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ABSTRACT

This paper introducedynamic object colocatigran optimization
to reduce copying costs in generational and other incremhgatbage
collectors by allocating connected objects together irs#mee space.
Previous work indicates that connected objects belonghegbe-
cause they often have similar lifetimes. Generationalectdrs,
however, allocate all new objects imarseryspace. If these ob-
jects are connected to data structures residing imthiirespace,
the collector must copy them. Our solution is a cooperatjy- o
mization that exploits compiler analysis to make runtinfecation
decisions. The compiler analysis discovers potential algen-
nectivity for newly allocated objects. It then replacessthalloca-
tions with calls tocoallog which takes an extra parameter called
the colocatorobject. At runtime,coal | oc determines the loca-
tion of the colocator and allocates the new object togettitrinin
either the nursery or mature space. Unlike pretenuringyoation
makes precise per-object allocation decisions and doe®quoire
lifetime analysis or allocation site homogeneity. Expenimal re-
sults for SPEC Java benchmarks using Jikes RVM show cotocati
can reduce garbage collection time by 50% to 75%, and total pe
formance by up to 10%.
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D.3.4 [Programming Language$: Processors-Sompilers, Mem-
ory management (garbage collection)
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1. INTRODUCTION

This work introduces theolocation (or crony) optimization for
garbage collectors that divide the heap into separatelgatet re-
gions, such as generational collectors. A problem for tlcelec-

tors is that they record and treat as live pointers into iedéepntly
collected regions. Pointers in connected data structhsctoss
regions will cause the collector to retain their refererfar ex-

ample, Figure 1 depicts a connected data structure thatdéds
two collection regions. Since collectors must assume tbattp
ers between separately collected regions are live, thdyretdin

this data structure, perhaps needlessly. Furthermongppieework

shows that connected objects usually die together [21, X2

goal of colocation is to allocate a new object directly irfte same
region as an object that will reference it. Grouping andemtH
ing connected objects together will thus avoid the work afking

and processing pointers from different regions, and mooenptly

reclaim objects when they die. Colocation i€@operativeopti-

mization because it uses compiler analysis to selectiveetpduce
dynamic allocation decisions.

Figure 1: Connected structures belong in the same space.

Colocation uses the following static and runtime composent
(1) A static compiler analysis finds old objects, calalocators
that will reference newly allocated objects and that thegpam
does not immediately overwrite. (2) A new allocation roatin
coallog which takes a colocator object parameter. (3) At run-
time, coal | oc puts new objects in the same region as the colo-
cator object. The analysis finds connections between nelldy a
cated objects and existing objects, with special provisitex-
clude volatile (quickly overwritten) connections. Thedrgrocedu-
ral compiler analysis is flow-insensitive and exploitsistaingle-
assignment (SSA) form. The compiler analysis need not bedsou
since the location of the object does not affect correctraass we
exploit this feature to make our analysis fast. We implentkist
analysis in the IBM Jikes RVM [2, 3] optimizing compiler.

At runtime, coal | oc makes precise per-allocation decisions
based on the current location of existing colocator objedis-
like pretenuring [9, 12, 20] or prolific types [30], coloaati does
not require lifetime analysis or call site homogeneity. Hg®@ne-
ity limits applicability, especially for library routinewith many
different client uses. Colocation and pretenuring are nliksty



synergistic, but that study is beyond the scope of this papeio-
cation goes beyond age-based copying algorithms [8, 273&3,
to exploit dynamic connectivity, but does not require $taicalysis
correctness as does connectivity-based collection [2&]distuss
related work in more detail in Section 2. Although we evaduat
colocation in two generational collectors, it will work fany col-
lector that divides the heap into independently colleceggians.

Using MMTk [6, 7], a Memory Management Toolkit for Java in
IBM Jikes RVM [2, 3], we evaluate the overhead of colocatiibre,
potential reduction from connected objects in two genenti col-
lectors, and the performance impact. The current impleatiemt
produces its best results when all methods are compileddadfea
time — in this setting our analysis only increases comitatiost
by about 10%. It is considerably less expensive than prewvidias
and escape analysis for Java [10, 15], and we believe we can fu
ther reduce this cost. We evaluate colocation using a cgpyims-
ery with both copying and mark-sweep mature spaces. It esduc
garbage collection time for all the SPEC JVM benchmarks by up
to a factor of 2. For a few benchmarks, the generational ciolte
augmented with colocation can execute in a smaller heap gizaa
without it because colocation helps them to use heap space mo
efficiently. For most programs, the collection time impnments
translate into total time improvements, of up to 10%, sinadgge
collection time is a fraction of total time.

The rest of this paper is organized as follows. In Section 2 we
review related work. In Section 3 we describe the overaltesys
for performing cooperative object colocation. In Sectidrsnd 5
we describe our static analysis and run-time system. In@ec6é
and 7 we present our experiments and results.

2. RELATED WORK

This section overviews generational collectors and theodppi-
ties they expose for colocation. We then compare our worloits ¢
nectivity analysis, allocation for locality, and staticdadynamic
lifetime prediction and its use by pretenuring. Colocai®uanique
from previous work because it does not require call site hgegne-
ity or lifetime profiling or prediction. We also compare owmg-
piler analysis to other static heap analyses.

All generational collectors exploit the weak-generatidngoth-
esis [27, 36], that young object die quickly. Copying getieral
collectors divide the heap, allocate the youngest objetts the
nursery, and most frequently collect the nursery [5, 36].avoid
scanning the mature space when collecting the nursery, tite w
barrier tests all heap pointer stores, and remembers theesofi
pointers that point from the mature space into the nurserurat
time. At collection time, it copies objects reachable frdma stacks,
registers, global variables, and these remembered psiimier the
mature space. The collector re-examines remembered pmfin,
since a later update may have overwritten the nursery target

Recent work on connectivity-based garbage collection 221,
shows that connected objects often die together, whichdyslsur
hypothesis. However, their collector organization corgdleelim-
inates write barriers with a static analysis that allocatgects into
static partitions that contain connected objects, fornangjerar-
chical directed acyclic graph of partitions. The colleataust al-
ways collect ancestors together with descendents, anditf@ssnot
exploit dynamic connections. The colocation optimizagaploits
object connectivity in a much less restricted setting, antlus able
to couple itself with the high performance generationalemors,
and could also improve other incremental collectors [8,223,

Research that uses copying collection to improve objectl{oc
ity [14, 23, 25, 37] can also exploit connectivity. This wdodcates
objects that are frequently accessed together on the saiine lze.

