s transitions, rather than the total order on those tran-

sitions. The context, preemption, delta, and fair bounds are all total order bounds

because they bound properties of the total order on a program’s transitions. As a

result, these bounds introduce dependences between otherwise independent transi-

tions. In Chapters 4 and 5, we compensate for these dependences by adding con-

servative backtrack points to maintain bounded coverage. As a result, we sacrifice

partial-order reduction. In this chapter, we investigate bound functions that do not

require conservative backtrack points because the state space reachable within the

bound changes only with dependent transitions.

Many intuitive bounds, such as the context bound, bound the total order on

a program’s transitions. Total orders are easier to reason about than partial orders

are, so a bound on the total order may be more useful to programmers. We modify

several bounds on the total order such that they bound the partial order instead.

The key insight is that we use the local state visible to each thread to determine

the bounded value and use stable, extensible bound functions, as described in Sec-

tion 4.2.1, to ensure that independent transitions do not leave portions of the state

157



space unreachable. We begin by showing that any bound function that is stable

and extensible can achieve bounded coverage with BPOR without any conservative

backtrack points.

7.1 Local Bound Sufficient Sets

We define sufficient sets for a stable, extensible bound function, prove that they are

local sufficient, then show how to compute them with BPOR. Let Bv be a stable,

extensible bound function. To provide local state reachability for Bv, we introduce

local bound persistent sets.

Definition 7.1. Local bound persistent sets.

Let Bv be an extensible bound function. A set T ⊆ T of transitions enabled in

a state s = final(S) is local bound persistent in s if and only if for all nonempty

sequences α of transitions from s in AG(Bv,c) such that ∀i ∈ dom(α), αi 6∈ T and for

all t ∈ T ,

1. Bv(S.t) ≤ c

2. t↔ last(α)

Let AR(Bv,c) be the reduced state space explored by Algorithm 6 with bound function

Bv and bound c. Assume that in each state, Algorithm 6 returns a local bound

persistent set. We prove two lemmas to manage the bound, then show that a

nonempty local bound persistent set is local sufficient.

Lemma 35. Let α be a nonempty sequence of transitions from s = final(S) in

AG(Bv,c) and let t ∈ enabled(s) such that

1. Bv(S.t) ≤ c

2. t↔ α

158



Then, t.α is a sequence of transitions from s in AG(Bv,c).

Proof. By Assumption 2, t.α is a sequence of transitions from s in AG. Because Bv

is extensible and t↔ α,

Bv(S.t.α) = max(Bv(S.t),Bv(S.α))

By Assumption 1, Bv(S.t) ≤ c. We are given that α is a sequence of transitions in

AG(Bv,c) and thus Bv(S.α) ≤ c. Thus,

Bv(S.t.α) ≤ c

and t.α is a sequence of transitions from s in AG(Bv,c).

Lemma 36. Let T be a nonempty local bound persistent set in a state s = final(S)

in AR(Bv,c) and let α.t.γ be a sequence of transitions from s in AG(Bv,c) such that

α is nonempty, ∀i ∈ dom(α) : αi 6∈ T , and t ∈ T . Then, t.α.γ is a sequence of

transitions from s in AG(Bv,c).

Proof. By Requirement 2 of Definition 7.1 of local bound persistent sets, t ↔ α.

Because t↔ α, by Definition 2.2 of a trace,

S.t.α.γ ∈ [S.α.t.γ]

Thus, because Bv is stable and t↔ α,

Bv(S.t.α.γ) = Bv(S.α.t.γ) ≤ c

so t.α.γ is a sequence of transitions from s in AG(Bv,c).

159



Theorem 37. If T is a nonempty local bound persistent set in a state s in AR(Bv,c),

then T is local sufficient in s.

Proof. Let s be a state in AR(Bv,c) and let l be a local state reachable from s in

AG(Bv,c) via a nonempty sequence ω of transitions.

Case 37.1. ∀i ∈ dom(ω) : ωi 6∈ T .

Let t be any transition in T . By Requirement 1 of Definition 7.1 of local bound

persistent sets, Bv(S.t) ≤ c. Consider the sequence ω′ = t.ω. By Requirement 2

of Definition 7.1 of local bound persistent sets, t ↔ ω. Thus, ω.t ∈ [ω′], and

ω ∈ Pref([ω′]). By Lemma 35, t.ω is a sequence of transitions from s in AG(Bv,c),

and T is local sufficient in s.

Case 37.2. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that ∀i ∈ dom(α) : αi 6∈ T and t ∈ T . Assume that α is empty.

Then, T is local sufficient in s because ω1 ∈ T and l is reachable via ω. Assume that

α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with t moved to the first

position. By Definition 7.1 of local bound persistent sets, t↔ α. Thus, ω′ ∈ [ω] and

ω ∈ Pref([ω′]). By Lemma 36, t.α.γ is a sequence of transitions from s in AG(Bv,c),

and T is local sufficient in s.

By Theorems 37 and 3, if Algorithm 6 explores a nonempty local bound persistent

set in each state then it reaches all local states reachable in AG(Bv,c). By Theorem 4,

Algorithm 6 also reaches all deadlock states reachable in AG(Bv,c).

7.2 Computing Local Bound Persistent Sets

Algorithm 20 contains the Initialize and Backtrack procedures to compute local

bound persistent sets with BPOR. The Initialize procedure adds any thread whose

160



Algorithm 20 BPOR procedures for monotonic, extensible, deterministic bound
functions.
1: procedure Initialize(S) begin
2: add any u ∈ enabled(final(S)) where Bv(S.next(final(S), u)) ≤ c to

backtrack(final(S))
3: end
4: procedure Backtrack(S, i, u) begin
5: if u ∈ enabled(pre(S, i)) then
6: Add u to backtrack(pre(S, i))
7: else
8: backtrack(pre(S, i)) = enabled(pre(S, i))
9: end if

10: end

next transition is enabled and within the bound to the backtrack set in final(S). The

Backtrack procedure is the same procedure used by DPOR, because local bound

persistent sets require no conservative backtrack points. In each state the search

ensures the following postcondition before it backtracks.

Definition 7.2. PC for Explore(S) for local bounded BPOR.

∀u∀ω : if Bv(S.ω) ≤ c then Post(S.ω, len(S), u)

Definition 7.3. Post(S, k, u) for extensible bound functions.

∀v : if i = max({i ∈ dom(S) | Si 6↔ next(final(S), u) and Si.tid = v}) and i ≤

k then

if u ∈ enabled(pre(S, i)) then u ∈ backtrack(pre(S, i))

else backtrack(pre(S, i)) = enabled(pre(S, i))

Lemma 38. Whenever Algorithm 8 backtracks a state s = final(S), the set T of

transitions explored from s is local bound persistent in s, provided that postcondition

PC holds for every recursive call Explore(S.t) for all t ∈ T .

Proof. Let T = next(s, u) | u ∈ backtrack(s). Show that if T violates any require-

ment in Definition 7.1 of local bound persistent sets, then we have a contradiction.

161



Case 38.1. T violates Requirement 1.

Algorithm 8 explores only transitions that do not exceed the bound. Because the

search explores t, it must not exceed the bound from final(S).

Case 38.2. T violates Requirement 2.

Let T = next(s, u) | u ∈ backtrack(s). Proceed by contradiction. Assume that there

exists a nonempty sequence α of transitions from s in AG(Bv,c) and a transition t ∈ T

such that

1. Bv(S.t) ≤ c

2. ∀i ∈ dom(α) : αi 6∈ T

3. t is dependent with last(α)

Let n = len(α) and let ω = α1 . . . αn−1, i.e., α with its last transition removed. Let

there be no prefixes of α that also meet the criteria above, and thus

3. t↔ ω

Let u = last(α).tid. Assume that t.tid = u. Because t↔ ω,

t = next(final(S), u) = next(final(S.ω), u) = last(α)

Thus, last(α) ∈ T and we have a contradiction. Assume that t.tid 6= u. Consider

the postcondition

Post(S.t.ω, len(S) + 1, u)

for the recursive call Explore(S.t). By Lemma 35, S.t.ω is a sequence of transitions

from s in AG(Bv,c). Because t ↔ ω, t is the most recent transition by t.tid that is

dependent with next(final(S.t.ω), u). Thus, by Definition 7.3 of Post, either u ∈

backtrack(s), or backtrack(s) = enabled(s) and thus α1 ∈ T . In either case, we have

a contradiction.

162



Thus, if postcondition PC holds in each state s explored by Algorithm 8, then the

set of transitions explored from s is local bound persistent in s. Next, we prove that

postcondition PC holds in each state s explored by Algorithm 8. First, we prove a

lemma that simplifies the inductive step.

Lemma 39. Let s = final(S) be a state in AR(Bv,c), let ω and ω′ be nonempty

sequences of transitions from s in AG(Bv,c), and let u be a thread such that

1. ∃β : ω.β ∈ [ω′] and β ↔ next(final(S.ω), u), or

2. ∃β : ω′.β ∈ [ω] and β ↔ next(final(S.ω), u)

Then, Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u).

Proof. Because β ↔ next(final(S.ω), u),

next(final(S.ω), u) = next(final(S.ω′), u)

Assume that for some thread v in Definition 7.3 of Post(S.ω, len(S), u), i > k. Then,

Post does not require any backtrack points for v.

Assume that for some thread v in Definition 7.3 of Post(S.ω, len(S), u),

i ≤ k. Then, because β ↔ next(final(S.ω), u), i is the same for thread v in

Post(S.ω′, len(S), u). Thus, by Definition 7.3 of Post,

Post(S.ω, len(S), u) iff Post(S.ω′, len(S), u) (7.1)

Because Definition 5.2 of Post requires that i be less than or equal to k,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω′, len(S), u)

163



Thus, by Equation 7.1,

Post(S.ω′, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

Theorem 40. Whenever Algorithm 8 backtracks a state s = final(S) in an acyclic

state space, the postcondition Post for Explore(S) is satisfied, and the set T of

transitions explored from s is local bound persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

Because the search is acyclic and performed in depth-first order, the first backtracked

state must be a deadlock state in which no transition is enabled, or a state in which

all transitions exceed the bound. Thus, the postcondition for the first backtracked

state is

∀u : Post(S, len(S), u)

and is directly established by Lines 4-10 in Algorithm 8.

Inductive case.

Assume that each call to Explore(S.t) satisfies its postcondition. By Lemma 38,

T is local bound persistent in s. Show that Explore(S) satisfies its postcondition

for any sequence ω of transitions from s in AG(Bv,c) and for any thread u. If ω is

empty then Post(S, len(S), u) is directly established by Lines 4-10 in Algorithm 8,

so assume that ω is nonempty.

