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Abstract
Poor code locality degrades application performance by increasing
memory stalls due to instruction cache and TLB misses. This prob-
lem is particularly an issue for large server applications written in
languages such as Java and C# that provide just-in-time (JIT) com-
pilation, dynamic class loading, and dynamic recompilation. How-
ever, managed runtimes also offer an opportunity to dynamically
profile applications and adapt them to improve their performance.
This paper describes a Dynamic Code Management system (DCM)
in a managed runtime that performs whole program code layout
optimizations to improve instruction locality.

We begin by implementing the widely used Pettis-Hansen algo-
rithm for method layout to improve code locality. Unfortunately,
this algorithm is too costly for a dynamic optimization system,
O(n3) in time in the call graph. For example, Pettis-Hansen requires
a prohibitively expensive 35 minutes to lay out MiniBean which
has 15,586 methods. We propose three new code placement algo-
rithms that target ITLB misses, which typically have the greatest
impact on performance. The best of these algorithms,Code Tiling,
groups methods into page sizedtiles by performing a depth-first
traversal of the call graph based on call frequency. Excluding over-
head, experimental results show that DCM with Code Tiling im-
proves performance by 6% on the large MiniBean benchmark over
a baseline that orders methods based on invocation order, whereas
Pettis-Hansen placement offers less improvement, 2%, over the
same base. Furthermore, Code Tiling lays out MiniBean in just 0.35
seconds for 15,586 methods (6000 times faster than Pettis-Hansen)
which makes it suitable for high-performance managed runtimes.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Run-time environ-
ments, Memory management (garbage collection)
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1. Introduction
The gap between processor and memory speed continues to present
a major performance bottleneck. Applications spend much of their
time waiting because of cache and TLB misses. For example, on the
Intel R© ItaniumR© 2 processor, the SPEC JBB20001 server bench-
mark spends 54% of its cycles waiting for memory. While the ma-
jority of stalls are from data access, instruction related misses such
as instruction cache misses, ITLB misses, and branch mispredic-
tions also contribute. Zorn [18] notes that Word XP, Excel Xp, and
Internet Explorer have large code working sets, and that much of
the latency users perceive is caused by page faults fetching code.

There are a number of common techniques compilers use to
improve code layout. For example, compilers often arrange basic
blocks within a procedure to decrease branch mispredictions. They
may also use procedure splitting [13]: by allocating frequently
executed basic blocks separately from infrequently executed ones,
they reduce the number of active code pages and so the number of
ITLB misses.

Researchers have developed a number of offline tools to opti-
mize code placement. For example, Microsoft uses a profile-based
tool [18] to reorder the code of their applications for better perfor-
mance. Similarly, the Spike post-link optimizer [6] uses a number
of techniques to improve code locality, and has been used to im-
prove the performance of several large programs including the Or-
acle 11i application server and the TPC-C benchmark by as much
as 30%.

In this paper, we are concerned with code layout in Java and
C# managed runtimes. These runtimes employ JIT (just-in-time)
compilers, dynamic code generation, and profile-based aggressive
dynamic optimizations. They typically allocate compiled code se-
quentially. This tends to keep callers close to their callees, which
Chen and Leupen [2] showed can improve performance. However,
even if the original code layout performs well, methods may be re-
compiled. Furthermore, new classes may be loaded at runtime, of-
ten varying based on application data. The result is that when one
method calls another, the caller’s code may be some distance away
from that of the callee. In general, the code for applications, espe-
cially large applications, can occupy many virtual memory pages.
If control jumps around the code region frequently, there will be
numerous costly ITLB misses as well as many instruction cache
misses.

Because of these issues, we believe managed runtimes should
includecode managementin addition to JIT compilation, garbage

1 We use the SPEC benchmarks to compare the performance of the various
techniques within our own VM. We are not using them to compare our VM
to any other VM and are not publishing SPEC metrics.



collection, exception handling, and other services. Code manage-
ment actively manages JIT-allocated code in order to improve its
locality and consequently application performance. Managed run-
times should use profile information from hardware or software
monitoring to reorder method code when necessary to maintain
good instruction locality.

This paper describes the implementation of a dynamic code
management (DCM) system that is integrated into our managed
runtime. DCM uses dynamic profile information to reorganize JIT-
compiled code at the granularity of methods. We show that our
DCM can significantly improve performance. We also describe
three new procedure layout algorithms that, compared to previous
approaches, reduce the cost of computing a new code placement.
These algorithms specifically target ITLB misses, which typically
have the greatest impact on performance because of their frequency
and high cost. One of these algorithms, Code Tiling is significantly
faster both in worst case complexity and in practice than the best-
known previous technique by Pettis and Hansen [13]. We demon-
strate that Code Tiling generates code layouts that are better or
comparable to those by the Pettis-Hansen algorithm.

This paper makes the following novel contributions:

• We present the first implementation of a dynamic code reorder-
ing system in a managed runtime (to our knowledge). Since
DCM operates on-the-fly, it naturally copes with dynamic fea-
tures of languages like Java such as method recompilation and
dynamic class loading.

• A new code placement algorithm called Code Tiling. This algo-
rithm is fast enough to make dynamic code reorganization prac-
tical in a high-performance managed runtime. Our results show
that that DCM with Code Tiling reduces the execution time for
MiniBean by 6% on a 4-processor IntelR© XeonR© processor,
which is better than with Pettis-Hansen.

The rest of this paper is organized as follows. Section 2 presents
an overview of our DCM system. We have implemented DCM for
IA-32 and the Itanium Processor Family (IPF), but our IA-32 im-
plementation is more complete. We begin by describing the IA-32
implementation in Section 3. Section 4 then describes the Pettis-
Hansen procedure layout algorithm and our new layout algorithms.
Section 5 presents our experimental results on code reorganization
and application times. Next, we describe the IPF implementation in
Section 6, and discuss our experience using performance monitor-
ing unit (PMU) sampling on the IPF to collect profile information
for code reorganization. We then discuss related work in Section 7.
Section 8 concludes and lists future work.

2. Dynamic code management overview
This section overviews the dynamic code management system,
and the following section describes its implementation and design
choices.