Object colocation may have a positive benefit on page locsilice
it will tend to allocate connected objects closer togethat,it will
not generally improve cache line locality. Locality andamtion
optimizations are thus orthogonal, but could work well thge.

The pretenuring optimization uses static profiling to dfgssb-
jects as long lived, and then directly allocates them intodtiler
generation [9, 12, 34, 35], or uses dynamic samples [1, 1280
through weak pointers and write barriers. All of these téghes
require call site lifetime homogeneity, which is restnieti For ex-
ample, the top allocation site javac creates entry nodes for a hash
table and the lifetimes are split 55-45 short-lived versumtlived.
Object colocation works without call site homogeneity heseait
asks on a per-instance basis: “Is the existing colocatdiemtirs-
ery or mature space?”

Our compiler analysis is similar in spirit to work that findsne
nected heap objects [11, 19], but is much faster and lesgsprda
fact, colocation analysis need not be conservative, shealtoca-
tion of an object in the mature space or the nursery does femttaf
correctness, only performance. We use a flow insensitinglesi
pass analysis, and experiment with intraprocedural amdgmnice-
dural propagation. This approach makes the compiler aisalys
able for a just-in-time compiler, where as escape [10, 18]ather
pointer analyses are too costly in this context.

3. DYNAMIC OBJECT COLOCATION

The goal of dynamic object colocation is to allocate coneectb-
jects in the same garbage collection space. Since coltects
connectivity to determine survivors, the lifetimes of cented ob-
jects are correlated [22], and placing them in the same spate
improve collector efficiency. Colocation produces thiseffdy-
namically by determining in which space the source of a goint
resides, and then allocating the target of the pointer instrae
space.

Similar to pretenuring, colocation tends to put shortdiven-
nected objects in the nursery, and long-lived ones in theuraat
space. In contrast to pretenuring, however, a given ailmaite
can allocate to either the old or young space, depending @n th
objects involved. This flexibility is particularly impoméafor allo-
cation sites inside widely reused code, such as the Javainent
classes. For example, the nkedLi st class contains an inter-
nal “link” class that makes up the backbone of the list, arel th
add() method allocates instances of this class in order to accom-
modate new elements. Pretenuring schemes that are trijbgre
types or allocation sites must decide, for all linked listsyhich
spaceadd() will place new instances of the link. This decision
presents a difficult tradeoff in programs that create bothntslived
and long-lived lists. In contrast, colocation avoids thadleoff by
making the decision dynamically: it allovesdd() to place new
link elements into whichever space contains the existiegnehts
of the list.

Our approach uses a new memory allocation routine, which we
call coallog, that takes an addition argument of typbject, which
we call thecolocator Coal | oc allocates the new object into the
same space as the colocator. Unlike previous approachedcao c
cation for locality, we do not expose the allocation inteef&o the
user [13]. Our system automatically identifies candidaiecation
sites and computes appropriate colocators for them. Sindim§ a
colocator requires knowledge of the future use of a new olgeg.,
its incorporation into a list), our system performs thisktascom-
pile time using static analysis. Since the particular spaeehich
the colocator resides is only known at run-time (and is ctdie
specific), our system makes allocation decisions at rue-tising
a dynamic test. Our system consists of two parts.



void Sinple(A a){
B newB = new B();

) a.f = newB; ‘

void Sinpl

e(A a
B newB =[coalloc B(a); |
::> }a.f=ne;

Figure 2: Simple example: the newly allocated B object is sted in the A object parameter, therefore we convert the new ito a call

to coalloc, passing as the colocator.

voi d BottonmJp(A a){

B newB = new B();

C newC = new () ;

newC. f = newB; e
a.f = newC,

) &

voi d BottomJp(A a

B newB =|coall oc B(a);

:> C newC =|coal | oc a) ;
newC. f = news;
a.f = newC,

}

Figure 3: More complex example: we cannot useaewC as the colocator for the new B because the new C is created latdowever

we can safely usea as the colocator for both.

Compile-time analysis identifies colocators and inserts calls to
coal | oc.

Run-time system provides thecoal | oc allocation routine.

Figure 2 shows a simple example of how colocation works. The
code fragment on the left shows a method cafiedpl e that cre-
ates a new object of type B and stores a reference to it in leetob
of type A pointed to by the variable. The graph in the middle of
the figure depicts the resulting data structure. Unless tbgram
subsequently overwrites the reference, the newly allddatebject
will live at least as long as A. Therefore, the variablés a good
choice for the colocator of the new B object. The code on tiletri
shows the result of our compiler pass. Our analysis autcaibti
identifiesa as a suitable colocator and replacestileev construct
with a call tocoal | oc, passing in the variable. Thecoal | oc
routine makes an allocation decision basedoiif a refers to an
object in the mature space, theaal | oc puts the new B object in
the mature space, otherwiseal | oc puts it in the nursery. The
key is that this decision depends on the run-time valug, efhich
can vary from one invocation of the method to another.

Unfortunately, it is not always possible to colocate a neyect
with the object that directly references it. The reason & tiro-
grams need not create objects in the same order that thegconn
them together. The methdgbt t omJp in Figure 3 demonstrates
this problem:newC is the logical choice of colocator for the al-
location ofnewB, but newC does not yet exist at that point. One
solution is to abandon colocation is such cases. Anothetisol
is to attempt to transform the code so that the order of aweati
matches the order of connection. Both of these solutionsireq
some form of dependence analysis and may still miss cototati
opportunities.