Case 40.1. ∀i ∈ dom(ω) : ωi 6∈ T and u ∈ backtrack(s).

Because u ∈ backtrack(s), next(s, u) ∈ T . Thus, by Definition 7.1 of local bound

164



persistent sets, next(s, u)↔ ω, and

next(final(S.ω), u) = next(s, u)

Thus, next(final(S.ω), u)↔ ω, and therefore Post(S.ω, len(S), u) iff Post(S, len(S), u).

The latter is directly established by Lines 4-10 in Algorithm 8.

Case 40.2. ∀i ∈ dom(ω) : ωi 6∈ T and u 6∈ backtrack(s).

Let t be any transition in T . Consider the sequence ω′ = t.ω. By Requirements 1

and 2 of Definition 7.1 of local bound persistent sets, Bv(S.t) ≤ c and t↔ ω. Thus,

by Lemma 35 ω′ is a sequence of transitions in AG(Bv,c). Because t↔ ω

ω.t ∈ [ω′] (7.2)

By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

We will show by contradiction that t ↔ next(final(S.ω′), u). Otherwise, assume

that t is dependent with next(final(S.ω′), u). Because t ↔ ω, t is the most recent

transition by t.tid that is dependent with next(final(S.ω′), u). Thus, by Definition 7.3

of Post, either u ∈ backtrack(s) or backtrack(s) = enabled(s) and thus ω1 ∈ T . In

either case, we have a contradiction.

Assume that t ↔ next(final(S.ω′), u). Because t ∈ T and u 6∈ backtrack(s),

t.tid 6= u. Thus, next(final(S.ω), u) = next(final(S.ω′), u) and

t↔ next(final(S.ω), u)

165



Thus, by Lemma 39 where β = t and ω.β ∈ [ω′] by Equation 7.2,

Post(S.ω, len(S), u)

Case 40.3. ∃i ∈ dom(ω) : ωi ∈ T .

Let ω = α.t.γ such that

1. ∀i ∈ dom(α) : αi 6∈ T

2. t ∈ T

If α is empty, then ω1 ∈ T and by the inductive hypothesis

Post(S.ω, len(S) + 1, u)

Because Definition 5.2 of Post requires that i be less than or equal to k,

Post(S.ω, len(S) + 1, u) =⇒ Post(S.ω, len(S), u)

as required.

Assume that α is nonempty. Consider the sequence ω′ = t.α.γ, i.e., ω with

t moved to the beginning. By Lemma 36, ω′ is a sequence of transitions from s

in AG(Bv,c). By Definition 7.1 of local bound persistent sets, t ↔ α. Thus, by

Definition 2.2 of a trace,

ω′ ∈ [ω] (7.3)

By the inductive hypothesis for the recursive call Explore(S.t),

Post(S.ω′, len(S) + 1, u)

166



and thus by Lemma 39 where β is empty and ω ∈ [ω′] by Equation 7.3,

Post(S.ω, len(S), u)

Thus, Algorithm 8 explores an local bound persistent set T of transitions from

each state s. By Theorem 5, T is local sufficient in s, and by Theorem 4, T is

deadlock sufficient in s. Thus, Algorithm 8 explores all local and deadlock states

reachable within the bound for acyclic state spaces if bound function Bv is stable and

extensible. Because each increment of the bound in an extensible bound function

coincides with a pair of dependent transitions, the bounded value cannot increment

unless the search also enters a new local state. Next, we show how to build a stable,

extensible bound function for depth-bounded search.

7.3 Local Depth Bound

We introduce a local depth bound to provide local state reachability with depth-

bounded search. Depth-bounded search cannot provide local state reachability and

achieve partial-order reduction because the depth bound is not extensible (Defini-

tion 4.5). Different sequences of transitions that lead to the same local state may

have different depths. To make the depth bound extensible, we bound the depth of

the partial order, rather than the total order, on the transitions in an execution.

We use vector clocks to keep track of the local depth for each thread because

vector clocks naturally encode information about the local state visible to each

thread [Fidge, 1988]. A vector clock stores one value for each thread in the program.

For each thread, we add a vector clock. For each variable, we add two vector clocks,

one for reads and one for writes. DPOR uses vector clocks to keep track of the

most recent dependent transitions and to compute the happens-before relationship,

167



so using these vector clocks to compute the bound function does not add significant

additional overhead. First, we define several standard functions on vector clocks.

Definition 7.4. Vector clock join.

Let C and R be vector clocks and let v be a thread identifier.

join(C,R) = λv.max(C[v],R[v])

Definition 7.5. Vector clock increment.

Let C be a vector clock and let u and v be thread identifiers.

inc(C, u) = λv.


C[v] + 1 if v = u

C[v] otherwise

Definition 7.6. Vector clock sum.

Let C be a vector clock of size n. Then,

sum(C) =
n∑
u=0

C[u]

The local depth bound first defines several state updates that occur each time a

transition by a thread u reads or writes a variable x. These state updates maintain

the vector clock for each thread u, Cu, the vector clock for writes to each variable x,

Wx, and the vector clock for reads to each variable x, Rx. The local depth bound

uses these vector clocks.

Definition 7.7. Local depth bound (Ld).

We update Cu, Rx, and Wx as follows for all threads u and for all variables

x. After each read operation t, read(t.tid, t.var). After each write operation t,

write(t.tid, t.var).

168



read(u, x) : C’u = inc(join(Cu,Wx), u)

R’x[u] = Cu[u] + 1

write(u, x) : C’u = inc(join(join(Cu,Wx),Rx), u)

W’x = inc(join(join(Cu,Wx),Rx), u)
Define the local depth bound recursively as follows:

Ld(t) = 1

Ld(S.t) = max(Ld(S), sum(Ct.tid))

Intuitively, the local depth bound limits the maximum number of transitions visible

to a particular thread, across all threads. The read and write operations in Defini-

tion 7.7 maintain standard vector clocks. The read operation joins the value in Wx

into Cu to ensure that all transitions that were visible to the thread that last wrote

x at the time it wrote x are now visible to u, as well. The ith transition by a thread

v is “visible” to u if i ≤ Cu[v].

The increment operation accounts for u having performed its access to x.

Note that the read operation’s update to Cu and its update to Rx are the same,

except that the read update accesses only u’s component in the vector clock. The

join operation is not necessary for the read vector update because u always has the

most up-to-date value for its own slot in its vector clock.

The write operation performs the same join operation that the read operation

does because u’s write to x is also dependent with the most recent write to x. The

write operation then additionally performs a join with the read vector because the

write is also dependent with the most recent read by each thread. Finally, the write

operation increments its own clock to account for its having performed its write

operation. The updates to Cu and Wx are identical in this case because accesses to

write operations are totally ordered.

Finally, the bounded value is equal to the maximum vector clock sum across

all threads. Each thread u’s vector clock indicates how many transitions by each

169



other thread are visible to u in its local state. The key insight for the local depth

bound is that vector clocks naturally encode the bound increments that are visible

to each thread in its local state. A thread u’s vector clock stores the number of

transitions by each thread that are visible to u. The sum of these values is the

depth of the sequence of transitions that results if the search explored only the

transitions visible in u’s local state. So, even if the search explores a sequence of

transitions that exceeds the depth bound, if that sequence does not exceed the local

depth bound then there must exist a valid sequence of transitions that would lead

to the same local state within the bound.

Theorem 41. The local depth bound is stable.

The proof of this theorem follows from Definition 7.7 and the fact that the vector

clock values after S.ω and S.ω′ must be equal [Fidge, 1988].

Theorem 42. The local depth bound is extensible.

Proof. Proceed by contradiction. Let s = final(S) be a state in AG(Ld,c). Assume

that there exist a transition t enabled in s and a sequence of transitions α from s

such that t↔ α. Assume that

Ld(S.t.α) 6= max(Ld(S.t),Ld(S.α)) (7.4)

Because t ↔ α, ∀i ∈ dom(α) : t.tid 6= αi.tid. Thus, by Definition 7.7 of the local

depth bound, t updates Ct.tid and may update Wt.var or Rt.var. Similarly, each

transition αi updates Cαi.tid and may update Wαi.var or Rαi.var. Because the local

depth bound returns the maximum of its current value and the vector sum of the

most recent transition’s thread in each state, the only way that Equation 7.4 can be

true is if t accesses the same variable as one of the transitions in α, and thus changes

its vector clock. Thus, for some i ∈ dom(α) : t.var ∩ αi.var 6= ∅. If both t and αi

are read operations then they do not affect one another’s vector clocks because read

170



read c

Transition

Thread u Thread wThread v

read a

read b

write y

write x

write y

read x

write y

Dependence

3

6

7

1

4

8

5

2

(a) Depth bound = 4

read c

Transition

Thread u Thread wThread v

read a

read b

write y

write x

write y

read x

write y

Dependence

2 [0,1,0]

3 [0,0,1]

4 [0,2,2]

1 [1,0,0]

2 [0,2,0]

6 [0,3,3]

3 [0,3,0]

2 [2,0,0]

(b) Local depth bound = 4

Figure 7.1: A sequence of transitions with a depth bound and local depth bound of
four.

operations only affect thread’s vector clocks on write operations. Thus, either t or

αi is a write operation. By Definition 2.4, t is dependent with αi, so we have a

contradiction.

Because the local depth bound is stable and extensible, dynamic partial-order reduc-

tion will combine with local depth-bounded search without requiring conservative

backtrack points, as shown in Section 7.1. Because local depth-bounded search with

bound c explores all local states that contain c or fewer transitions, local depth-

bounded search explores all of the same local states that depth-bounded search

explores. Local depth-bounded search permits full partial-order reduction, however,

while depth-bounded search cannot reduce the state space at all without sacrificing

bounded coverage.

Figure 7.1 illustrates a sequence of transitions with a depth bound of four

and a local depth bound of four. The bounded value after performing each transition

appears next to the transition. The figure on the right also shows the vector clock

for the thread that performed the most recent transition next to each transition.

With the depth bound, as shown on the left side of Figure 7.1, if the search

171



performs DPOR then it never explores local states that are reachable within the

bound. Because the transitions by Thread w that are dependent with transitions

by Thread v exceed the bound, DPOR never observes them and thus never adds

any backtrack points for them. To ensure that the search visits all local states, this

search must sacrifice partial-order reduction.