As the application executes and its behavior changes, DCM
reorganizes compiled code as necessary. When miss rates for the
ITLB or instruction cache become too high, it calculates a new
layout, moves method code, and updates code pointers and offsets
in methods, thread stacks, registers, and data structures of the
managed runtime to reflect the new locations.

DCM gathers profile information on callers and callees and uses
it to build a dynamic call graph. The dynamic call graph (DCG) is
an undirected graph with a node for each method, and edges from a
method to any methods it invokes, weighted by their dynamic fre-
quency. When the system triggers a reorganization, DCM computes
a new placement for each method’s code based on the DCG. DCM
then moves the code and does any required code updates. Figure 1
depicts DCM’s components and their interactions.
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Figure 1. Dynamic Code Management

Software instrumentation or hardware performance monitoring
can provide the dynamic call graph profiles. DCM can use one of
a number of different code layout algorithms. The Pettis-Hansen
procedure layout algorithm is one, and we describe three others in
Section 4. These algorithms attempt to improve performance by, for
example, reducing the number of frequently executed code pages to
minimize ITLB misses.

To minimize the number of managed runtime components that
need to understand JIT-compiled code, DCM relies on the JIT to
make any necessary adjustments to relocated code. This division
gives JITs more freedom in how they emit code, and the code
management system and the rest of the managed runtime do not
need to understand the representation of JIT-compiled code.

3. DCM Implementation on IA-32
We implemented DCM in a managed runtime environment that
supports Java and C# programs. Our core platform consists of the
Open Runtime Platform virtual machine (ORP) [3] and one or more
JIT compilers. On IA-32, we use the optimizing O3 JIT [4] to com-
pile JVM bytecodes. This JIT performs inlining, a number of global
optimizations (e.g., copy propagation, dead code elimination, loop
transformations, and constant folding), as well as common subex-
pression elimination and array bounds check elimination.

ORP allocates compiled code in a region of memory that is sep-
arate from the garbage collected heap. It provides different subre-
gions for code that is cold (infrequently executed) and hot (more
often executed). ORP allocates code of equal “temperature” se-
quentially. Our IA-32 O3 JIT emits a single block of code for each
compiled method. As a result, the granularity of reorganization for
the IA32 is methods; for the IPF, it is acode blockwhich typically
divides a method into two parts: one for its hot basic blocks and
another for its cold ones. We return to the IPF implementation in
Section 6, but the remainder of this section and the next two discuss
our IA-32 implementation.

To support dynamic code management, we modified O3 to emit
relocatable code. This simplifies moving code on a code reorga-
nization, but usually requires that the code be fixed up to update
pointers to compiled methods used in that code, including refer-
ences into code of other methods as well as into the same method.
DCM calls the JIT (here O3) to update code after it has moved it.

ORP can collect dynamic profile information from either soft-
ware instrumentation or from PMU sampling. However, on the IA-
32, we found that using the PMU is too expensive. In particular,
capturing the LBR (last branch record) requires hundreds of cycles
since the pipeline must be flushed and a memory fence performed.
As a result, ORP uses software instrumentation on IA-32. We could
have modified our JITs to do the instrumentation, but we chose a
simpler approach. ORP interposes on method calls to record the



DCM Step Cache-Aware Pettis-Hansen Code Tiling
Compute new layout 28,459 417
Allocate new code space 5 5
Move and update code 90 87
Update thread stacks 1 1

Table 1. Breakdown of time to reorganize MiniBean’s code (ms)

caller and the callee. It does this by generating a small machine
code stub for each compiled method that is executed first when-
ever a call is made to the associated method. When entered, this
stub records the caller/callee information and then transfers control
to the start of the intended callee. This stub approach handles in-
direct calls and hot-cold method splitting. Our implementation of
software instrumentation has the feature that it can be turned on or
off, and when turned off has no impact at all on the application’s
execution.

To reorganize code, DCM performs the following steps:

1. Stop all managed threads.

2. Compute a new layout.

3. Allocate new code storage. It would be possible to reorganize
code in place, but moving it to a newly-allocated code region is
simpler. It also simplifies debugging our DCM implementation,
since this makes it easy to recognize a stale reference to an old
code location.

4. For each method, move the code and call the JIT to fix it up.
Also fix up the method’s metadata recorded by the managed
runtime.

5. Update the call stack of each thread. In particular, correct any
code addresses such as return addresses currently on stacks.
Also, update any registers containing code addresses.

6. Restart the managed threads.

To compute the new layout, DCM uses one of several different
code layout algorithms. Each of these operates on the dynamic call
graph (DCG) produced during profiling and creates a code layout.
This layout identifies sequences of code that should be placed
together in memory in that order. So far, we have implemented four
code layout algorithms.

Our experience is that most of the time needed to reorganize
code is due to the new layout calculation; DCM finishes the remain-
ing steps quickly. To illustrate this, for MiniBean, the Code Tiling
layout algorithm requires 417ms of the 510ms total reorganization
time, while Cache-Aware Pettis-Hansen requires 28,459ms of the
total 28,555ms. The other steps require about 100ms. These times
are shown in Table 1.

3.1 Current status

Our IA-32 DCM implementation currently reorganizes code at GC
time for simplicity. Since our garbage collector stops all threads
during a GC, we reorganize code then. Despite this implementation,
DCM itself is completely independent of GC and could reorder
code at any time.

We do not currently support a mechanism to automatically trig-
ger code reorganization since we have not yet developed a tech-
nique to determine when it would be be productive to do so. In
the future, we plan to enhance DCM’s use of PMU information to
monitor ITLB and other instruction-related misses in order to deter-
mine when reorganizations are needed. Currently, the user specifies
on the ORP command line the GC at which to reorganize code, and
ORP invokes DCM at the end of that GC. Although this interim
solution allows only a single reorganization, DCM itself is capable

of reorganizing code multiple times. We will eventually use DCM
to reorder code whenever necessary.

Our DCM implementation also stops application threads while
it does all reorganization work. However, much of DCM’s work—
in particular, calculating the new code layout—could be done con-
currently with application threads to minimize pause time. Those
threads need to be stopped only during the update of the metadata
and thread stacks.