Our solution is to use only the formal parameters of a method (
cluding the receiver object) as potential colocators. Thheatage
of this solution is that the formal parameters are guaraheexist
before any allocations take place in the method, so no depeed
analysis is needed. This solution works because conntgctand
therefore survival, is transitive: sinceewB lives as long asewC,
andnewC lives as long as, we can conclude thatewB lives as
long asa. Thereforea is a suitable colocator for both allocation
sites. The code fragment on the right in Figure 3 shows thé-app
cation of this policy to thd8ot t onlJp method.

More formally, we select colocators as follows: given aocd-
tion siteA inside a method1, we choose a colocat@from among
the formal parameters &fl (including the receiver) such that dur-
ing the execution oM the object or objects created Atbecome

reachable, by some sequence of pointers, f@onif no parameter
is suitable, then the allocation site has no colocator.

4. FINDING COLOCATORS

This section describes our static analysis for finding catiocs.
The goal of this analysis is to find a suitable colocator farhea
allocation site. We start by presenting our basic analygizrahm,
followed by two interprocedural enhancements. This atborican
discover most of the potential connectivity between olsjenta
program. This information, however, is often overly aggnes for
colocation because some of the connections are volatilslamd-
lived at runtime. Examples of volatile connections includéer-
ences that are created conditionally and containers thatieared.
Therefore we add to our algorithm a set of heuristics that@aut
potentially volatile connections.

Our colocation analysis resembles existing algorithmg&amter
analysis, but differs in several unique ways. Central teetdiffer-
ences is that our analysis is unsound: its results do nossadsy
represent all the connections that might occur at runtinherdfore
it cannot be used for traditional optimizations, which rieggound
analysis in order to preserve program correctness. Focatdm,
however, our analysis need not be sound because changiady the
location space is always safe, even if it's not always priofia

We exploit our exemption from soundness in several wayst,Fir
the volatility heuristics mentioned above intentionalijnore cer-
tain connections between objects. We present these hesiiist
detail in the last part of this section. Second, we signifigesim-
plify our algorithm. For example, since colocation is oniyne
cerned with overall reachability of one object from anotteer op-
posed to pointer aliasing), we do not need to accurately hibde
number of pointer hops between objects. This flexibilityowl
us to employ a simple and compact representation for theadeth
summaries used in our interprocedural analysis. Finailygil-
ing up soundness we avoid the problems presented by ceatean J
language features, such as dynamic class loading, reflectial
native methods. These features present significant clgaiéefor
sound pointer analysis algorithni®][ Our analysis can safely ig-
nore these features even in programs that use them, olgyidin
need for the so-called “closed-world assumption”.

In the remainder of this section we present our analysis in de
tail and point out its unique features, particularly thdsat tmake
it unsound. We implement this analysis using the Jikes RVM op
timizing compiler, which includes an internal represeptabased
on static-single assignment form (SSA) [16]. Each methotists
of a list of simple operations applied to temporary varialgiértual



registers). Our analysis algorithm is flow insensitive iatti does
not associate analysis information with particular progrzoints.
However, since only one definition of a variable reaches eseh
SSA form provides some flow sensitivity.

4.1 Basic colocation analysis

The basic colocation analysis builds a graph that represeabn-
servative approximation of the connectivity between olgjén a
method. This algorithm resembles Andersen-style poimeatya
sis [4, 18]: it is flow-insensitive and inclusion-based. Tdraph
it creates captures connectivity among the objects akaolchy the
method and connectivity from local variables to those disjethe
compiler then searches this graph to identify potentiabcators.
The analysis starts by identifying the relevant componehtsach
method:

S Set of statements in the method (in compiler IR)

\Y, Set of variables in the method

pi €V | Formal parameters — indexed by parameter nurber
as € S | Allocation sites — indexed by statement

Each node in the connectivity graph represents a heapatdidc
object: either an “old” object (pointed to by a parameteraorew
object (generated by an allocation site). For example, reg@
and 3 depict the connection graph for the two example codg fra
ments whera represents an old node, aBdand C represent new
nodes. The graph nodes are identified as follows:

0; € Noig A node for each parametgr — “old” objects
Ns € Nnew A node for each alloc sitas — “new” objects
N = Ngig UNnew | Set of all graph nodes

Edges in the graph are directed and represent possiblesgoint
relationships. An edge between two nodes represents apbiet
tween two heap-allocated objects. Our analysis does ntih-dis
guish between the different fields of an object. There aedges
from elements o¥ to nodes in the graph, which represent pointers
from the method’s local variables into the heap. We initialthe
points-to graph with an edge from each of the formal pararsete
to its corresponding old object. This initial structure ifep that
parameters do not alias each other, which is not generalfea s
assumption.

points-ta (NUV) — 2N | Graph edges — a mapping frof]
a variable or node to its

possible targets

=

Vi :points-tq pi) = o Initialize parameter variables tp

point to “old” objects

The analyzer takes one pass over the statements in a medlaiinly a
edges to the points-to graph according to the analysis shlesn
below. The rules for allocation, assignment, and S@Biinctions
are straight-forward: they just transfer the points-tes $eam the
right-hand side expression to the left-hand side variable.

Op Statement Effect

new s:v = new Q)); | points-tqv) =ns

assi gn v =y; points-tqv) U =points-tqy)

phi v=@v0,...); points-tqv) U = Vi,points-tqv;)
getfield | v = y.f; points-tdv) U = points-tqy)

al oad v = y[il];

putfield | v.f =y; Ym e points-tqv) :

astore vli] =y; points-tdm) U = points-tdy)

Unlike other pointer analysis algorithms, our ruledat fi el d
(andal oad) does not dereference the right-hand side variable. In-
stead, it ignores the field altogether and just treats therastent as
an assignment. Skipping the dereference operation fusthagli-
fies analysis and it does not affect overall reachability.éxample,
we can treav=y. f asv=y because anything reachable frgmf
is also reachable from.