With the local depth bound, as shown on the right side of Figure 7.1, the

search explores all local states that are reachable from the initial state via a sequence

that contains four or fewer transitions. The right side of Figure 7.1 shows the

additional local states that are reachable within the bound. Note that each local

state that is reachable on the right side of Figure 7.1 is reachable within the bound

from the initial state. For example, thread w’s local state after its read of x is

reachable from the initial state via the sequence of transitions that begins with

thread v’s first two transitions, followed by Thread w’s first two transitions. Even

though the search explores this local state via a path that contains seven transitions,

the vector clocks reveal that the state is actually reachable with only four transitions

so DPOR explores Thread w’s read of x, observes its dependence with Thread v’s

write to x, and inserts a backtrack point for w prior to Thread v’s write to x.

This technique for bounding the partial order on the program’s transitions

is effective for other bounds. Next, we show how to compute a local context bound.

The general vector clock concept is still applicable with the context bound, but we

modify the vector clock updates to reflect the new bound.

7.4 Local Context Bound

We use a similar approach to the local depth bound to compute a local context

bound in each state. The key difference between the local depth bound and the

local context bound is that the local depth bound for a particular thread increments

with every transition by that thread, while the local context bound only increments

172



read c

Thread u Thread wThread v

read a

read b

write y

write x

write y

read x

write y

1

2

2

0

1

2

3

4

Transition Dependence Context switch

(a) Context bound = 2

read c

Transition

Thread u Thread wThread v

read a

read b

write x

write y

read x

write y

Dependence Context switch

0 [0,0,0]

0 [0,0,0]

1 [0,1,0]

0 [0,0,0]

0 [0,0,0]

1

2 [0,1,1]

write y 3 [0,2,1]

1 [0,1,0]

(b) Local context bound = 2

Figure 7.2: A sequence of transitions with a context bound and local context bound
of two.

due to cross-thread dependences. In particular, the local context bound increments

only after exploring the sink node of an inter-thread dependence.

Definition 7.9 defines read and write functions for local context-bounded

search, and defines the local context bound. First, we illustrate the local context

bound to provide intuition. Figure 7.2 shows an example of two sequences of transi-

tions with context bound two and local context bound two. The vector clock value

for the thread that performed each transition appears beside the transition in the

figure on the right. We define the updates for these vector clocks in Definition 7.9.

The number next to each transition indicates the bounded value. Context-bounded

search does not explore Thread v’s write to y because the execution contains more

than two context switches. The local context bound, in contrast, counts only context

switches that are visible to a given thread. The context switch away from Thread

u’s first transition is not visible to any thread because no other threads perform

conflicting accesses to a. Thus, local context-bounded search explores Thread v’s

write to y and thus discovers new dependences that BPOR must backtrack.

Local context-bounded search must increment a thread’s vector clock only

after an inter-thread dependence has been observed. Thus, we do not update a

thread’s vector clock every time it performs a transition as we did with local depth-

173



bounded search. Instead, we embed the vector clock increment in the variable’s

vector clock, so that the bound will update only when a different thread performs a

dependent transition. To accommodate this difference, we define a modified version

of the join function for context-bounded search.

Definition 7.8. Vector clock join, local context bound.

Let C and R be vector clocks.

csjoin(C,R, v) = λw.


C[w] if w = v

max(C[w],R[w]) otherwise

Intuitively, the csjoin function takes the point-wise maximum of the values in its

two vector clock inputs, except for the value associated with Thread v, which it

leaves equal to the left-hand argument. The local context bound must not increase

until the search explores the sink node of an inter-thread dependence, because any

prior context switches may be unnecessary. When a write operation joins values

from prior read operations, it must not incorporate reads by its own thread because

they are concurrent with reads by other threads and thus do not require a context

switch unless an intervening write has occurred. The csjoin function allows write

operations to incorporate other thread’s read operations, but not its own.

Definition 7.9. Local context bound (Lc).

We update Cu, Rx, and Wx as follows for all threads u and for all variables

x. After each read operation t, read(t.tid, t.var). After each write operation t,

write(t.tid, t.var). Let Ox = u if and only if u performed the most recent write to x

and no other thread has read x since.

174



read(u, x) : C’u =


Cu if Ox = u

join(Cu,Wx) otherwise

R’x[u] =


Cu[u] + 1 if Ox = u

join(Cu,Wx)[u] + 1 otherwise

write(u, x) : C’u =


Cu if Ox = u

csjoin(join(Cu,Wx),Rx, u) otherwise

W’u =


inc(Cu, u) if Ox = u

inc(csjoin(join(Cu,Wx),Rx, u), u) otherwise

Define the local context bound recursively as follows:

Lc(t) = 1

Lc(S.t) = max(Lc(S), sum(Ct.tid))

Intuitively, the local context bound tracks the number of context switches that

must occur to reach each thread’s local state. Definition 7.9 is very similar to

Definition 7.7, even though they may appear quite different at first glance. There

are two primary differences between the two definitions. First, rather than increment

the vector clock Cu after each transition, Definition 7.9 leaves Cu unchanged and

increments only the variable’s vector clocks, Rx and Wx. By incrementing the

variable’s vector clock, the thread records its access for threads that access the

variable in the future without updating its own clock.

The second primary difference is that in Definition 7.9, the read and write

operations do not incorporate read and write values from other threads in the case

where Ox = u. In this case, Definition 7.9 increments only the read and write

values that record Thread u’s access for future accesses to observe. If the same

thread accesses the same variable multiple times without any intervening dependent

accesses, then it will observe the incremented value that it wrote even if no context

175



switch occurs. Checking that Ox 6= u thus ensures that an intervening dependent

access to x has occurred since u last accessed it. Note that although the increment

operation for the read and write vectors occurs repeatedly when the same thread

accesses a variable repeatedly, the increment operation is performed on the vector

clock, which remains unchanged, so the value increments by only one.

The read operation in Definition 7.9 updates u’s vector clock and u’s slot

in x’s vector clock. The join operation with Wx makes context switches that were

required to reach the most recent prior write visible to u after the read operation.

The read operation update is identical to the vector clock update, except that it

accesses only u’s slot within the vector clock, and it increments that value. This

increment represents the context switch away from thread u that may occur in the

future, and it will not be incorporated into any thread’s vector clock until a thread

other than u performs a conflicting access to x.

The write operation in Definition 7.9 updates u’s vector clock and x’s vector

clock. The update to Wx is identical to the update to Cu, except that the update to

Wx includes an increment operation. Similar to the read operation, the increment of

Wx indicates to future conflicting accesses to x that a context switch has occurred.

Thread u’s vector clock does not increment because Thread u has not yet observed

this future context switch.

The write operation performs join(Cu,Wx), just like the read operation does,

because the write is also dependent with the most recent write to x. The write oper-

ation additionally performs a modified join operation to incorporate the information

in the read vector for x. The modified join operation is important because Thread

u may have previously performed a read operation on x and updated u’s slot in x’s

read vector by incrementing it. This increment is a signal to other threads that u

performed a read operation on x, so u must not incorporate this value. The only

way u incorporates this context switch is if an intervening write operation to x by

176



another thread occurs.

The local context bound is stable and extensible for the same reasons that the

local depth bound is stable and extensible – the bound function returns a maximum,

rather than a cumulative value at each step, and the only way the cost of a transition

can change is if a dependent access occurs. The local context bound shows how to

encode a second bound function into vector clocks to provide local-state reachability

with partial-order reduction. Although we do not discuss other local bounds in

depth, the same approach could likely be adapted to other bounds.

7.5 Discussion

Prior work suggests that combining bounded search with partial-order reduction is

impractical [Musuvathi and Qadeer, 2007b]. In particular, Musuvathi and Qadeer

prove the following theorem. Let Pb(s) return the minimum value of Pb(S) among

all sequences S such that final(S) = s.

Theorem 43. Given a state s and an integer c ≥ 0, the problem of determining

whether Pb(s) ≤ c is NP-complete.

Musuvathi and Qadeer prove this theorem by reduction to the minimum feedback-

vertex set problem, which is known to be NP-complete. The minimum feedback-

vertex set problem is to find, given a directed graph G(V,E), a subset V ′ of V of

size c such that every directed cycle of G contains at least one vertex in V ′.

Musuvathi and Qadeer build states by mapping vertices to pairs of instruc-

tions (usrc, udst) with an intra-thread edge between them, and mapping edges to

inter-thread dependences between (usrc, vdst) for vertices (usrc, udst) and (vsrc, vdest).

Thus, cycles map to dependences from a thread u to a thread v, with a dependence

that also goes from v to u. Although Musuvathi and Qadeer prove this result for

preemption-bounded search, a similar proof would hold for context-bounded search

177



because the proof does not rely on the enabledness of the threads.

A local context or preemption bound would appear to solve this problem – it

returns the minimum bound with which the search could have explored the sequence

in question. We do not prove that the local context bound explores all local states

that can be reached with c or fewer context switches, but our experiments suggest

that it may.

If local context-bounded search does explore all local states that contain c

or fewer context switches, however, that does not necessarily imply that it returns

the smallest number of context switches with which each state could be reached.

In particular, the search can over-estimate the number of context switches required

to reach a state provided that the search need not explore that segment of the state

space. If the search inserts a backtrack point that is not necessary, then the local

context bound will over-estimate its context switch bound. Because this backtrack

point and all subsequent states are unnecessary, however, this inaccuracy does not

affect coverage guarantees.

The local context bound performs best with a non-preemptive scheduler.

For a context switch to really be “necessary”, there must exist, as the minimum

feedback-vertex set problem suggests, a cycle in which a transition by a thread v is

dependent with a prior transition by a thread u, and then some subsequent transition

by u is dependent with a transition by v, as well. The local context switch bound

detects only one of these dependences, the first one that occurs. The local context

bound implicitly assumes that the other dependence exists. In particular, BPOR

would not insert a backtrack point unless the dependence existed. If the dependence

does exist, then the local context bound is correct in incrementing the context bound.

If the dependence does not exist, then the local context bound is inaccurate, but

the state space that becomes unreachable is redundant and unnecessary, so the

inaccuracy does not sacrifice coverage.

178



If a local context-bounded search inserts only necessary backtrack points,

then it does appear to compute the minimum context bound for each state. Even

with partial-order reduction, however, model checking is exponential in the num-

ber of conflicting transitions. The BPOR algorithm’s exponential exploration of

the reduced state space determines which backtrack points are necessary. The lo-

cal context bound leverages this exponential computation because it assumes that

each backtrack point is necessary, and that the search will never omit a reachable,

necessary backtrack point. Thus, it is not surprising that it can approximate an

NP-complete result quite accurately.

7.6 Other Bounds

Future work should use this approach to design other partial-order bounds that

incrementally prune the state space in a useful manner while permitting partial-

order reduction. This class of bounds combines insights from each of the other

bound functions we study. The depth-bound is stable, but it is not extensible and

cannot combine with dynamic partial-order reduction for local state reachability.