3.2 Discussion

In many ways, DCM resembles a copying garbage collector. It
moves objects (method code) and updates any pointers to those
objects. It is intended to improve program locality, but that is also a
partial goal of many garbage collectors including ones that compact
the heap or place objects to improve their locality [10]. DCM also
supports pinning of objects that would be too hard or too expensive
to relocate. For example, we pin methods containing JavaJSR
bytecodes since these bytecodes are relatively rare and the resulting
code is complex. Like many garbage collectors, DCM could also do
much of its work in parallel with application threads, even though
it does not currently do this. New code layouts could be computed
in parallel, for example. In the future, we might also investigate
having DCM reclaim no-longer-needed code: code that is currently
not referenced by any thread and not likely to be needed again soon.

3.3 Alternatives to DCM

One alternative to DCM is to use large pages for code which
will reduce the number of ITLB entries and misses. Unfortunately,
large pages are not supported by a number of operating systems,
including IA-32 versions of Windows. Large pages also consume
a larger portion of the virtual address space and may suffer higher
fragmentation, which may be a problem if the virtual address space
is relatively small. In addition, using large pages does not address
instruction cache misses.

Another alternative to DCM is method recompilation. Many
JITs support profile-based recompilation of frequently executed
(hot) methods, or methods in which a significant amount of exe-
cution time is spent. If the managed runtime or JIT allocates code
sequentially, these recompiled hot methods will tend to be located
close together, which is likely to improve code locality. However,
for very large applications with large instruction footprints and
many hot methods, the natural benefits of JIT compilation are un-
likely to consistently provide good code locality.

4. The code layout algorithms
This section describes the Pettis-Hansen and our new code layout
algorithms. All the algorithms use the same underlying data struc-
ture, the dynamic call graph (DCG), and produce a new code lay-
out. We first implemented the Pettis-Hansen algorithm, and found
it usually improved performance of large applications. However, it
was too expensive: Pettis-Hansen creates a new layout for SPEC
JBB2000 (758 methods) in less than 150ms, but requires minutes
for MiniBean (15,586 methods). This expensive overhead led us to
develop three new, faster algorithms.

4.1 Pettis-Hansen algorithm

Pettis-Hansen places methods using a greedy “closest is best” strat-
egy from the original call graph. Each step combines two nodes in
the DCG and specifies their code layout. Each of the call graph’s
nodes initially contains a single method. The algorithm repeatedly
chooses an edgeA→ B of heaviest weight in the entire graph (i.e.,
greatest calling frequency), then merges the nodes and outgoing
edges ofA andB. It lays out the code in the new node using the
heuristic described by Gloy and Smith [7] (line 7 of procedure



PETTISHANSEN(Graph)
1 while (edge← HEAVIESTEDGE(GRAPH))! = NULL
2 do (nodeA,nodeB)← edge.GETNODES()
3 MERGENODES(nodeA,nodeB);

HEAVIESTEDGE(Graph)
1 maxEdge← NULL
2 for eachnodein Graphdo
3 for eachedgein node.edgeListdo
4 if (maxEdge= NULL)||(edge.heat> maxEdge.weight) then
5 maxEdge← edge
6 return maxEdge

MERGENODES(nodeA,nodeB)
1 for eachedgeBin nodeB.edgeListdo
2 for eachedgeAin nodeA.edgeListdo
3 if edgeB.EQUALS(edgeA)
4 then edgeA.weight← edgeB.weight+edgeA.weight
5 REMOVEEDGE(edgeB)
6 nodeA.edgeList.ATTACH(nodeB.edgeList)
7 nodeA.blockList.GSATTACH(nodeB.methodList)

Figure 2. Pettis-Hansen procedure layout algorithm

CACHEAWAREPETTISHANSEN(Graph)
1 while (edge← HEAVIESTEDGE(GRAPH))! = NULL
2 do (nodeA,nodeB)← edge.GETNODES()
3 if (nodeA.SIZE() > PAGE SIZE)||(nodeB.SIZE() > PAGE SIZE)
4 then REMOVEEDGE(edge)
5 else MERGENODES(edge,nodeA,nodeB)

Figure 3. Cache-Aware Pettis-Hansen algorithm

MergeNodes in Figure 2). Pettis-Hansen finds the hottest call edge
between a method in nodeA and one ofB in the original call graph,
and then orders the merged methods to minimize that edge’s call
distance in bytes. It leaves the sequence of methods withinA andB
the same. When it merges outgoing edges, if two point to the same
nodeC, it merges them and weights the edge with the sum of the
original weights. The algorithm terminates when no edges remain.
Figure 2 shows the pseudo-code for the Pettis-Hansen algorithm.

4.1.1 Time complexity

The complexity of finding the maximum edge isO(n2) since in
the worst case, there aren edges connected to each node. The
maximum number of edge merges for each node merge is also
O(n2). So the asymptotic time complexity of the algorithm isO(n∗
(n2+n2)) = O(n3). This complexity explains the dramatic increase
in time required to place the code for large applications such as
MiniBean.

There are data structures such as the priority queue and Fi-
bonacci heap that can speed up searching for the maximum edge
and inserting the new edges generated by merging. However, these
will not help Pettis-Hansen much since the most expensive part of
that algorithm is the edge merge.

4.2 Cache-Aware Pettis-Hansen algorithm

In our search for a faster placement algorithm, we realized that
there is little locality benefit in putting two methods on different
pages, even if the two methods are on consecutive pages. We
modified Pettis-Hansen to stop merging methods into the current
node after enough methods have been merged to fill a page. We
found that, with this optimization, the total time to calculate a
layout is reduced by a factor of 10. This newCache-Aware Pettis-
Hansen algorithmis shown in Figure 3.

Cache-Aware Pettis-Hansen may generate a different layout
from Pettis-Hansen. For example, Pettis-Hansen generates a layout
of DABC for the DCG in Figure 4. But if nodeA and nodeB
are both larger than the page size, the new algorithm generates
layout ABCD. Note here thatC and D are adjacent, but are not
with the original Pettis-Hansen layout. The different layout Cache-
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Figure 4. An example dynamic call graph

Aware Pettis-Hansen produces may or may not improve application
performance. For example, assume thatA and B are both two
pages in size, andC and D are half a page. If every invocation
of another method on a different page triggers a page fault, our
layout generates fewer page faults than Pettis and Hansen. But with
other node sizes, the result could be different. None of the four
algorithms is guaranteed to produce the best layout. However, our
main concern is the layout generation time, and we show in the next
section that Cache-Aware Pettis-Hansen runs much faster.