After it builds the points-to graph, the analysis simply qurtes
which, if any, allocation nodes are reachable from eachrpeter
in the graph. We test reachability by computing the closues the
points-to function for each parameter. A parameter is arpiate
colocator for an allocation site if that node is in the clasur

reachp) = {m| mepoints-tqp)V
m ereach(points-t¢p))}
coloqas) = {pi| nsereachpi)}

Notice that the analysis may find multiple suitable colocator
a single allocation site. In early experiments we compahedef-
fects of choosing different colocation policies: (1) takitne first
colocator, in parameter order, (2) only usingal | oc if there is a
single colocator, (3) combining multiple colocators at-time by
taking the conjunction or disjunction of the colocation idems.
We found, however, no significant difference in the run-tieffect
of the different policies. Most of the time, the colocatogsese on
the colocation decision. Therefore, all the results shawéc-
tion 7 use policy (1).

4.2 Interprocedural algorithm

The analysis algorithm described so far is intraprocedutanly
considers allocations and connections that occur withiingles
method. It is common, however, for programs to create object
in one method and assemble them in a different method. To han-
dle this case, we compute a simple summary for each method and
apply the summary wherever the method is called. Since alr an
ysis does not require soundness, we can safely ignore metttisd
when no summary is available. In practice, though, we find the
summaries are critical for effective colocation and we difathese
benefits in Section 7. Method summaries cover two programmin
constructs found frequently in object-oriented prografastories

and containers.

4.2.1 Factory methods

Factory methods are a common design pattern in object-oriented
programming: a factory method just creates and returnstshim
behalf of other methods, and thus behaves as an allocatitineo
Our solution is to detect these methods, and then treat tisesit a
location sites in their callers. We describe the modificatito our
analysis below, and Section 5 shows the run-time instruatiemnt
for colocation in a factory method.

To detect factory methods we add the following analysis tole
collect the set of variableR that might be returned from a method:

Effect
RU =points-tqv)

Statement
return v;

Op

return

At the end of the analysis, the analyzer checks to see if dogeal
tion nodes are reachable from returned variables. If soarksithe
method as a factory and records the allocation sites thargen
the returned objects. Section 5 describes how we providecael
tors for these sites.

true
false

isfactorym) = if Jag : as creach(Rm)

otherwise




We also need arule to handle the factory call sites. Thismireors
the existing rule for regular allocation sites:

Effect

if isfactorym):
Create nod@s as alloc site,
points-tdv) = ns

Op

cal | S:

Statement
v = obj.m);

4.2.2 Connector methods

Another common programming practice is the use of container
classes, such as the standard Java library. Containeeslpsssent

a problem for our intraprocedural analysis because thegpudate

the code that connects new objects to their containers.X@onge,

at a call toVect or . addEl enent () our intraprocedural analy-
sis cannot determine that this method creates a conneatarebn

the vector and the input argument. Our solution is to protitde
additional information in the form of method summaries.

We compute a connection summary for a method while comput-
ing colocators. In addition to detecting allocation nodest tare
reachable from the parameters, we compute reachabilityelest
parameters. For each parameperif some other parameteg; is
reachable fronp; then we record the parameter numbers as a pair:

[ Summarym) {(,0) ] pj €reach(pi) } ]

For example, our analysis generates a summary consistifigDf

for the Vect or . addEl enment () method because the new ele-
ment (parameter 1) is attached to the receiver Vector (peberd).
During analysis, we use the method summary at a call site by ap
plying theput f i el d rule to each of the integer paifs j). Note
that the edges created by this rule might represent manysedge
the callee method, but collapsing those edges into a sirdge e
does not affect overall reachability.

Op

cal |

Effect
Y(i,j) € Summarym) :
applyvi.f = vj

Statement
obj . mvo,...);

4.3 Volatility heuristics

This section describes our volatility heuristics, whictphgrevent
overly aggressive colocation. The colocation analysisriesd
above detects almost all potential connectivity betweerothjects
in a program. However, this analysis is too aggressive lsecpro-
grams often introduce volatile or unstable connectivityr &xam-
ple, programs sometimes quickly overwrite a connectiorprdy
install connections under special conditions. Excessblecation
can force objects with dramatically different lifetimesarthe same
space, hurting the efficiency of collection. In our expenitsausing
generational collectors this effect manifests itself agaress of
short-lived objects colocated in the mature space, reyyizostly
full-heap collections to recover.

These heuristics are conservative in the sense that if eerefe
appears to be volatile then we exclude it from colocatiom.deme
programs these additions are overly conservative, butverak
cases they prevent pathological behavior.

The code fragment in Figure 4 shows two examples of volatile
connections. The first example creates a new string, butauidg
it to the container if it is not already there. At compile tinvee
do not know how frequently that condition might be true, soase
conservatively and avoid colocating the string with thetaorer. In
the second example, the loop fills the container with newaibje
but then immediately clears it. Again, to conservativelgyant
excessive colocation, the analysis prohibits colocatimncapture

void Vol atil e( Cont ai ner c,
/Il -- The newly created string is not always
I stored in the container:

1 Val ue v) {
2
3
4 String value_name = v.toString();
5
6
7
8

if (! c.contains(value_nane))
c. add(val ue_nane) ;

/'l -- ojects don’t remain in the container
9 I for long...
for (...) {

c.add(new String(...));

c.clear();

Figure 4: Examples of volatile connectivity.

this notion of volatility, we place two additional conditis on the
analysis rules and modify the reachability computation.

We place two restrictions on theut fi el d rule in order to
avoid volatile or uncertain connections. First, we prahimlo-
cation when theut f i el d that connects a new object to an old
one is guarded by a condition, but the creation of the newcoige
not. We test for this case using post-dominance: We onlyyagl
put fi el d rule when theut f i el d post-dominates the creation
of the stored object.