The context bound demonstrates that providing a way to not increment the bound

is crucial. In states where no context switch is required, the executing thread is free

and the search can reduce the state space if it does not encounter any dependent,

co-enabled transitions. The context bound also allows the tester to search deeper

into the state space with a small bound. Both the depth bound and the context

bound are not extensible, however, so they cannot provide local state reachability

with bounded partial-order reduction.

The preemption bound always provides a zero-cost path to previously unvis-

ited local states. Because the preemption bound reasons about the enabledness of

other threads and about which transition performed the previous transition, how-

ever, it introduces artificial dependences that restrict transitions that would oth-

179



erwise be commutative. These restriction sacrifice partial-order reduction. Delta-

bounded search concedes that BPOR must introduce conservative backtrack points,

but incorporates a built-in heuristic to guide the search towards the cheapest ex-

ecutions first – the unique cost of each transition. This approach still falls short,

however, because it reasons about the enabledness of independent threads, and it

offers a cheaper path to portions of the state space when the search must explore

transitions other than the cheapest transition.

Finally, the fair bound shows that the bound can prune cycles in a cyclic

state space, and that the bound need not be a cumulative value – the fair bound

tracks a maximum value, instead, and thus has a different effect on the state space

and on partial-order reduction. Each bound provides insights about the state space,

the power of bounded search, and its interactions with partial-order reduction. Each

bound also helps clarify the value of partial-order bounds.

Partial-order bounds use the insights gathered from total order bounds to

reduce the state space effectively while still providing bounded coverage. The key

insight is that the bound cannot introduce new dependences without sacrificing

partial-order reduction. By building stable, extensible bound functions that leverage

only the locally visible transitions, the search can explore all local states reachable

within the bound while still reducing the state space significantly. In the next

section, we evaluate each of the algorithms that we describe in a dynamic model

checking tool for concurrent software.

180



Chapter 8

Results

We evaluate BPOR by measuring its state space reduction, memory footprint, and

time required to manifest known bugs. We compare different bound functions both

with and without fairness, and we evaluate each optimization’s effect on testing time

and state space reduction. BPOR adds significant overhead to each execution, so

we measure the number of total tests per unit time, in addition to the degree of

state space coverage over time.

8.1 Methodology

We implement BPOR in Chess, a stateless, dynamic model checker for concurrent

software. When a concurrent test program runs under Chess’s control, Chess

places a thin wrapper between the program under test and the Win32 API using

binary instrumentation [Musuvathi et al., 2009]. This wrapper intercepts calls into

the Win32 and .NET APIs and provides hooks into Chess that control thread

scheduling completely without modifying the semantics of the API or the behavior

of the program under test.

181



Chess controls thread scheduling by inserting extra synchronization into its

wrappers that ensures that only one thread is enabled at a time. Thus, Chess

totally orders a program’s execution. The Chess engine records the transitions in

the stack for each execution, then pops those transitions off the stack to explore a

new execution. Chess is stateless – it does not explicitly store information about

previously visited states, except to track progress for reporting results.

We implement Gambit, DPOR, bounded search, and BPOR inside the

Chess engine. After each execution of the program under test completes, Chess

provides a hook that allows it to evaluate the completed execution and choose which

execution to explore next. The algorithms presented here answer this question –

which execution should the scheduler explore next. The next execution is fully de-

scribed by the transitions that remain on the stack from the prior execution, an

explicit next transition that the scheduler must explore after those transitions com-

plete, and the thread scheduler’s default behavior. This systematic, deterministic

default behavior of the thread scheduler determines which transitions it will explore

after the explicit backtrack point. We use a non-preemptive, round-robin scheduler.

8.2 Benchmarks

We test each algorithm on concurrent unit tests developed by testers for concurrent

software and libraries at Microsoft such as the Concurrency Coordination Run-

time (CCR) and the .NET 4.0 concurrency libraries. We also provide results on

a microbenchmark that we created explicitly to test fair-bounded search without

partial-order reduction. Because fair-bounded search prunes only cycles in the state

space, its state space is intractably large without partial-order reduction or other

bound functions.

Table 8.1 summarizes the tests that we include and shows the symbol that

we use to refer to them. The size of the test in Column 4 is the maximum depth of

182



Program Unit test Size Threads Description

CCR Exception 127 3 Concurrent programming model
based on message-passing with
orchestration primitives that co-
ordinate data and work.

Fairness Fair 79 3 Microbenchmark to test fair-
bounded search

Futures NQueens
Matrix

6384 4 Imperative task-parallelism for
.NET 4.0

ParallelFFT Test4On4 725 7 Parallel FFT computation

Region
Ownership

RegOwn 1038 5 Ownership-based separation of
the heap for parallel programs

Reset Event MRSE 93 3 Unit test for manual reset event
slim concurrency primitive.

Table 8.1: Programs and corresponding unit tests with the maximum number of
transitions in a single execution in parenthesis.

the stack of transitions across all executions of the program under test. This number

is generally a good indicator of the size of the unreduced state space. The RegOwn,

NQueens and Matrix tests contain known bugs and thus do not run to completion.

We use these tests to evaluate how long it takes each configuration of Chess to

manifest the bug, both in terms of visited states and in terms of time.

8.3 Validation

A coverage guarantee is not meaningful without a proof, and likewise a verification

tool is not useful unless it is implemented correctly. We validate our implementation

in several ways. First, we hash states to track the number of unique states that the

search visits, and to compare different invocations of Chess. Second, we automat-

ically generate and test random concurrent programs. Third, we explicitly verify

that the lemmas that we prove are true. We use the term “invocation of Chess”

to refer to Chess searching the entire reachable state space for a program with a

183



particular set of inputs. One invocation of Chess includes many invocations of the

program under test – one for each explored interleaving.

Because Chess is stateless it does not store any record of previously visited

states, so determining how many unique states the search visits and whether it visits

the same states during multiple invocations is non-trivial. Musuvathi and Qadeer

create a hash of the partial-order on a program’s states to track which states have

been visited efficiently and with little storage overhead [Musuvathi and Qadeer,

2007b]. We use this approach to track the number of visited deadlock states, and

augment their hash function by differentiating read operations from write operations.

We also modify the hash computation to associate a unique value with each local

state, rather than each deadlock state. This validation is imperfect because hash

collisions do occur, but these hash values provide a very useful sanity check.

We use these hash values to track the number of unique local and deadlock

states that a search visits and compare this value across multiple invocations of

Chess to ensure that different searches of the same state space explore the same

number of unique local and deadlock states. In addition, we print these hash values

and explicitly compare them across invocations to ensure that each search explores

not only the same number of states, but also a set of states that maps to the same

hash values. Otherwise, bonded search might explore the same number of local

states, yet if some of those states are not reachable within the bound, the search

may still fail to provide coverage within the bound. These hash functions are crucial

to verifying the implementation quickly and effectively.

Random search detects bugs very effectively [Dwyer et al., 2007], so we gen-

erate small, random, concurrent programs and run them under Chess both with

and without BPOR to guarantee that BPOR explores the same state space that the

bounded search explores without any partial-order reduction. We compare the hash

values described above across invocations of thousands of small, randomly generated

184



test programs. This tool was also crucial because it generated a wider variety of

behaviors than the limited set of available regression tests.

Finally, we explicitly check that the lemmas that we prove in Chapter 5

are true at runtime. We output information about each execution of the program

under test including the set of backtrack points the search created, the enabled

threads, and the next backtrack point that the search selected. We post-process

this information, which includes data about the entire explored state space, and use

it to explicitly check each bound function’s postcondition Post in each state.

8.4 Coverage Time

We measure coverage over time for each benchmark with each bound function by

tracking the percent of visited local states. If the total number of states is unknown

because the state space is too large, then we use the total number of visited states

rather than the percent of visited states. Because we measure time rather than total

explored states, these results factor in the overhead of executing BPOR. Figures 8.1-

8.4 provide these results for each benchmark, and for each benchmark we provide

results with various bound functions.

Each point on the graphs in Figures 8.1-8.4 represents an invocation of Chess

with a particular bound function and bound. Lines connect points only for visual

clarity – we test only integer bounds. The two dashed lines represent DPOR. DPOR

is a single invocation of Chess that searches the entire state space. Really, DPOR

should appear as a single point at 100% of the state space. We provide the horizontal

dotted line through this value for visual clarity, and so that DPOR may be easily

compared with bounded search results. Note that the DPOR result does not change

with the bound or with the bound function.

Smaller values for time are better than larger values in Figures 8.1-8.4 because

they indicate that the search required less time to explore more unique states. We

185



0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(a) Context bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(b) Preemption bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(c) Delta bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(d) Local context bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(e) Local depth bound

Figure 8.1: Coverage vs. time as the bound increases for MRSE.

186



show both optimized and unoptimized search results. Optimized results include

all of the optimizations described in Chapter 6. We evaluate each optimization

individually in Section 8.6.

The MRSE test in Figure 8.1 is interesting because it terminates relatively

quickly yet the bound increments significantly before saturating. This test may

not be an ideal match for BPOR because it terminates quickly with DPOR, so

DPOR would search the entire state space quite quickly. Because the search does

terminate, however, and the bound increases significantly before saturating, the

MRSE test provides more insight than other tests do on how the search changes as

the bound increases.

Figure 8.1 shows results for MRSE, a unit test for a manual reset event primi-

tive. In Figure 8.1, the context bound clearly requires the most overhead, and BPOR

provides the least benefit when combined with context-bounded search. This result

is intuitive because the context bound is neither stable nor extensible and context-

bounded search places conservative backtrack points at each context switch. Note

that the bound does not saturate in Figure 8.1(a). We terminate tests that take

longer than an hour and the context bound exceeds this limit before it explores the

entire state space.

The preemption bound notably improves over the context bound by bringing

coverage time closer to DPOR. The optimized context bound explores only about

10% of the state space in the time DPOR requires to search the entire state space.

The preemption bound, on the other hand, searches about 40% of the state space

before it requires longer than DPOR. Unlike the context bound, the preemption

bound saturates. Optimized, preemption-bounded BPOR performs almost exactly

as well as DPOR after the bound saturates. The bound optimization is responsible

for this result – if the entire state space is reachable within the bound then the search

does not add any conservative backtrack points. The same result would occur with

187



context-bounded search if it were given time to saturate.