A further refinement for Cache-Aware Pettis-Hansen is the fol-
lowing. In a direct-mapped cache, we do not want two methods
mapped on the same cache set if they frequently call each other.
To avoid causing cache interference in direct-mapped instruction
caches, the algorithm should use the cache size instead of the page
size.

4.2.1 Time complexity

Complexity of the Cache-Aware Pettis-Hansen algorithm is the
same as the Pettis-Hansen algorithm. However, this algorithm re-
moves edges from the graph as it operates. As a result, in practice,
finding the heaviest edge and merging the edges of two nodes are
both less expensive than in the Pettis-Hansen algorithm.

4.3 Code Tiling algorithm

A major cost in Cache-Aware Pettis-Hansen is finding the heaviest
edge in the entire graph every time. To reduce this cost, we devel-
oped theCode Tilingalgorithm that uses a simpler approximation.
This algorithm traverses the nodes of the DCG one at a time. As-
sume the current node isA. As long asA’s code occupies less than a
page, it selects the heaviest edgeA→B and mergesA with the node
B. If this algorithm merges any nodes, it produces a different lay-
out than either Pettis-Hansen or Cache-Aware Pettis-Hansen since
it only considers that part of the graph immediately connected to
the current node. However, this layout may occasionally be better
compared with Pettis-Hansen since it can give the best possible lo-
cality to the single hottest path, if one exists. Performance results
in the next section show this algorithm computes good layouts and
computes them faster.

4.3.1 Time complexity

If we haven nodes in the graph, we must scann nodes. Since in
the worst case, there aren out edges for each node, the time to find
the heaviest edge for one node is stillO(n). However, in practice
this case does not occur. The maximum number of edge merges
requiresO(n2). As a result, the worst case asymptotic complexity
of the Code Tiling algorithm isO(n∗ (n+ n2)) = O(n3). It is the
same as the Cache-Aware Pettis-Hansen algorithm, but since we
avoid the work of repeatedly searching for the heaviest edge in the
whole graph, we expect layout generation to be faster than with the
Cache-Aware Pettis-Hansen algorithm.



CODETILING(Graph)
1 for eachnodein Graphdo
2 currentNodeSize← 0
3 node.isVisited← true
4 STAY:
5 maxEdge← NULL
6 for eachedgein node.edgeListdo
7 if ISV ISITED(edge)
8 then REMOVEEDGE(edge)
9 else if(maxEdge= NULL)||(edge.heat> maxEdge.heat)

10 then maxEdge← edge
11 if (currentNodeSize> PAGE SIZE)||(maxEdge= NULL)
12 then REMOVEEDGE(maxEdge)
13 else nodeB←maxEdge.OTHERNODE(node)
14 currentNodeSize← currentNodeSize+nodeB.SIZE()
15 MERGENODES(node,nodeB);
16 gotoSTAY

ISV ISITED(edge)
1 (nodeA,nodeB)← edge.GETNODES()
2 return (nodeA.isVisited)&& (nodeB.isVisited);

Figure 5. Code Tiling algorithm

L INEARSCAN(Graph)
1 for eachnodein Graphdo
2 node.isVisited← true
3 for eachedgein node.edgeListdo
4 if (edge.heat> Threshold)&& (! ISV ISITED(edge))
5 then ATTACHNODES(edge,node)
6 else REMOVEEDGE(edge)

ATTACHNODES(edge,node)
1 (nodeA,nodeB)← edge.GETNODES()
2 if (!nodeA.isVisited)
3 then nodeB← nodeA
4 nodeB.isVisited← true
5 node.edgeList.ATTACH(nodeB.edgeList)
6 node.blockList.ATTACH(nodeB.methodList)

Figure 6. Linear Scan algorithm

4.4 Linear Scan algorithm

To further reduce the cost of generating a code layout from the
dynamic call graph, we also tried a straightforward algorithm that
has linear time complexity, theLinear Scan algorithm. In this al-
gorithm, we scan each node in the graph in breadth-first traversal
order, but we ignore cold edges (ones with weight less than some
threshold). We show this algorithm in Figure 6. Notice that when
AttachNodes merges two nodes, it does not merge their out edges:
even if two edges connect to the same node, they are not merged.
We eliminate this step because merging edges is especially expen-
sive. Notice also, that when merging one nodeB into another node
A, AttachNodes simply attachesB’s edge list toA without updating
any of the edges inB’s edge list. As a result, the edge data struc-
ture for B’s edge list will still recordB instead of the correctA.
Not updating the data structure does not cause a problem because
we never attach an already-visited node likeB again. By reducing
the work done during node merges, Linear Scan scans every edge
exactly once and achieves linear time in the number of edges.

4.4.1 Time complexity

If there aren2 edges (worst case forn nodes) in the graph, the
Linear Scan algorithm scans exactn2 edges. If an edgeE has both
ends visited before, edgeE is removed. Otherwise, both nodes
connected by edgeE are merged. When Linear Scan merges nodes,
it simply attaches one edge list to the other node and takes a
constant time. This means the Linear Scan algorithm’s asymptotic
complexity is just O(n2).

Benchmark IA32 Size Methods Calls/sec
SPECjbb 268K 758 2.04M

MiniBean 3.10M 15586 3.65M

Table 2. Benchmark characteristics

5. DCM Results
We evaluated DCM by measuring its benefit and runtime overhead
for various benchmarks using each of the four code layout algo-
rithms.

5.1 Experimental framework

To do our experiments, we used a 4-way Intel Xeon server with
2GHz Xeon processors. This machine runs Windows 2000 Ad-
vanced Server Edition and has a 400MHz system bus. Each pro-
cessor has an 8K 4-way set associative L1 data cache, a 8-way
12Kµops L1 instruction trace cache, a 512K unified 8-way set as-
sociative L2 on-chip cache, and a 2MB 8-way L3 cache. The L1
and L2 cache line size is 64 bytes. This machine’s ITLB has 128
entries and is 4-way set associative. We disabled HyperThreading
and used the default 4K page size.