Second, we prohibit colocation when the program storesehe r
sults of a getfield operation. Our reasoning is that the olges-
duced by a getfield is already connected to some other dai@ str
ture, so the additional connectivity is unlikely to help @cdtion.
We can imagine cases where this condition would help calmtat
For example, if an object is stored in a temporary object teefo
being connected to another data structure. We prefer taasec-
vatively, and find this opportunity is rare.

Our third heuristic is designed to detect cleared data sires.
During the analysis we compute the set of objéxtsto which the
program explicitly stores null. We add the following anadysiles:

Op Statement Effect
putfield null | v.f = null; C U = points-tdv)
astore nul | v[i] = null;

During the closure computation we do not follow the outgoing
edges from cleared objects:

{m]

m¢C A
(me points-td p) V

m € reach(points-t¢p)) }

5. RUNTIME SYSTEM

This section describes the run-time components of dynabjeco
colocation: (1) Theoal | oc routine, which replaces the regular
memory allocation routine and performs the run-time cdioca
test, (2) the mechanism for passing colocators down thréagh
tory methods to the underlying allocation sites, and (3) xere
sion tocoal | oc that speculative colocates objects based on their
relative ages. This last feature is more aggressive thastamelard
colocation system, but can improve colocation in collectbat use

an unbounded nursery.

5.1 Coalloc

The compiler replaces calls to the regular memory allooatini-
tine with acoal | oc call only when the analysis finds a suitable
colocator. Figure 5 shows an abstraction of the originakcaad
its replacement. Since we use two-generational collefborall of
our experimentsgoal | oc tests the colocator to decide whether
to allocate the new object in the nursery or in the mature espac

reach(p)




Our VM assigns specific address ranges to each of these spaces
we can determine which space the colocator occupies by desimp
address comparison. In our collectors the nursery spaitkesest a
higher range than the mature space, so the less-than tegtire s
returns true if the colocator is not in the nursery. Sincecaition
time typically represents less than 1% of total time [23} amce
these values are usually in registers, this overhead igyitaigl

1 public VM Address alloc(int bytes) {
2 return nursery.alloc(bytes);
3}
(a) Original allocation.
1 public VM Address coal |l oc(int bytes,
2 VM Addr ess col ocator) {
3 if (! colocator.isZero() &&
4 col ocat or. LT( NURSERY_START) )
5 return matureAl | oc(bytes);
6 el se
7 return nursery.alloc(bytes);
8

(b) Coalloc.

Figure 5: The colocator argument selects the allocation spga
incoal | oc.

5.2 Factory methods

Factory methods colocate objects based on the use of objabes
calling method. Therefore, we provide a mechanism for thierca
to pass a specidactory colocatordown into the factory method.
Ideally, we might alter the factory method interface to @tcn
additional object argument. However, this strategy rezguirs to
make sure that any potential callers and any factory subetaare
properly modified to reflect the new interface. Therefore, ¢hr-
rent system instruments the caller to store the factoryoemtw in-
side the VM, and the callee retrieves the value and holds it in
local variable. This strategy is easy to implement and isewbr
even if the caller does not recognize the callee as a factethad.
Figure 6 shows an example of this instrumentation. We avoid ¢
fusion and contention across threads by allowing the VM i@ sa
factory colocators on a per-thread basis.

O ©®~N O U WN PR

-

voi d someMet hod(Cont ai ner c) {

1
2
3 VM save_factory_col ocator(c);
4 El ement e = Factory. makeEl ement();
5 c.add(e);
6}

(a) Caller.

class Factory {
El ement nakeEl enent () {
bj ect factory_col ocator =
VM get _factory_col ocator();
return coalloc(..., factory_col ocator);

B I BN A

}
}

(b) Callee.
Figure 6: The caller passes colocators to Factory methods.

5.3 Speculative age-based colocation

In generational collectors, dynamic object colocatiomariily serves
to allocate new objects into the mature spankywhen the coloca-
tor is in the mature space. However, we can also look at thével
age of a colocator, even if it currently resides in the nyrséig-
ure 7 shows a diagram of the nursery space with a colocatee clo
to the older end of the nursery and the current bump pointtreat
young end of the nursery. The colocator is almost certainéyadt

this point, and thus likely to survive the next collectiospecially
for large nurseries. Therefore we can speculatively plaeenew
object in the mature space when the colocator is old, blirstihe
nursery.

Relative age

M= b ]
t 4

colocator bump-ptr

Figure 7: Age-based colocation: even if the colocator is ndh
the mature space, if it is “old enough” we can allocate the new
object in the mature space.

public VM Address coal |l oc(int bytes,

VM _Addr ess col ocator) {
int age = nursery.cursor.diff(colocator).tolnt();
if (! colocator.isZero() &&

(col ocat or. LT( NURSERY_START) ||
(age > AGE_THRESHOLD)))
return matureAl | oc(bytes);
el se
return nursery.alloc(bytes);

Figure 8: Coalloc routine with age-base speculative promadn.

The implementation of this feature involves adding an askire
relative test to the oal | oc routine. Figure 8 shows the modified
coal | oc routine with an age-relative colocation test. In Section 7
we show the effect of this policy under an unbounded “Appglied
nursery using a 4 MB age threshold. This nursery configumatio
delays collection of the nursery as long as possible, rieguih
relatively old objects residing in the nursery instead offia ma-
ture space. Age-based colocation places new objects indfgren
space when their colocators are old enough, but not yet imtre
ture space.

6. METHODOLOGY

This section briefly describes our experimental methodglaw
cluding our generational collectors, MMTKk, Jikes RVM, cdlep
time strategy, and platform.