Delta-bounded search improves slightly over preemption-bounded search,

with about 60% of the state space reached before bounded search requires more

time than DPOR. The primary reason the delta bound performs better than the

preemption bound on MRSE is that the MRSE test contains only three threads. The

delta bound suffers when it must explore a low priority thread because then it must

also conservatively explore all higher priority threads from that state. Two threads

do the bulk of the work in MRSE, so there is little overhead due to scheduling lower

priority threads. The preemption bound, in contrast, must schedule prior to the

most recent cheaper transition for each transition that increments the bound, so it

requires more conservative backtrack points for this benchmark.

The local delta bound and local context bound do not require any conserva-

tive backtrack points and thus never require longer than DPOR, aside from a small

fixed overhead to compute the bound. In all cases the total number of local and

deadlock states observed with context bound c is equivalent to the number observed

with local context bound c, as we would expect if the local context bound accurately

encodes the context bound in vector clocks. The same observation applies to the

depth bound. Note that the depth bound may not be a useful heuristic because

it biases the search toward early portions of the state space as described in Sec-

tion 2.7.1. The depth bound and local depth bound provide a simple and intuitive

proof-of-concept for partial order bounds, however, so we include them here.

Local depth and local context-bounded search without DPOR perform very

poorly. They are far less efficient than their counterpart bounds on the total order.

Bounding the partial order guarantees that any local states reachable within bound

c will be explored by the search, sometimes by a sequence of transitions whose total

order bound is greater than c. As a result, the search explores many sequences of

transitions that exceed the corresponding total order bound. Thus, the number of

188



global states reachable within partial order bound c is larger than the number of

global states reachable within the corresponding total order bound c. All of these

additional states are redundant, and BPOR prunes the ones it does not explore.

Without BPOR, however, the search must explore these additional paths to the

same local states.

Figure 8.2 shows results for FFT, which computes a parallel fast Fourier-

transform. These results differ from the MRSE results because all conflicting data

accesses in FFT are protected by acquire and release operations. Additionally, each

thread performs only one acquire and release operation, so preempting a thread is

not useful. As a result, preemptions are not useful – any new state that can be

reached via a preemptive context switch can also be reached via a non-preemptive

context switch with very few exceptions. As a result, preemption-bounded search

finds almost all states with a very small bound, because almost all context switches

are non-preemptive and thus free. The preemption bound incurs notable overhead

because FFT contains a very large number of release operations, and the preemption

bound is conservative with respect to release operations.

The context bound, in contrast, takes longer than the preemption bound does

to saturate in Figure 8.2 because context switches are very frequent and they always

incur a cost. The context bound suffers relatively little overhead from scheduling all

threads when a context switch occurs because most threads must be scheduled there

anyway. The context bound also does not require conservative backtrack points prior

to release operations, whereas the preemption and delta bounds do.

The cost of a transition in delta-bounded search depends upon the enabled-

ness of other threads, so the delta bound backtracks prior to release operations

similarly to the preemption bound. These backtrack points hurt partial-order re-

duction significantly for FFT because it contains so many release operations. In this

case, none of these conservative backtrack points are necessary. In Section 6.3 we ob-

189



0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(a) Context bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(b) Preemption bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(c) Delta bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(d) Local context bound

0 20 40 60 80 100

%

1

60

3600

% of state space

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(e) Local depth bound

Figure 8.2: Coverage vs. time as the bound increases for FFT.

190



0 250 500 750 1000

1

60

3600

Local States

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(a) Fair bound

Figure 8.3: Coverage vs. time as the bound increases for Fair.

serve that more aggressively pruning prior to release operations would be beneficial.

This example suggests that for some tests, further optimizing the preemption-bound

persistent and delta-bound persistent sets prior to release operations would be very

effective for reducing the state space.

Figures 8.2(d) and 8.2(e) illustrate characteristics of the state space. FFT

contains several critical sections protected by locks, so increasing the depth bound

during these sections does not make any new states reachable, leaving the flat lines

in Figure 8.2(e). Likewise, context switches in these regions do not lead to new

states. After the last context switch, the final thread executes for a long time,

exposing many new local states, but without any opportunity for context switches

because it is the only thread left in the system. Thus, Figures 8.2(d) and 8.2(e) a

long, flat tail at the end.

FFT shows that results vary significantly with characteristics of the tested pro-

gram. In particular, release operations affect the results for the preemption, delta,

and context bounds significantly. The preemption bound is additionally affected by

the frequency with which the threads in a program block.

Figure 8.3 shows state space coverage as the fair bound increments. The

Fair test is a small microbenchmark that we created because running fair-bounded

191



search without partial-order reduction and without any other bound on the search

is impractical for large programs. This microbenchmark contains three threads that

access shared variables in a loop and wait for one another to modify those variables

before exiting their respective loops.

Without the fair bound, Chess reports a livelock for this program. As the

fair bound increases, the size of the state space grows, but not at the same rate that

it does with the context, preemption, and delta bounds. The fair bound limits the

state space in a very restricted way. It prunes only cycles in the state space, whereas

the context, preemption, and delta bounds all prune the state space more generally.

Thus, the size of the state space tends to grow in a polynomial fashion with the fair

bound, not in an exponential fashion as with other bounds. Each increment of the

fair bound unrolls another cycle in the state space that exposes another set of states

precisely like the ones explored with the prior bound.

Figure 8.4 combines fair-bounded search with other bounds to demonstrate

how their combined effects inhibit partial-order reduction, as discussed in Sec-

tion 6.6. Note that the x-axis in Figure 8.4 indicates the raw number of local

states explored, rather than the percent of the total state space. We chose this

metric because none of these searches terminated, so we do not know the total size

of the state space.

All of the experiments in Figure 8.4 use a fixed fair bound of two, but vary

the context, preemption, or delta bounds. We chose a fixed fair bound of two under

the assumption that two iterations through a loop in which a thread only yields the

processor is sufficient to explore any meaningful interactions other threads might

have with the code in that loop. Additionally, two is the default fairness bound

used in Chess.

We chose the Exception test for fair-bounded search because it contains

cycles that the fair bound prunes, yet they are not infinite cycles so the search

192



0 100 200 300 400 500 600

1000’s

1

60

3600

Local States (Thousands)

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(a) Context bound

0 100 200 300 400 500 600

1000’s

1

60

3600

Local States (Thousands)

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(b) Fair/Context bound

0 100 200 300 400 500 600

1000’s

1

60

3600

Local States (Thousands)

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(c) Preemption bound

0 100 200 300 400 500 600

1000’s

1

60

3600

Local States (Thousands)

Ti
m

e 
(s

)
No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(d) Fair/Preemption bound

0 100 200 300 400 500 600

1000’s

1

60

3600

Local States (Thousands)

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(e) Delta bound

0 100 200 300 400 500 600

1000’s

1

60

3600

Local States (Thousands)

Ti
m

e 
(s

)

No BPOR
BPOR
BPOR, opt
DPOR
DPOR, opt

(f) Fair/Delta bound

Figure 8.4: Coverage vs. time as the bound increases for Exception.

193



terminates without a fair bound. Adjacent pairs of graphs in Figure 8.4 are not

directly comparable – the context bounded state space and the fair/context bounded

state space are not the same state spaces. The size, instructions, and behavior of

these state spaces are similar enough, however, that comparing them is interesting.

Each bound prunes the state space less efficiently when combined with the

fair bound, which makes sense because the search inserts additional conservative

backtrack points. The preemption bound responds the worst by far, however. The

context bound does not reason about thread enabledness, so the combined fair and

context bound must accumulate the two bounds’ respective overheads, but need not

insert additional conservative backtrack points. The preemption and delta bounds

both require additional conservative backtrack points because they reason about

thread enabledness.

8.5 Visited Over Unique Visited States

We measure the number of total visited local states and divide it by the number of

unique visited local states to understand the amount of redundant work each search

performs. Figures 8.5-8.8 show these results for BPOR without any optimizations,

and with all optimizations. The context switch bound visits more duplicate states

than the other bounds do – note that Figure 8.5(a) uses a different scale than the

other graphs in Figure 8.5 do. The wasted work for unoptimized search increases as

the bound increases, but with the optimized search the redundant states decrease

as the bound approaches saturation due to the bound optimization. The local

depth and local context bounds visit relatively few duplicate states, and the ratio

of explored to unique states is consistent as the bound increases because the bound

adds no conservative backtrack points.

The FFT results in Figure 8.6 reflect the unique nature of this benchmark

with respect to the preemption and context bounds. The context bound appears

194



relatively similar to the MRSE graphs, with a slight fluctuation at a context bound of

four because previously unexplored, unique portions of the search space first become

reachable with four context switches. The delta bound has surprisingly high over-

head, particularly without optimizations. The delta bound is particularly ill-suited

to the FFT benchmark because it contains many acquire and release operations, and

the delta bound backtracks all threads prior to release operations. The delta bound

does worse than the preemption bound because FFT contains many dependences be-

tween threads, and whenever a more expensive thread must be backtracked, delta-

bounded search backtracks all cheaper threads. This program has seven threads, so

backtracking cheaper threads is particularly costly.

Figure 8.7 shows the ratio of states visited to unique states visited with

the fair bound but no other bounds. The optimizations are consistently effective

for the fair bound because the size of the state space does not grow exponentially

with the fair bound as it does for the other bounds. As the size of the state space

grows, the amount of wasted work due to conservative backtrack points also grows

exponentially with the context, preemption, and delta bounds, so the optimizations

appear more effective as the bound increases. With the fair bound, the amount of

wasted work grows more slowly with the bound.

Figure 8.8 shows total visited states over unique visited states for Exception

with and without fairness. Adding the fair bound increases the fraction of dupli-

cate states for each bound function, as expected. The context bound explores an

unexpectedly higher fraction of duplicate states with a context bound of three and

with a fair/context bound of four. These extra duplicate states are likely due to

the search exploring, with three context switches, a set of states that lead to new

behavior only with four context switches. After the bound increases, the search can

reach those new states so the fraction of redundant states decreases.

195



8.6 Optimizations

Figures 8.9-8.10 differentiate the optimizations described in Chapter 6. Each set

of three bars represents BPOR with a different optimization level. The three bars

for each optimization show the ratio of total visited states to unique visited states

with three different bound values. The “min” bound is always zero, except for the

local depth bound where it is one because the local depth bound is one after the

first transition. The “max” value is the highest bound for which we have results for

BPOR with no optimizations. The “50%” bound is the first bound with which the

search explores at least 50% of the state space. If no such bound exists among our

data points then this bound is the ceiling of half of the max bound. The purpose of

these three settings is to show how the optimizations’ performance varies with the

bound. Lower bars mean the optimization is more effective at reducing the state

space. The “none” bars provide a comparison point. Note that the y-axis scale is

different for each bound.