Our experiments used the SPEC JVM98, SPEC JBB2000, and
MiniBean benchmarks. MiniBean is a large benchmark inspired by
the SPECjAppServer2002 enterprise application server benchmark,
but runs in a single process on a single machine. While MiniBean
uses enterprise JavaBeans (EJB) functionality, it generates no net-
work traffic itself. SPECjAppServer2002, on the other hand, must
be run using multiple machines including a database server. When
collecting our results for each benchmark, we used the same in-
put for each of its runs. We also ran each benchmark five times
and used the best time. Table 2 shows the characteristics of these
benchmarks2. We executed each application stand-alone. For heap
sizes, we used 512M for MiniBean, 256M for SPEC JBB2000, and
50M for SPEC JVM98. Because we focus our efforts on server ap-
plications and are not changing the garbage collector, we do not
consider the trade offs of different heap sizes.

To measure performance, we divided application execution into
three components: (1) profiling (warm-up), (2) code reorganization,
and (3) steady-state execution. This methodology is widely used
in the literature and industry for long running server programs,
where DCM should be most effective. We measured these three
components separately. We reorganized code once at the end of
application warm-up with MiniBean and SPEC JBB2000, and at
the end of the first iteration of each program with SPEC JVM98.

5.2 DCM overhead

The overhead of DCM has two main components: the time to
generate a dynamic call graph, and the time to generate a new code
layout. We evaluate both overhead components separately.

5.2.1 Dynamic call graph generation overhead

We use software instrumentation on IA-32 because it is expen-
sive to use the Intel PentiumR© 4 PMU to capture the LBR (last
branch record) to get call information. To determine the overhead
of software instrumentation for DCG creation, we ran MiniBean
two times: once with no instrumentation and a second time with
our software-based DCG generation. Each time, we ran MiniBean
up to the same point in its execution, when it completed its warm-
up phase. We found that MiniBean required 54 seconds with no
instrumentation, but 66 seconds when we used software instrumen-
tation. This overhead is high.

2 We measured the calls per second by running SPEC JBB2000 for 50
seconds and MiniBean for 200 seconds.
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Figure 7. SPEC JVM98 software instrumentation overheads

Algorithm MiniBean SPECjbb
Pettis-Hansen 2215127 503

Cache-aware Pettis-Hansen (16K) 26012 197
Cache-aware Pettis-Hansen (4K) 28840 186

Code Tiling (16K) 508 17
Code Tiling (4K) 352 15

Linear Scan (1) 3611 29
Linear Scan (10) 820 23

Linear Scan (100) 295 21
Linear Scan (1000) 254 19

Linear Scan (10000) 253 21

Table 3. MiniBean and SPEC JBB2000 layout creation times (ms)

Our software instrumentation overhead is high because it uses
an untuned, unspecialized call-counting stub requiring additional
procedure calls, memory allocation, and locking. We did not tune
this stub because it is only used during warmup. A production DCM
implementation would use optimized and inlined JIT-compiled
code. However, although this instrumentation overhead is high to-
day, it only exists while the DCG is being generated. After DCM
reorganizes code, it turns off software instrumentation and removes
the instrumentation stubs. As a result, there is no overhead af-
ter code reorganization. For long running server benchmarks like
MiniBean, the time during which DCM uses software instrumenta-
tion is relatively short and so the overall impact on the benchmark
is low.

We also expected and did observe high overheads due to the
software instrumentation implementation on the SPEC JVM98
benchmarks. The overheads are shown in Figure 7. The bars for
227 mtrt are cut off since they are about 3000%. The geometric

mean of the overheads is about a factor of 3. This result indicates
that if software instrumentation is used, a faster implementation is
necessary, especially for smaller applications.

5.2.2 Code layout generation overhead

Another overhead of DCM is the time required by the code layout
algorithms to generate a code layout. We show the times needed for
MiniBean and SPEC JBB2000 in Table 3.

The Pettis-Hansen procedure layout algorithm requires 37 min-
utes to reorder MiniBean’s code which is much too long to be prac-
tical in a dynamic code reordering system. Our new algorithms are
much faster, especially Code Tiling which takes just 0.35 seconds
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Figure 9. SPEC JVM98 layout generation times (ms)

for MiniBean when using a 4KB page as the cut off threshold. This
time is less than most of MiniBean’s garbage collection times.

When we explored where Pettis-Hansen spent its time, we found
that most of its time for SPEC JBB2000 and MiniBean was spent
merging edges, or more precisely, checking for edges to be merged.
Pettis-Hansen checks many more edges for merging than Code
Tiling or our other layout algorithms as illustrated in Figure 8,
which shows the number of edge checks (in millions) needed for
MiniBean with Pettis-Hansen and the other algorithms. In this fig-
ure and the following ones, “PH” stands for the Pettis-Hansen al-
gorithm, “CAPH” for Cache-Aware Pettis-Hansen, “CT” for Code
Tiling, and “LS” for Linear Scan. Note that the bar for Pettis-
Hansen is cut off since it checks about 1.8 billion edges. Al-
though Cache-Aware Pettis-Hansen checks about the same number
of edges as Code Tiling, Code Tiling is faster because its work-
ing set is smaller at each step, allowing it to have better memory
locality when it traverses the node and edge data structure.

Generating the new code layouts for the SPEC JVM98 bench-
marks is generally much faster than for SPEC JBB2000. Our new
algorithms are up to 6.33 times faster (for Code Tiling with a 4KB
threshold). The results are shown in Figure 9.
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5.3 DCM performance results

Figure 10 shows the performance benefit of dynamic code reorga-
nization with both the MiniBean and SPEC JBB2000 benchmarks
using the four different code layout algorithms. The base code lay-
out is the default one used by our managed runtime, which is based
on invocation order and already provides some locality benefit, as
we noted in Section 1. The MiniBean rate reported in the second
column is the harmonic mean of the four throughput rates it reports.
For SPEC JBB2000, we used the 8-warehouse score.