6.1 Generational Collectors

We perform our experiments in an efficient, composable Jara-m
ory management toolkit that implements a wide variety ofhhig
performance collectors that reuse shared components [F]TiM
manages large objects (8K or bigger) separately in a nop-sjogce,
and puts the compiler and a few other system pieces in thefeot
age, an immortal space. We apply colocation to two generaitio
collectors with different mature space policies, and twifedént
nursery configurations.

The first collector is a generational copying collector (Gepy)
that divides the heap into two parts, a copying nursery faviye
allocated objects, and a mature space that is managed @siig s
space collection [5, 36]. Avrite barrier remembers pointers from
the mature space to the young space. For every pointer shere,
compiler inserts write-barrier code. At execution timecandi-
tionally records pointers depending on the collector poliGen-
Copy collects the nursery when it is full (see nursery potics-
cussion below). It finds all reachable objects by tracingnfiibe
roots (stacks, registers, statics, and remembered setrantbt-
ing survivors into the mature space. We use a variant of efésth



copying order that attains good mutator locality [23]. ®irtbe
mature space is a semi-space, it must reserve half of itedpac
copying.

The second collector is a generational collector with a mark
sweep mature space (GenMS). The mark-sweep space uses a se
regated free-list modeled after Lea’s allocator [26]. Thstem
collects this space by tracing and marking the live objesiag
bit maps, and lazily finds free slots during allocation. Tmgds
thus proportional to the number of live objects, and reckiona
is incremental and proportional to allocation. MMTk usesse
classes that attain a worst case internal fragmentatiof8ofCol-

fied 8-way set associative L2 on-chip cache, 1GB main memory,
and runs Linux 2.6.0.

4. RESULTS

This section presents our findings from applying dynamiocai
tion to the SPEC JVM98 benchmarks, under the four genedtion
garbage collector configurations (see Section 6.1). Ing&igng,
the primary benefit of colocation is to reduce the cost of enyrs
collections by allocating some objects directly in the maspace.
We start by describing the potential for colocation: the antof

lection of the nursery proceeds in the same manner as GenCopymemory copied from the nursery by the unmodified collectdrs.

Since GenMS need not reserve half the heap for copying, ibiem
space efficient than GenCopy. However, our results confioante
work showing that copying collectors produce better mutédo
cality, which outweighs space efficiency in some cases [&3e
Blackburn et al. for additional MMTk details [6, 7].

We test both GenCopy and GenMS under two nursery config-
urations: abounded4 MB nursery and an unboundetppel [5]
nursery. In MMTK, theboundednursery takes a command line
parameter as the initial nursery size, collects when theamyris
full, and resizes the nursery below the bound only when the ma
ture space cannot accommodate a nursery of survivors. Wieen t
nursery size falls below a lower bound (we use 256KB), itfeis
a mature space collection. Afppelnursery uses the same dis-
cipline, but with the heap size as the upper bound. Previau& w
finds that these two have similar performance, but the Appafig-
uration is sometimes slightly faster and the bounded 4 MBewyr
has lower average pause times [6].

Colocation is sensitive to the nursery configuration beeatis
determines which objects end up in the mature space and when
For example, with an unbounded nursery the first collectioly o
occurs after the whole heap has been exhausted, which dakays
initiation of colocation. With a 4 MB nursery, collection @ags
earlier, allowing colocation to start working earlier. Flis reason,
we focus on the 4 MB bounded nursery.

6.2 IBM Jikes RVM and compiler

Jikes RVM (v 2.3.0.1) is a high-performance VM written in dav
with an aggressive adaptive just-in-time optimizing cdep[2,
3]. We use configurations that pre-compile as much as peassibl
including key libraries and the optimizing compiler its@lie Fast
build-time configuration), and turn off assertion checking

Our experiments direct the compiler to optimize all methirds
the application before executing the program and measpsgrfor-
mance. While this strategy is not strictly necessary, itigicantly
improves the effectiveness of colocation. We added ourceion
analysis and instrumentation phase to the sequence ofidigh-
optimizations that take place in SSA form. The compiler gsial
goes bottom up on call graph to obtain interprocedural suriema
for all methods (see Section 4). The overhead of optimizirg t
entire application is quite high, but the fraction of thisedwead
added by the colocation analysis is only 5% to 10%. By compari
son, other pointer analysis and escape analysis, appeaisigrif-
icantly more costly [10, 15]. In addition to the analysise thore
complex allocation routine places a heavier load on theropiing
compiler. For now we view colocation as an ahead-of-time-opt
mization, which might be suitable for a Java-to-bytecodauiter.

6.3 Experimental Platform

We perform all of our experiments on a 3.2 GHz Intel Pentium 4
with hyper-threading enabled, with an 8KB 4-way set assiveia
L1 data cache, a 13ps L1 instruction trace cache, a 512KB uni-

quantify runtime overhead afoal | oc, which is on average less
than 1%, using a configuration that includes all colocatiwstrii-
mentation, but always allocates objects in the nursery. Xdenéne
the tradeoff between accuracy and efficacy of colocatiomlirfin
that our analysis finds much of the potential while making spm
but not many errors.

We then present the central result of the paper. We exam@e th
impact of colocation on performance by measuring garbagfe co
lection time, mutator time, and overall execution time. @altion
substantially reduces copying from the nursery withoutriowe
dening the mature space. The resulting collection time avepr
ments translate into total execution time improvementslo&o
tion is particularly effective on the three benchmarks whigh
nursery survival rates. Finally, we explore the design spa{che
colocation analysis by showing the impact of turning offivas
features, including the volatility heuristics and the mptecedural
summaries.

7.1 Potential of colocation

Table 2 presents the allocation characteristics of our traacks:

the total allocation in MBTotal) and the amount the collector pro-
motes from the nursery to the mature spaCepy) in MB and as

a percentage. We order programs by their nursery survival ra
These base statistics show that colocation in this geoealtset-
ting has the potential to improyeseudojbb, javac, anddb since a
significant fraction of their nursery objects survive. Weiboom-
press because it allocates only 3 MB into the nursery, and thus it
never triggers a nursery collection.