In Figure 8.9, the bound optimization provides the most significant reduc-

tions for context, preemption, and delta bounded search, primarily as the bound

approaches saturation. The bound and sleep sets optimizations do not affect the

local delta or local context bound because they do not insert any conservative back-

track points. The effects of the optimizations are complementary – their combined

reduction is greater than the reduction of any optimization individually.

Figure 8.10 shows optimization results for FFT. The local depth and local con-

text bounds benefit from the release optimization because this test contains many

acquire and release operations. The alternative thread optimization is particularly

important for FFT as well because threads block frequently in FFT. When a back-

tracked thread is blocked, the alternative thread optimization BPOR to schedule

only one alternative thread rather than conservatively scheduling all threads.

The sleep sets optimization is particularly beneficial to preemption-bounded

196



search in FFT. FFT requires relatively few preemptions because the non-preemptive

alternatives are typically sufficient. Without the sleep sets optimization, the com-

mon backtrack points in FFT are never allowed to enter the sleep set and the search

re-explores the same state space repeatedly. With the sleep sets optimization, these

values may be placed in the sleep set where they substantially reduce the state space.

8.7 Memory

We measure memory use with various configurations to confirm that none of the

algorithms that we present incur a significant memory overhead. As expected,

the memory use for each configuration quickly normalizes and remains steady at

a relatively low level throughout the stateless search. For these tests, we disabled

happens-before tracking because storing hashes of visited states does increase mem-

ory use over time but its purpose is strictly for bookkeeping to report results.

8.8 Bugs

Table 8.2 shows time required to find known bugs with different Chess configura-

tions. We choose the preemption bound for these tests because it has been widely

used in prior work, and because many of these tests require fairness. We do not

combine the local depth or local context bound with fairness, so we do not show

bug results for those bounds. The MRSE and CCR tests are acyclic so the search

terminates without the fair bound. We show results for these tests with DPOR,

preemption-bounded search with no BPOR, and preemption-bounded search with

BPOR. BPOR finds these bugs up to 7x faster than DPOR and up 4x faster than

preemption-bounded search.

The NQueens, Matrix and RegOwn tests require fairness. We do not provide

results for these tests with DPOR because DPOR does not handle cyclic state

197



Unit test Bug Time to manifest bug (s)
DPOR No BPOR BPOR

Pb Pb

MRSE Deadlock 2 6 1

CCR Assertion 69 39 9
Assertion 64 35 8

Fb Pb Fb Fb Pb

NQueens
Assertion - 75 5 4
Livelock - 3235 502 125
Assertion - 312 80 11

Matrix
Assertion - 54 2 2
Livelock - 1089 787 137
Livelock - - 694 136

RegOwn Exception - - 3474 1586

Table 8.2: Time required to find bugs. Preemption/fair bounded search without
BPOR requires much longer than fair bounded BPOR requires. Fair-bounded BPOR
requires longer than preemption/fair-bounded BPOR.

spaces and thus cannot detect these bugs. Fair-bounded search manifests these

bugs between 1.3x faster and 27x faster with BPOR than it does without. Fair,

preemption-bounded search finds each bug faster than fair-bounded search, aside

from the assertion failure in Matrix that both searches find very quickly.

The second livelock in Matrix and the exception in RegOwn both did not

manifest within three hours without BPOR. We therefore do not provide results for

these configurations. These results motivate combining fair-bounded search with

partial order bounds, or creating a local fair bound, if possible. With a fairness

criterion the local depth and local context bounds would be far more powerful.

8.9 Discussion

Without partial-order reduction bounded search quickly becomes impractical as the

bound increases. BPOR reduces the state space for bounded search considerably,

198



but still requires longer than DPOR to search only a portion of the state space as

the bound increases. The optimizations in Chapter 6 reduce the state space further,

but BPOR still performs considerably more

199



0 2 4 6 8 10
0

25

50

75

100

125

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(a) Context bound

0 5 10 15
0

25

50

75

100

125

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(b) Preemption bound

0 5 10 15
0

25

50

75

100

125

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(c) Delta bound

0 5 10 15 20
0

25

50

75

100

125

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(d) Local context bound

0 20 40 60 80
0

25

50

75

100

125

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(e) Local depth bound

Figure 8.5: Visited over unique visited states with and without optimizations for
MRSE.

200



0 2 4 6 8
0

50

100

150

200

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(a) Context bound

-1 0 1 2 3
0

50

100

150

200

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(b) Preemption bound

-1 0 1 2 3 4 5 6
0

50

100

150

200

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(c) Delta bound

0 2 4 6 8 10 12
0

50

100

150

200

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(d) Local context bound

0 200 400 600 800
0

50

100

150

200

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(e) Local depth bound

Figure 8.6: Visited over unique visited states with and without optimizations for
FFT.

201



0 5 10 15 20 25
0

2

4

6

8

10

12

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(a) Fair bound

Figure 8.7: Visited over unique visited states with and without optimizations for
Fair.

202



-1 0 1 2 3 4 5 6
0

10

20

30

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(a) Context bound

-1 0 1 2 3 4 5
0

10

20

30

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(b) Fair/Context bound

-1 0 1 2
0

10

20

30

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(c) Preemption bound

-1 0 1 2 3 4
0

10

20

30

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(d) Fair/Preemption bound

-1 0 1 2 3
0

10

20

30

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(e) Delta bound

-1 0 1 2 3 4
0

10

20

30

Bound

To
ta

l/u
ni

qu
e 

st
at

es

No opt
Opt

(f) Fair/Delta bound

Figure 8.8: Visited over unique visited states with and without optimizations for
Exception.

203



0

25

50

75

100

125

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(a) Context bound

0

5

10

15

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(b) Preemption bound

0

5

10

15

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(c) Delta bound

0

1

2

3

4

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(d) Local context bound

0

1

2

3

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(e) Local depth bound

Figure 8.9: Visited over unique visited states with each optimization for MRSE.204



0

50

100

150

200

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(a) Context bound

0

10

20

30

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(b) Preemption bound

0

50

100

150

200

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(c) Delta bound

0

1

2

3

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(d) Local context bound

0

1

2

3

4

Optimization

no
ne all

tra
ns

red

alt
ern

ati
ve

rel
ea

se
bo

un
d ss

To
ta

l/u
ni

qu
e 

st
at

es

min
50%
max

Coverage

(e) Local depth bound

Figure 8.10: Visited over unique visited states with each optimization for FFT.205



Chapter 9

Future Work

This thesis shows that partial-order reduction can be combined with bounded search

to provide bounded coverage with a reduced state space. The high-level goal for this

work is to make model checking concurrent programs more practical and more useful

for testers so that they will be more likely to use it. This section discusses several

opportunities these results create, as well as variations on the ideas presented in this

thesis that might prove interesting for future exploration.

9.1 Other Bounds

One goal of bounded search is to provide a useful and incremental coverage metric

to testers. We explore various bounds in this thesis, but other bounds may also

prove useful. The examples in the previous sections show how tool designers might

combine other bounds with partial-order reduction. We describe bounds that appear

particularly appealing.

206



9.1.1 Partial-order Bounds

Chapter 7 provides two examples of partial-order bounds and the results are com-

pelling that any bound should be associated with a local state rather than with the

total order on the program’s transitions. Other intuitive bounds such as the pre-

emption bound would also be useful as partial-order bounds. The preemption and

delta bounds both likely introduce additional complexity because they reason about

the enabledness of other threads. Handling this problem might be an interesting

challenge.

To test cyclic state spaces, the search must include some fairness criterion.

Expressing the fairness bound as a partial-order bound would thus prove very use-

ful. The fairness bound, like the preemption and delta bounds, reasons about the

enabledness of other threads. The fairness bound we present is just one example of

a fairness criterion, however. Other fair bounds might prove more useful, or better

able to combine with partial-order reduction. A fair bound that provides strong

fairness might prove both more useful as a fairness bound, and better able to com-

bine with partial-order reduction [Apt et al., 1988]. An extensible fairness bound

would make bounded search far more effective.

In addition to the bounds that we discuss in this thesis, there may exist

other bounds that programmers would find particularly useful. One goal of both

the context and the preemption bound is that the bound correlates in some way

with the complexity of the bug. Other bounds that more explicitly provide this

advantage would be useful.

9.1.2 Bug Depth Bound

Prior work defines the bug depth for a bug to be the minimum number of constraints

that must be placed on the program to guarantee that the bug will manifest [Burck-

hardt et al., 2010]. Prior work uses the bug depth to provide statistical guarantees,

207



rather than exhaustively search the state space. Incorporating this same concept

into a bound for exhaustive, systematic search would be useful because the bug

depth bound is innately tied to the complexity of the bug. The bug depth is a prop-

erty of the bug, not of the total order on instructions – really, it is a property of a

minimal subset of the partial order that is sufficient to guarantee the bug manifests.

As a result, this bound may translate well into an extensible bound function.

Bug depth-bounded search has several different properties from regular bounded

search. Prior work uses thread priorities to control the order in which transitions

execute. These thread priorities could control the schedule in exhaustive search, as

well. Rather than backtracking each thread to a given state, however, bug depth-

bounded search enumerates new states by lowering the priority of the executing

thread to the lowest priority. Thus, bug depth-bounded search allows all other

threads to execute prior to the executing thread, rather than one particular thread,

and as a result it explores more new orderings with each new backtrack point. This

search strategy is different from the basic BPOR approach, however, because it does

not enumerate all of the threads in a bound persistent set in each state. This bound

requires more notable changes to search implementations than other bounds, but it

may be worthwhile because it is tied to a fundamental property of the bug, and it

may combine well with partial-order reduction.

9.2 Parallel Search

The state space for exhaustive search is exponential even with BPOR, so parallel

search is critical for exploring the state space efficiently. In addition, BPOR has

very large per-execution overhead, at least two orders of magnitude, so paralleliz-

ing each execution might be useful, particularly for testing embarrassingly parallel

programs with very large numbers of threads. We discuss each of these approaches

to parallelizing BPOR.

208



9.2.1 Exploring Executions in Parallel

The most straight-forward way to parallelize the search is to run multiple executions

in parallel while leaving each individual execution serialized. Because the search

space is exponential and each individual execution is independent of each other

execution, the problem is embarrassingly parallel. The only shared data among

different executions is the set of backtracking points that the search must explore in

the future, which should not significantly hinder parallelization because they may

be written repeatedly by different executions without affecting correctness.

A parallel search could use many heuristics to divide the state space among

processors. By targeting parallel threads at different portions of the state space the

search might be able to find bugs more quickly. Prior work shows that randomly

assigning parallel threads to different portions of the state space finds bugs effectively

with Java PathFinder [Dwyer et al., 2007], so a similar approach would likely be

effective for BPOR. Alternatively, by systematically running the search in parallel

in disparate parts of the state space, the search might achieve coverage more quickly

and also be more likely to find bugs quickly.