These results show that DCM with Code Tiling can significantly
improve MiniBean’s performance. However, it has essentially no
impact on SPEC JBB2000. One reason for this difference is the
size of the two benchmarks. With the default 4K pages, the IA-
32’s 128-entry ITLB can map 512K of simultaneous code space,
which is much smaller than MiniBean’s 3.1MB of JIT-compiled
code. Optimizations that improve MiniBean’s code locality should
thus improve its performance. SPEC JBB2000, on the other hand,
only has 268K of code, so it fits within the ITLB span. Reorga-
nizing this code to improve locality has little benefit, at least as
long as SPEC JBB2000 is the only application running on the ma-
chine. If multiple programs are running, there may be some benefit
since improving a program’s code locality will reduce its working
set, which allows more applications to run simultaneously without
ITLB misses.

Figure 11 shows the run times for the SPEC JVM98 benchmarks
with different code layout algorithms. We measure the times for the
second iteration of the benchmark runs, so these times do not in-
clude any instrumentation or code reorganization overhead. There
is no clear performance benefit from using any layout algorithm.
Since these benchmarks are so small, with instruction working sets
often less than 32K, this result is not surprising.

5.4 Discussion

This section’s results demonstrate that dynamic code management
can significantly improve the performance of the large MiniBean
benchmark. In previous work, we found that Pettis-Hansen also im-
proves the performance of the even larger SPECjAppServer bench-
mark by 4.2%. SPECjAppServer has approximately 19,000 com-
piled methods compared to MiniBean’s 15,586. However, we have
not measured the benefit of DCM using Code Tiling for SPEC-
jAppServer.

The benefit of DCM depends on application size. This section
shows that code reorganization helps large applications more than
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Figure 11. SPEC JVM98 performance

small ones. These results also demonstrate that Code Tiling is much
more suitable for online code reorganization than the classic Pettis-
Hansen algorithm. It executes much faster and can produce better
performance.

6. IPF implementation and PMU-based DCM
This section describes our Itanium Processor Family (IPF) DCM
implementation and presents our experience with using PMU sam-
pling on IPF to reorder compiled code. After describing our imple-
mentation, we discuss its overhead. We also present performance
results using PMU-generated DCGs.

On IPF, we prefer PMU sampling since it is less expensive than
software instrumentation3. Our PMU sampling implementation pe-
riodically examines the processor’s Branch Trace Buffer to find the
recent taken branches. By filtering the branches to extract those
with source and target addresses in different methods, DCM dis-
covers information about recent method calls. This information al-
lows us to identify both the caller and the callee methods. We sep-
arate calls instructions from return instructions by checking if the
target address is at the beginning of a code block.

6.1 Experimental framework

For our IPF results, we used a 4-way Intel Itanium 2 system with
1.5GHz processors running Windows Server 2003. On each proces-
sor, the data and instruction L1 caches are both 16KB in size with
4-way set associativity, and have a 64 byte line size. The 256KB
unified L2 on-chip cache is 8-way set associative and has a 128-
byte cache line. Also, the L3 cache is 9MB, has 128-byte cache
lines and is 36-way associative. The ITLB on this machine is a two
level TLB, where both levels are fully-associative, The L1 ITLB
has 32 entries while the L2 ITLB has 128 entries. We used the
IPF’s fundamental 4KB page size.

We also used StarJIT [1] which is a high-performance dynamic
compiler that uses a single SSA-based intermediate representation
and global optimization framework to compile JVM bytecodes.
StarJIT typically emits two code blocks for each method. These
contain the method’s hot and cold code; the cold code includes ex-
ception handlers, for example. The granularity of code reorganiza-
tion on IPF, then, is a code block instead of a method.

Our IPF DCM implementation is not fully complete. We have
not completed the StarJIT changes needed for it to update compiled

3 PMU monitoring can be adjusted dynamically to keep its overhead to 1%
or so. If this is too great, PMU monitoring can be done periodically and
disabled between monitoring.
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code during a code reorganization. However, we are able to use
static code layoutto get an approximation of what DCM might
provide. This approximation uses a separate profiling run to build
the DCG, run the code layout algorithm, and write the resulting
code layout to a file. Then subsequent runs use this layout file to
place their compiled code. When static code layout is used, ORP
first reads the layout, then uses its placement information when
allocating code for JITs.

6.2 PMU-based DCG generation overhead

On IPF, we studied the overhead for dynamic call graph genera-
tion with PMU sampling. We varied the sampling interval from 10
(1 sample every 10 branches) to 100,000 (1 sample every 100,000
branches). The times required to generate the dynamic call graph
for MiniBean at different sampling intervals are shown in Fig-
ure 12. These times are from program start until DCM generates
and applies the new code layout. This means that the times do not
reflect any benefit from using the new code layout. As we increased
the sampling interval to 10,000 or higher, the overhead dropped to
less than 1%. In addition, our PMU driver has the ability to change
the hardware sampling interval at runtime. As a result, if it proved
necessary, we could sample more frequently for a short period of
time, then revert back to longer-interval sampling.

We also measured the overhead of using the PMU to generate
the dynamic call graph for the SPEC JVM98 benchmarks. The
results are shown in Figure 13. The results are similar to those for
MiniBean. As the sampling interval increases to 10,000 or more,
the overhead drops to less than 2%. This result shows that using
hardware sampling is a plausible method to gather dynamic calling
information even for small applications. We measured the overhead
by comparing one run using PMU code layout with a second run
for the base case (no PMU sampling, no code reordering). The first
run did all the work of generating a new code layout but did not
actually apply it.