Table 1 shows the compile-time properties of the benchmarks
the numbers of methods and allocation sites, as well as the sp
cific colocation decisions the compiler generates. Thersgcol-
umn shows the number of methods identified as factory methods
The third column shows the total number of allocation sifEse
last three columns show the number of allocation sites ctene
to coal | oc. In general, the compiler finds many opportunities
for colocation, but these opportunities comprise less thalh of
all the allocation sites. For factories, we separate ouutes of
coal | oc inside the factory method itself from uses of the factory
method in the caller.

Methods Allocation sites

Factory
Benchmark| total | Factory || Total | coalloc | inside | caller
pseudojbly 598 89 || 1404 120 77 155
javac|| 919 121 || 1953 512 274 | 431
db| 192 18 | 683 83 25 36
mtrt|| 322 18 || 747 138 24 35
jack|| 430 22 || 1386 198 35 90
raytracg| 324 19 751 138 25 35
jess|| 605 49 || 1266 255 159 88

Table 1: Compile-time colocation decisions



7.2 Colocation overhead

Colocation incurs a small runtime overhead that results fitee ad-
ditional test on the colocator object in each caltwal | oc. We

measure this overhead using a versiorcofl | oc that includes
the test, but still allocates all objects in the nursery.sTdonfigu-
ration separates the direct overheadcofl | oc from secondary
effects of colocation, such as changes in locality. Figush®@vs
that that the overhead of the additional test is on averaggethan
1%, and thus a negligible consideration.

7.3 Accuracy and efficacy of colocation

In our current implementation, colocation reduces copyfitmgn
the nursery by allocating some new objects in the maturessbge
passing the nursery. This effect, however, only yields afiean-
der two conditions: first, colocation must select the righjeots to
place in the mature space, and second, it must do so ofteglenou
significantly lower nursery survival rate. These two regoients,
which we refer to agccuracyandefficacyrespectively, are com-
peting forces. For example, we could increase efficacy rariiit
by allocating most or all new objects in the mature spacesinge
many of these objects do not belong there the resulting imacy
would force many expensive full-heap collections. Sintylawe
could improve accuracy by using a more conservative cdlmtat
analysis, but the low efficacy would yield little improvenémper-
formance. The following measurements show that our fortiara
effectively balances these two requirements.

Ideally colocation would always select exactly those atsjéttat
would have survived nursery collection, so that no objectsapied
— perfect accuracy and efficacy. For a number of reasons,Jeowe
colocation cannot attain this goal. First, some nurseryigoirs
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Figure 9: Colocation overhead (mean over all benchmarks):
colocation instrumentation has a low overhead.

are not connected to objects in the mature space but areadhste
reachable from the stacks and global variables. Secondca&ol
tion can only start to place new objects directly in the magpace
once some initial set of colocators is already there. Tloeesfolo-
cation requires a ‘warm up’ of at least one nursery collectio
produce these initial colocators. Third, some allocatib@sspro-
duce objects whose lifetimes are not accurately predicyetthéir
connectivity. In these cases, our volatility heuristicaservatively
place these objects in the nursery to avoid triggering exéaé
heap collections. Finally, even with these heuristicspcation can
mistakenly place objects in the mature space.

Figure 10 shows the effects of colocation on the allocatioh a
copying of each benchmark as compared to the unmodifiedceolle
tors. To focus on accuracy, we measure these values usicigpe
instrumented collectors configured with a 4 MB nursery withira
finite mature space. (Table 2 also presents these raw nurabérs

adds percentages.) Each bar shows the amount of memory that

ends up in the mature space, broken down into two parts: ttke da
part represents memory copied from the nursery and the pigtt
represents memory allocated directly in the mature space.bar
labeled “Base” shows the behavior of the unmodified coltexs)
which allocate all objects in the nursery. We normalize tfapg to
this value because it represents the potential for colmeafihe bar
labeled “Coloc” shows the result of colocation. Our goabiptish
down the dark bar (reduce copying) without allowing thelteize

of the bar (copying plus mature space allocation) to siggmifiky
exceed the base value.

For all but one benchmark, colocation reduces copying by 50%
to 75%. Colocation is usually accurate as well, increasiagune
space allocation by 1 to 6% on four programs, but is not ateura
on pseudojbb. We discuss the impact @fseudojbb’s behavior
on performance belowess has the fewest nursery survivors, and
the smallest reduction. Furthermore, colocation increasature
space promotion usage by 28%, but in absolute terms the d@mmbun
memory (0.6 MB) is so low that it has little impact on performaa.
The most significant reductions are faxvac, pseudojbb, anddb
which are non-trivial applications that allocate large amts of
memory and have high nursery survival rates.

7.4 Write barrier

Colocation also has the potential to reduce intergeneraltiopoint-
ers, and therefore reduce the number of write barriers. d$tewo
columns of Table 2 show the percent of all writes that the ewrit
barrier records in the remembered set (remset). We obskise t
secondary reduction fgrseudojbb, javac, anddb, which is not
surprising since these are the benchmarks for which cotoca
most effective. Fojess andjack colocation slightly increases the
number of remset entries. F@ytrace andmtrt (which are closely
related programs), however, the number of remset entriesgr
considerably. As an absolute percentage, the number lisostil
These could be errors, but Figure 11 shows how colocatiorinean
crease remset entries, while still improving overall parfance. If
only part of a data structure is colocated in the mature sfragea
broad slice of it may span the boundary between spaces.

7.5 Performance

We present the geometric mean for collection, mutator, atel t
time (Figure 12) using a 4 MB bounded nursery, and the indiid
program results (Figures 13, 14, and 15) with and withoub@a!
tion.