9.2.2 Parallelizing Each Execution

In addition to running many different tests in parallel, using concurrency within

each individual test might also be possible. For some workloads, particularly those

that contain an exceptionally large number of threads, serializing the execution is

not practical. In this work, we focus on small unit tests where bugs are as likely to

manifest with a small number of threads as they are with a very large number of

threads. Some workloads rely on very large numbers of threads for their behavior to

be interesting, however, and these programs would be more impractical with BPOR

than smaller unit tests.

The bug depth bound [Burckhardt et al., 2010], described in Section 9.1.2,

209



might allow limited concurrency within each individual test. The bug depth bound

requires that certain transitions be ordered, but all other transitions can execute in

any order. Because the bug depth bound bounds a segment of the partial order on

a program’s transitions, rather than the entire partial order on those transitions, it

does not matter in what order the remaining transitions execute, even if they are

dependent with one another. Massively parallel programs with many threads could

definitely exploit this advantage to run some large subset of those threads in parallel

while exploring smaller bug depth bounds.

As the bug depth bound increases, more threads must be totally ordered

and the program becomes less parallel. Prior work suggests that many bugs mani-

fest with relatively small bug depth bounds, however [Burckhardt et al., 2010, Na-

garakatte et al., 2012]. Thus, a parallel bug depth bounded search might be very

effective for finding bugs while providing limited correctness guarantees. Because

these correctness guarantees would correspond with the complexity of the associated

bugs, they might be more compelling than other incremental guarantees.

9.3 Exploiting the Bound

In this work, we bound the search primarily to provide an incremental coverage

guarantee, but the program or runtime system may be able to leverage these incre-

mental guarantees. The incremental guarantee is a progress metric and a tool for

testers to reason about their program’s correctness. If the runtime system guaran-

tees these bounds in practice, however, then the incremental guarantee becomes a

guarantee for the entire state space that is reachable in practice.

Consider a concurrent system where the thread scheduler guarantees that all

executions will be fair, for some definition of fair. By modifying fair-bounded search

to explore all such fair executions, fair-bounded search can provide full coverage

for the executions that system will see in practice. Similarly, if a system provides

210



guarantees regarding how frequently it will preempt the executing thread, then

BPOR might be able to guarantee correctness while searching only a portion of the

state space.

Bounded search might also provide insights regarding the types of restrictions

on the system that would make correctness easier to achieve. Prior work makes each

execution in a concurrent system deterministic to help prevent concurrency errors

and to make them easier to debug [Devietti et al., 2009,Olszewski et al., 2009,Lucia

and Ceze, 2013]. These systems inhibit performance as well. Bounded search might

shed light on which properties of the program are most correlated with bugs so

that the system could restrict those properties and prevent bugs from occurring in

practice.

9.4 Exploiting Modularity

We focus on unit tests for concurrency libraries in this work because concurrency

libraries should provide a backbone on which future parallel systems can be built.

Correctness is thus paramount for these concurrency libraries, and their unit test

are relatively small so exhaustive search is practical. We exhaustively reorder all

accesses to shared data. We hope systems that leverage these concurrency libraries

can exploit their guarantees and that those guarantees will make verifying larger

programs more practical.

In prior work, we investigated preemption sealing, in which the thread sched-

uler is disabled from preempting the executing process to eliminate portions of the

state space [Ball et al., 2010]. We used preemption sealing to detect multiple errors

in programs by sealing the preemption that leads to an error. We also used preemp-

tion sealing for compositional testing. If the search can trust lower-level modules to

be atomic, then it can seal preemptions in those modules, preserve coverage, and

reduce testing time significantly. Extending this modular testing framework and

211



building it on top of BPOR would make it possible to provide guarantees for much

larger programs.

212



Chapter 10

Conclusions

Concurrent software is notoriously difficult to test and debug, but dynamic, state-

less model checkers offer a promising solution to this problem. Dynamic, bounded

partial-order reduction for stateless model checking finds bugs quickly and repro-

ducibly, and it incrementally guarantees coverage. This result advances the state of

the art for debugging concurrent programs.

This thesis extensively analyzes the space of possible dynamic, bounded

partial-order reduction strategies. We show that bounded search alone is insuffi-

cient to provide reasonable coverage guarantees. Without partial-order reduction

bounded search wastes too much time exploring redundant states. Dynamic partial-

order reduction prunes the state space significantly, but it does not combine easily

with cyclic state spaces or bounded search, and it does not provide any incremental

guarantees. If the search does not terminate, it provides no useful guarantee at all.

Combining bounded search with dynamic partial-order reduction offers clear

benefits, as our experiments with best-first search demonstrate. We combine bounded

search with dynamic partial-order reduction by identifying dependences that the

bound introduces. We sacrifice partial-order reduction to preserve bounded coverage

and prove the resulting algorithm correct for each bound function. This algorithm

213



preserves bounded coverage, but it limits partial-order reduction significantly.

We evaluate the depth, context, preemption, delta, and fair bounds when

combined with dynamic partial-order reduction. Each of these bounds offers insight

about the nature of the search. These insights motivate partial-order bounds, which

bound the partial-order on a program’s transitions rather than the total order on

those transitions. We show that partial-order reduction does not sacrifice bounded

coverage for bounds on the partial order. Partial-order bounds that also provide

useful coverage metrics for testers make software model checking for concurrent

programs more efficient and more useful. The bounds we introduce manifest bugs

an order of magnitude more quickly than previous approaches and guarantee incre-

mental coverage in minutes or hours rather than weeks, helping developers find and

reproduce concurrency errors. The algorithms we describe advance the state of the

art for stateless model checking for concurrent programs by finding bugs quickly

and providing systematic, incremental coverage guarantees.

214



Bibliography

[Aggarwal et al., 1990] Aggarwal, S., Courcoubetis, C. A., and Wolper, P. L. (1990).

Adding liveness properties to coupled finite-state machines. In ACM Transactions

on Programming Languages and Systems (TOPLAS), volume 12, pages 303–339.

[Apt et al., 1988] Apt, K. R., Francez, N., and Katz, S. (1988). Appraising fairness

in languages for distributed programming. 2:226–241.

[Ball et al., 2010] Ball, T., Burckhardt, S., Coons, K. E., Musuvathi, M., and

Qadeer, S. (2010). Preemption sealing for efficient concurrency testing. In The

16th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems.

[Biere et al., 1999] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999). Symbolic

model checking without BDDs. Springer.

[Bosnacki et al., 2006] Bosnacki, D., Leue, S., and Lluch-Lafuente, A. (2006).

Partial-order reduction for general state exploring algorithms. In SPIN, pages

271–287.

[Burch et al., 1990] Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L.

(1990). Symbolic model checking: 1020 states and beyond.

[Burckhardt et al., 2010] Burckhardt, S., Kothari, P., Musuvathi, M., and Na-

garakatte, S. (2010). A randomized scheduler with probabilistic guarantees of

215



finding bugs. In Proceedings of the fifteenth annual conference on architectural

support for programming languages and operating systems, pages 167–178, New

York, NY, USA. ACM.

[Cimatti et al., 2002] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pi-

store, M., Roveri, M., Sebastiani, R., and Tacchella, A. (2002). Nusmv 2: An

opensource tool for symbolic model checking. In Computer Aided Verification,

pages 359–364. Springer.

[Clarke and Emerson, 1981] Clarke, E. M. and Emerson, E. A. (1981). Design and

synthesis of synchronization skeletons using branching-time temporal logic. In

Logic of Programs, pages 52–71, London, UK. Springer-Verlag.

[Coons et al., 2010] Coons, K. E., Musuvathi, M., and Burckhardt, S. (2010). Gam-

bit: Effective unit testing for concurrent libraries. In The 15th ACM

SIGPLAN Annual Symposium on Principles and Practice of Parallel Program-

ming (PPoPP 2010).

[Devietti et al., 2009] Devietti, J., Lucia, B., Ceze, L., and Oskin, M.

(2009). Dmp: Deterministic shared memory multiprocessing. In In Pro-

ceedings of the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’09).

[Dwyer et al., 2007] Dwyer, M. B., Elbaum, S., Person, S., and Puran-

dare, R. (2007). Parallel randomized state-space search. In Interna-

tional Conference on Software Engineering (ICSE), pages 3–12, Washington,

DC, USA. IEEE Computer Society.

[Edelkamp and Jabbar, 2006] Edelkamp, S. and Jabbar, S. (2006).

Large-scale directed model checking ltl. In SPIN Workshop on Model

Checking of Software, pages 1–18. Springer.

216



[Edelkamp et al., 2001] Edelkamp, S., Lafuente, A. L., and Leue, S.

(2001). Directed explicit model checking with hsf-spin. In SPIN Work-

shop on Model Checking of Software, pages 57–79. Springer-Verlag.

[Edelkamp et al., 2004] Edelkamp, S., Leue, S., and Lluch-Lafuente, A.

(2004). Directed explicit-state model checking in the validation of

communication protocols. International journal on software tools for tech-

nology transfer, 5(2-3):247–267.

[Edelstein et al., 2003] Edelstein, O., Farchi, E., Goldin, E., Nir, Y.,

Ratsaby, G., and Ur, S. (2003). Framework for testing multi-

threaded java programs. Concurrency and Computation: Practice and Ex-

perience, 15(3-5):485–499.

[Emmi et al., 2011] Emmi, M., Qadeer, S., and Rakamaric, Z. (2011).

Delay-bounded scheduling. In ACM SIGACT-SIGPLAN Principles of Pro-

gramming Languages (POPL).

[Fidge, 1988] Fidge, C. J. (1988). Timestamps in message-passing systems

that preserve the partial ordering. In Proceedings of the 11th Australian

Computer Science Conference, volume 10, pages 56–66.

[Flanagan and Godefroid, 2005] Flanagan, C. and Godefroid, P.

(2005). Dynamic partial-order reduction for model checking soft-

ware. In ACM SIGPLAN-SIGACT Principles of Programming Languages

(POPL), pages 110–121.

[Flanagan and Godefroid, 2011] Flanagan, C. and Godefroid, P.

(2011). Addendum to dynamic partial-order reduction for model

checking software.

217



[Godefroid, 1990] Godefroid, P. (1990). Using partial orders to im-

prove automatic verification methods. In Proceedings of the 2nd Interna-

tional Workshop on Computer-Aided Verification (CAV ’90), pages 176–185.