6.3 Code reorganization results

Since our DCM system is not fully implemented on IPF, we could
not collect performance results there for fully dynamic code reor-
ganization. One drawback of using static code layout instead is that
it can’t cope with methods that were never compiled in the profiling
run. This can happen because of dynamic class creation and load-
ing (which is done by MiniBean and SPECjAppServer2002) or if
the application chooses to call methods that were never called in
the profiling run. As a result, the benefit of static code layout may
be less than what dynamic layout provides.
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Figure 13. PMU overhead for the SPEC JVM98 benchmarks

Base Pettis-Hansen
FE Flush 5655 5570

TLB Stall 18904 13876
Instruction Cache Miss Stall 45484 46583

Any of 4 Branch Recirculates 6780 7155
Recirculate for Fill Operation 935 975

Branch Bubble Stall 66228 68481
Instruction Buffer Full Stall 115852 117431

Sum 259838 260070

Table 4. IPF front-end stalls using static code layout

We used static code layout with the Pettis-Hansen layout algo-
rithm to determine its performance impact for the MiniBean bench-
mark. We found the performance improvement was slightly nega-
tive, -1%, which probably indicates only that for this benchmark on
IPF, code reorganization has little impact. While it is possible that
DCM would provide better performance, its benefit is still likely to
be less than it was on IA-32. One reason for this poor result is the
large L3 cache (9MB) on our IPF machine, which allows it to hold
nearly all of MiniBean’s code (11MB on IPF). Another reason is
the short memory stall time on the Itanium 2 processor: the latency
is approximately 6 cycles for the L2 cache and 12 cycles for the
L3 cache. These mean that reordering method code will have little
impact on IPF programs unless those programs have working sets
much larger than the L3 cache size.

6.4 Effectiveness of PMU sampling

The Itanium 2 processor’s PMU support makes it possible to get de-
tailed performance information at low cost and with low impact on
the running program. Even though we cannot collect performance
results there for dynamic code reorganization, we can still use its
hardware performance counters to study the impact of static reor-
ganization.

Table 4 shows the number of IPF front-end stall cycles when
running MiniBean. It compares the number of stalls for the default
code layout as well as one using the Pettis-Hansen layout algo-
rithm. For the latter, we used a static code layout using a DCG
based on PMU sampling. Among the front-end stalls we measured
are ITLB miss and instruction cache miss stalls.

There is a 26.60% improvement in ITLB miss stalls with the
static code layout. However, there is no noticeable improvement in
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either the total front-end stalls or MiniBean’s overall performance
since the ITLB stalls are only a small percentage of the overall
stalls.

We also measured the effectiveness of PMU-generated dynamic
call graphs. Using PMU sampling at different branch intervals,
we computed static code layouts based on the resulting DCGs.
We then collected the total ITLB misses for MiniBean using the
IPF performance counters. The results are shown in Figure 14.
These results indicate that, for MiniBean, PMU-generated dynamic
call graphs are as effective as the precise software instrumentation
graphs for DCM. While there is a trade off between PMU sampling
frequency and accuracy of the resulting DCGs, Figure 14 illustrates
that the lower-precision DCGs do not have a significant impact on
the effectiveness of the generated code layouts. These results are
consistent with our previous experience that PMU instrumentation
has the same benefit as software instrumentation, but at lower cost.

6.5 Discussion

While Section 5 showed that dynamic code management can sig-
nificantly improve the performance of larger applications such as
MiniBean, this section’s results show that the benefit depends on
the processor’s microarchitecture and cache hierarchy. Code reor-
ganization has more impact on IA-32 than IPF. Our IPF machine’s
9MB L3 cache and short memory stall times means that applica-
tions must have substantially more code than MiniBean before they
can benefit from code reorganization.

This section’s results also demonstrate that PMU sampling has
low overhead. The results also show that, for short-running pro-
grams, PMU sampling can have lower impact on the programs than
software-based instrumentation.

7. Related work
Numerous researchers have studied the problem of restructuring
programs to improve memory performance. Much of the early soft-
ware work was aimed at reducing virtual memory page faults. Some
current work also tries to minimize these very expensive faults; see,
for example [18]. However, most recent work has focused on reduc-
ing instruction and ITLB misses. These efforts can be organized
into static and dynamic approaches. The static techniques are used
at compile- or link-time to reorder code. Dynamic techniques are
done at runtime while the program executes. Profile information
is often used by both kinds of approaches. We discuss static ap-
proaches first.

7.1 Static code placement

Code layout at compile-time or link-time has been an active re-
search area. Researchers have explored code placement at a num-
ber of different granularities: for example, at the granularity of ba-
sic blocks, groups of basic blocks, or entire procedures. A common
limitation of these static layout approaches is that they produce a
fixed, static layout, which as we discussed in Section 1, is not suit-
able for a managed runtime. Another drawback is that the layouts
they generate reflect the profile data used, so that data must be rep-
resentative of other program executions.

McFarling [12] uses profile data to lay out a program’s code to
reduce misses in a direct-mapped instruction cache. His algorithm
identifies those parts of a program that should overlap each other
in the cache and those that should be placed in non-conflicting
addresses. However, it is not clear how to apply his techniques to
multi-level caches.

Pettis and Hansen [13] present techniques to do profile-based
code placement at all three granularities. 1) At the finest granular-
ity, basic block positioning lays out basic blocks to straighten out
common control paths and minimize control transfers. 2) Proce-
dure splitting moves a procedure’s never-executed basic blocks into
a different allocation area from that of its other blocks. 3) At the
coarsest granularity, a greedy algorithm starts with an undirected
weighted call graph constructed from the profile data and progres-
sively combines its nodes to place frequent caller-callee procedure
pairs close together. They show that combining all three optimiza-
tions can improve performance up to 26% (average about 12%)
with a 16K directly-mapped unified cache. However, the improve-
ment they achieve is very sensitive to cache organization: for exam-
ple, it drops to 5% with a 2-way set-associative cache. Also, mod-
ern cache hierarchies usually have more than one level of cache.
Because it is both simple and effective, their procedure ordering al-
gorithm is generally considered the reference placement technique.
It has also been used as the basis for several newer algorithms. De-
spite this, their algorithm has the drawback that small changes in
the profile data often produce substantially different layouts.

Hashemi et al [8] take the cache configuration into account to
lay out procedures using cache line coloring. Their algorithm colors
each cache line in the instruction cache and uses a greedy algorithm
similar to that of Pettis-Hansen’s to place procedures such that the
most frequent caller-callee pairs will not occupy the same cache
lines. By a simulation estimation, they achieve better performance
than Pettis-Hansen’s procedure ordering.

Gloy and Smith [7] also compute procedure layouts that reflect
the cache configuration. They collect complete procedure interleav-
ing information which, in combination with information about the
cache configuration and procedure sizes, allows them to produce
a layout that minimizes both cache conflicts and the instruction
working set size. By making use of temporal locality information,
their technique eliminates more cache conflict misses than Pettis-
Hansen’s algorithm.