Figure 12 shows that colocation consistently reduces ciolle
work in a bounded 4 MB nursery, reducing collection timesrfro
40% to 60% lower in large heaps. In overall time, colocation p



Allocation (MB) Write barriers
Base Colocation % taken

Total | Copy | % Surv% | Copy | % Surv % | Mature spaceg Base| Colocation
pseudojbb|| 216 | 59.8 27.7| 23.1 10.7 63.6 | 5.72 3.51
javac| 185| 47.7 25.8| 13.8 7.5 34.9| 2.70 0.99
db 82 7.7 9.4 4.1 5.0 3.7| 1.22 0.17
mtrt 142 6.4 4.5 3.3 2.3 3.2| 0.07 0.36
jack | 231 6.7 2.9 3.6 1.6 4.2 | 8.19 8.57
raytrace|| 135 3.2 2.3 0.9 0.7 24| 0.01 0.33
jess| 261 2.1 0.8 2.0 0.8 0.7 | 0.09 0.17

Table 2: Benchmark Characteristics. Copying and colocatio are measured using a 4 MB nursery and infinite mature space.
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Figure 10: Colocation reduces copying without significanyf increasing mature-space allocation in all but two cases.
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Figure 12: Colocation results with 4MB nursery: (a) Colocaton reduces work for the garbage collector, (b) improves loality for
copying mature space, (c) these benefits are reflected in oadrexecution time.

duces reasonable improvements for the GenCopy colleatbndt
for the GenMS collector. This result is explained by the muta
tor time graph. In a copying mature space, colocation imgsov
locality without significant allocation overhead. In a maskeep
mature space, however, locality is poor and allocation isenex-
pensive — objects placed directly in the mature space cavest
benefit from fleeting nursery locality [23]. This effect i&dly to
hurt the mutator time in any scheme that allocates objectsttly

in the mature space.

Figure 13 reports the reduction in collection time for thdiin
vidual benchmark programs. These results show four kindeof
havior under colocation. First, fgavac, raytrace, jack, andmtrt
colocation chooses the right objects to allocate in the reatpace,
reducing collection time for both collectors and acrossrayeaof
heap sizes. Second, fiss andjack, our analysis detects the po-
tentially high mutation rate in the mature space (using thatility

heuristics described in Section 4) and prevents incor@otation.
Without this special case, colocation can cause colledtiog in
jess to grow by a factor of three or four.

Third, for db colocation chooses the right objects to allocate in
the mature space, but the performance improvement is notodue
the reduction in garbage collection time, but due to the cédn
in mutator time. We only see this improvement in GenCopycWhi
suggests that it is a result of locality: colocation placétical data
structures together in the mature space in allocation order

Finally, for pseudojbb colocation places many objects in the
mature space that would not have survived a nursery callectit
larger heap sizes the cost of these incorrect decisionglgehi—
pseudojbb even shows a measurable improvement. In small heaps
excess allocation in the mature space triggers whole-helgce
tions more frequently, and degrades performance.
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Figure 13: GC Time with and without Colocation, 4 MB bounded rursery.

7.6 Design space analysis

We explore the analysis design space by turning off compsran
the interprocedural analysis and volatility heuristicke$e experi-

erences that appear volatile, but are in fact stable. Howéve
heuristics are critical for many of the programs, which vaboth-
erwise rapidly fill the mature space with garbaggess andjack, in

ments use an unbounded mature space to isolate nurseryidrehay  particular, use container classes to hold ephemeral abject
The results, shown in Figures 16, 17, and 18, use the same axes Figure 18 shows the effects of using speculative age-based c

as Figure 10 described at the beginning of this section. \&& al
present performance numbers using the unbounded nursery.
Figure 16 shows the effects of removing the interprocedmal-
ponents of the analysis. The left bar shows the full colocagilgo-
rithm (same as Figure 10.) The middle bar shows the resutts wi
out any interprocedural summaries. The effect is most rdetrnt
tal to the larger benchmarks suchjagac, jack, andpseudojbb,
which rely on complex data structures to store their data right
bar shows the results of excluding factory colocation: tisfigu-
ration effectively disables colocation for programs tledy heavily
on factories, such gsseudojbb. In fact, pseudojbb allocates al-
most all important data structures through a single factory
Figure 17 shows the effects of turning off the analysis reuri
tics that prune volatile references out of the connectigitsph.
For some benchmarks eliminating the putfield and clearéecbb
tests actually improves performance — these programsioarta

cation (see Section 5). This feature primarily benefits Enhénch-
marks, such agb andmtrt, which allocate many long-lived objects
in the first nursery collection. Speculative colocatioroal these
programs to put objects in the mature space before the firsenu
collection.

This feature also helps colocation work more effectivelyam
unbounded Appel nursery [5]. Figure 19 shows the geomegans
of collector time, mutator time, and overall time using anp&p
nursery. Colocation is less effective in this nursery canfigion,
but still yields 15% to 25% improvement in collection timer fo
GenMS. These improvements occur for the smaller heap sibese
performance improvements are harder to obtain. Unforalyat
colocation degrades locality in GenMS, which overwhelnisien-
efit and results in a net slowdown for the overall runtimes.
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Figure 14: Mutator time with and without Colocation, 4 MB bou nded nursery.

8. CONCLUSION

This paper introduces dynamic object colocation, a new easp
tive compiler and runtime optimization to improve the penfiance
of generational and other incremental garbage collectiesdemon-
strate a practical compiler analysis that computes objmuectiv-
ity information and passes it to the garbage collector sbaba-
nected data structures can be colocated in the same garblge ¢
lection space. Our analysis finds many opportunities fofigatde
colocation and reduces garbage collection time, sometilreesat-
ically, on our benchmarks for two generational collectoffiese
improvements translate to improvements in total executioe as
well. Colocation makes a unique use of static and dynamir-inf
mation, and should play well with other optimizations totffiar
improve performance. Previous work suggests heap organiza
that segregate objects by connectivity, but with the retsom that
the objects must never install cross region pointers [2], ZBe
success of colocation instead suggests collector org#misahat
group connected objects into separately collected regigrese a
write barrier handles cross region pointers.
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