[Godefroid, 1996] Godefroid, P. (1996). Partial-Order Methods for the Ver-

ification of Concurrent Systems: An Approach to the State-Explosion Problem.

Springer-Verlag.

[Godefroid, 1997] Godefroid, P. (1997). Model checking for program-

ming languages using Verisoft. In ACM SIGACT-SIGPLAN Principles of

Programming Languages (POPL), pages 174–186.

[Godefroid and Khurshid, 2002] Godefroid, P. and Khurshid, S. (2002).

Exploring very large state spaces using genetic algorithms. In In

Tools and Algorithms for the Construction and Analysis of Systems, pages 266–

280. Springer.

[Godefroid and Pirottin, 1993] Godefroid, P. and Pirottin, D. (1993).

Refining dependencies improves partial-order verification methods

(extended abstract). In International Conference on Computer Aided Veri-

fication (CAV), pages 438–449, London, UK. Springer-Verlag.

[Godefroid and Wolper, 1992] Godefroid, P. and Wolper, P. (1992).

Using partial orders for the efficient verification of deadlock free-

dom and safety properties. In Computer Aided Verification (CAV ’91),

pages 332–342.

[Godefroid and Wolper, 1994] Godefroid, P. and Wolper, P. (1994). A

partial approach to model checking. In Information and Computation,

pages 406–415.

218



[Groce and Visser, 2002] Groce, A. and Visser, W. (2002). Model

checking java programs using structural heuristics. SIGSOFT Soft-

ware Engineering Notes, 27(4):12–21.

[Havelund and Pressburger, 2000] Havelund, K. and Pressburger, T.

(2000). Model checking java programs using java pathfinder. In-

ternational Journal on Software Tools for Technology Transfer, 2(4):366–381.

[Holzmann, 1997] Holzmann, G. (1997). The model checker SPIN. IEEE

Transactions on Software Engineering, 23(5):279–295.

[Holzmann et al., 1992] Holzmann, G. J., Godefroid, P., and Pirottin,

D. (1992). Coverage preserving reduction strategies for reachabil-

ity analysis. In In proceedings of the 12th International Symposium on Protocol

Specification, Testing, and Verification, pages 349–363.

[Joshi et al., 2009] Joshi, P., Naik, M., Park, C.-S., and Sen, K. (2009).

Calfuzzer: An extensible active testing framework for concur-

rent programs. In CAV ’09: Proceedings of the 21st International Confer-

ence on Computer Aided Verification, pages 675–681, Berlin, Heidelberg.

Springer-Verlag.

[Katz and Peled, 1992] Katz, S. and Peled, D. (1992). Defining condi-

tional independence using collapses. In Theoretical Computer Science,

volume 101, pages 337–359. Elsevier Science Publishers.

[Korf et al., 2005] Korf, R. E., Zhang, W., Thayer, I., and Hohwald,

H. (2005). Frontier search. Journal of the ACM, 52(5):715–748.

[Leven et al., 2004] Leven, P., Mehler, T., and Edelkamp, S. (2004).

Directed error detection in c++ with the assembly-level model

checker steam. In Model Checking Software, pages 39–56. Springer.

219



[Lucia and Ceze, 2013] Lucia, B. and Ceze, L. (2013). Cooperative em-

pirical failure avoidance for multithreaded programs. In In Pro-

ceedings of the Eighteenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 2013), pages 39–50.

[Mazurkiewicz, 1986] Mazurkiewicz, A. (1986). Trace theory. In Ad-

vances in Petri nets 1986, part II on Petri nets: applications and relationships to

other models of concurrency, pages 279–324. Springer-Verlag.

[McMillan, 1992] McMillan, K. L. (1992). Symbolic model checking: an ap-

proach to the state explosion problem. PhD thesis, Pittsburgh, PA, USA.

UMI Order No. GAX92-24209.

[Musuvathi and Qadeer, 2007a] Musuvathi, M. and Qadeer, S. (2007a).

Iterative context bounding for systematic testing of multithreaded

programs. In Programming Language Design and Implementation (PLDI),

pages 446–455.

[Musuvathi and Qadeer, 2007b] Musuvathi, M. and Qadeer, S. (2007b).

Partial-order reduction for context-bounded state exploration.

Technical Report MSR-TR-2007-12, Microsoft Research.

[Musuvathi and Qadeer, 2008] Musuvathi, M. and Qadeer, S. (2008).

Fair stateless model checking. In Programming Language Design and Im-

plementation (PLDI), pages 362–371.

[Musuvathi et al., 2009] Musuvathi, M., Qadeer, S., Ball, T., Basler,

G., Nainar, A., and Neamtiu, I. (2009). Finding and reproducing

heisenbugs in concurrent programs. In USENIX Symposium on Operating

Systems Design and Implementation.

220



[Musuvathi et al., 2002] Musuvathi, M. S., Park, D., Park, D. Y. W.,

Chou, A., Engler, D. R., and Dill, D. L. (2002). Cmc: A pragmatic

approach to model checking real code. In In The Fifth Symposium on

Operating Systems Design and Implementation (OSDI).

[Nagarakatte et al., 2012] Nagarakatte, S., Burckhardt, S., Martin,

M. M. K., and Musuvathi, M. (2012). Multicore acceleration of

priority-based schedulers for concurrency bug detection. In Pro-

gramming Language Design and Implementation (PLDI).

[Olszewski et al., 2009] Olszewski, M., Ansel, J., and Amarasinghe, S.

(2009). Kendo: Efficient deterministic multithreading in software.

In In Proceedings of the 14th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’09).

[Overman, 1981] Overman, W. T. (1981). Verification of concurrent systems:

function and timing. PhD thesis.

[Park et al., 2009] Park, S., Lu, S., and Zhou, Y. (2009). Ctrigger: ex-

posing atomicity violation bugs from their hiding places. In Fourteenth

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 25–36.

[Pearl, 1984] Pearl, J. (1984). Heuristics: Intelligent Search Strategies for

Computer Problem Solving. Addison-Wesley.

[Peled, 1993] Peled, D. (1993). All from one, one for all: on model

checking using representatives. In Proceedings of the 5th International

Conference on Computer Aided Verification.

[Peled, 1994] Peled, D. (1994). Combining partial order reductions

with on-the-fly model checking. pages 377–390. Springer-Verlag.

221



[Rungta and Mercer, 2009] Rungta, N. and Mercer, E. G. (2009).

Guided model checking for programs with polymorphism. In Proceed-

ings of the 2009 ACM SIGPLAN workshop on Partial evaluation and program

manipulation (PEPM ’09), pages 21–30, New York, NY, USA. ACM.

[Russell and Norvig, 2003] Russell, S. J. and Norvig, P. (2003). Artificial

intelligence : a modern approach. Prentice Hall, 2nd edition.

[Sen, 2007] Sen, K. (2007). Effective random testing of concurrent

programs. In ASE, pages 323–332.

[Sen, 2008] Sen, K. (2008). Race directed random testing of concur-

rent programs. In PLDI, pages 11–21.

[Valmari, 1990] Valmari, A. (1990). A stubborn attack on state ex-

plosion. In Proceedings of the 2nd International Workshop on Computer Aided

Verification (CAV ’90), pages 156–165. Springer-Verlag.

[Visser et al., 2000a] Visser, W., Havelund, K., Brat, G., and Park,

S. (2000a). Java PathFinder - second generation of a Java model

checker. In Proceedings of Post-CAV Workshop on Advances in Verification.

[Visser et al., 2000b] Visser, W., Havelund, K., Brat, G., and Park, S.

(2000b). Model checking programs. In Automated Softeware Engineering

Journal, pages 3–12.

[Yang and Dill, 1998] Yang, C. H. and Dill, D. L. (1998). Validation

with guided search of the state space. In DAC ’98, pages 599–604.

222



Vita

Katherine Elizabeth Coons is the youngest of three children born to Carol and T.A.

Coons. She received the Bachelor of Science degree in Computer Science from the

University of Virginia in 2005 with a minor in Engineering Business. She entered the

Ph.D. program at the University of Texas at Austin in 2005 and earned the Master

of Science degree in Computer Science from the University of Texas at Austin in

2008.

Permanent Address: 20 Descanso Drive Unit 1233

San Jose, CA 95134

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

223


	Acknowledgments
	Abstract
	Contents
	Chapter Introduction
	Chapter Background and Related Work
	Testing Concurrent Programs
	Model Checking
	Heuristic-Based Search

	Multithreaded Programs and Semantics
	Traces
	Systematic Search
	Partial-Order Reduction
	Dependence relation
	Persistent Sets
	Sleep Sets

	Dynamic Partial-Order Reduction
	Bounded Search
	Depth-Bounded Search
	Context-Bounded Search
	Preemption-Bounded Search
	Delta-Bounded Search
	Fair-Bounded Search

	Discussion

	Chapter Best-First Search
	Partial-Order Reduction for Bounded Search
	Best-First Search
	Execution Trees
	Best-First Search Algorithm
	Priority Functions
	Prioritizing New Local States
	Random Search
	Tester Input
	Hierarchical Priority Functions

	Results
	Discussion

	Chapter Bound Persistent Sets
	Sufficient Sets
	Bound Sufficient Sets
	Properties of Bound Functions
	Depth-Bounded Search
	Context-Bounded Search
	Preemption-Bounded Search
	Delta-Bounded Search
	Fair-Bounded Search

	Discussion

	Chapter Computing Bound Persistent Sets
	Dynamic Partial-Order Reduction
	Bounded Partial-Order Reduction
	Conservative Backtrack Points
	Computing Depth-Bound Persistent Sets
	Computing Context-Bound Persistent Sets
	Computing Preemption-Bound Persistent Sets
	Computing Delta-Bound Persistent Sets
	Computing Fair-Bound Persistent Sets


	Chapter Optimizations
	Transitive Reduction Optimization
	Alternative Thread Optimization
	Release Optimization
	Bound Optimization
	Sleep Sets
	Combining Bound Functions
	Discussion

	Chapter Partial-Order Bounds
	Local Bound Sufficient Sets
	Computing Local Bound Persistent Sets
	Local Depth Bound
	Local Context Bound
	Discussion
	Other Bounds

	Chapter Results
	Methodology
	Benchmarks
	Validation
	Coverage Time
	Visited Over Unique Visited States
	Optimizations
	Memory
	Bugs
	Discussion

	Chapter Future Work
	Other Bounds
	Partial-order Bounds
	Bug Depth Bound

	Parallel Search
	Exploring Executions in Parallel
	Parallelizing Each Execution

	Exploiting the Bound
	Exploiting Modularity

	Chapter Conclusions
	Bibliography
	Vita