Ramirez et al. [14] developed a code reordering system, called
the Software Trace Cache (STC), that not only tries to improve
the instruction cache hit rate, but also increase the processor’s ef-
fect instruction fetch width. Using profile information, STC de-
termines traces (hot basic block paths) then maps the resulting
traces into memory locations that minimize cache conflicts. It also
makes effective use of instruction cache lines while tending to keep
sequentially-executed instructions in order. STC also reserves a re-
gion in the instruction cache for hot instructions to avoid these from
having conflict misses with cold instructions.

Cohn et al [5] describe the Spike post-link optimizer for Al-
pha/NT executables. Among its optimizations is code layout, which
uses the Pettis-Hansen procedure layout algorithm. They report



that, on a set of large benchmarks, Spike speeds up most by at least
5%, and often 10% or better.

Ispike [11] is a post-link optimizer for IPF processors. It uses
the IPF performance counters to collect at low cost (and low pro-
gram impact) detailed profile information that Ispike uses for sev-
eral instruction- and data-related optimizations including inlining,
branch forwarding, and layout and prefetching of both code and
data. Their code layout optimization includes 1) basic-block chain-
ing to lay out basic blocks in sequence if there is a frequently-
executed control flow edge between them, 2) procedure splitting,
and 3) procedure layout that keeps hot procedures close together.
On a set of small benchmarks, they found that code layout by itself
helps one-third of the benchmarks by over 4%.

Since they generate code layouts ahead-of-time, these static
approaches lose the flexibility of determining layouts using the
actual information for each run of a program. They also cannot
cope with different program phases. These limitations make them
less useful for dynamic languages like Java.

7.2 Dynamic code placement

Dynamic schemes for improving instruction locality typically mon-
itor system behavior and apply optimizations at runtime based on
that behavior.

Chen and Leupen [2] developed a just-in-time code layout tech-
nique that places the procedures of Windows applications in the
order of their invocation at runtime. Their results show that the
resulting code layout achieves improvement similar to that of the
Pettis-Hansen approach. It also substantially reduces the program’s
working set size, often by about 50%. Pettis-Hansen’s procedure
layout also reduces the working set, but being a static approach,
it is less effective because the procedures executed won’t typically
match those of the training run. Chen and Leupen’s approach lays
out procedures at allocation time while we can reorder all compiled
code after it has been allocated and as often as necessary.

Scales [16] DPP (dynamic procedure placement) system uses
runtime information to dynamically lay out procedure code. DPP
uses a loader component that is invoked on procedure calls and
copies the code of the called procedure to a new code region,
where it will be close to the caller, then fixes up all references
to the procedure to refer to the new copy. Because this system
supports C and other languages that are not strongly typed, it deals
with indirect calls by memory protecting the original code space,
so that attempts to call a procedure at its original address result
in a trap whose handler invokes the new copy of that procedure.
DPP’s overhead is high because of the virtual memory protection
traps and the many calls to the DPP loader. The DPP system can
restart procedure placement to try to improve the layout, but each
restart is expensive due to the overhead of the new loader calls.
An extension of DPP supports runtime profiling: at each call to the
loader, the call stack is recorded to build a profile of the calls. This
information is used later to improve the layout. This profiling is
extremely expensive, however, and slows down the program by a
factor of ten or more.

Whaley [17] very briefly outlines a never implemented dynamic
procedure code layout optimization for the Jikes RVM (Research
Virtual Machine). Using a combination of instrumented code and
timer-based call stack profiling, it collects method call frequencies
and calling relationships to determine which compiled methods
should be located near each other. This location information is then
passed to the garbage collector as a hint to reorder code (Jikes al-
locates compiled code in the garbage-collected heap). While Wha-
ley’s optimization would dynamically reorder compiled code in a
managed runtime to improve its locality, it was never implemented
and differs from our DCM system in the following ways: 1) For
the Jikes garbage collector to relocate compiled code, it must un-

derstand that code and how to modify it. This feature means either
additional complexity for a Jikes garbage collector since it must un-
derstand the representation of the code emitted by each Jikes JIT,
or it means there are restrictions on the code JITs can emit. Our
scheme has the JIT explicitly cooperate in moving code, so it can
emit aggressively optimized code. 2) Whaley’s proposed system
also differs from ours by only reordering code as part of a garbage
collection. However, many programs would benefit from having
their code reordered at times other than a garbage collection.

A few researchers [15, 9] investigate code cache management
policies for dynamic optimizing systems. Their work focuses on
creating basic block sequences (superblocks) for a trace cache and
replacement policies for hardware instruction caches. By moving
hot caller/callee pairs closer together, DCM helps the trace cache
find more hot traces since the trace cache is limited by address
range.

8. Conclusions and future work
Managed runtimes for languages like Java provide the opportunity
to dynamically monitor program execution and make adaptations
to improve performance. We take advantage of this capability to
reorganize JIT-compiled code at runtime to improve its locality and
reduce instruction-related misses which is especially important for
large programs like enterprise applications. Our DCM system is
the first implementation of dynamic code reordering in a managed
runtime. We also describe a new placement algorithm, Code-Tiling,
that specifically addresses expensive ITLB misses. It is much faster
than the widely-used Pettis-Hansen procedure layout algorithm,
and its layouts often perform better.

The results demonstrate that DCM with Code Tiling is prac-
tical and effective as an optimization in high performance man-
aged runtimes. DCM improved performance of the large MiniBean
benchmark by 6% on a 4-way Intel Xeon SMP server machine.
On MiniBean, Pettis-Hansen was only able to achieve a 2.3% im-
provement. In addition, Code Tiling can generate a new layout for
the more than 15,586 compiled methods of MiniBean in only 0.35
seconds, less than the time required for one of its typical garbage
collections, and much less than the 35 minutes needed by Pettis-
Hansen.

Our plans for the future include enhancing DCM’s use of PMU
information to monitor ITLB and other instruction-related misses
in order to automatically determine when to trigger code reorgani-
zations. Furthermore, we want to implement a suggestion by one
of the anonymous reviewers to relocate code only if the total code
grows to a point where this is likely to pay off. We also intend to
explore techniques to automatically determine the best page size
cut-off threshold for the Code Tiling algorithm.
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