Fast and Efficient Partial Code Reordering:
Taking Advantage of Dynamic Recompilation

Xianglong Huang
The University of Texas at Austin
xlhuang@cs.utexas.edu

Intel

Abstract

Poor instruction cache locality can degrade performancaanfern
architectures. For example, our simulation results shaw ¢hm-
inating all instruction cache misses improves performangceas
much as 16% for a modestly sized instruction cache. In this pa

Stephen M Blackburn

Steve.Blackburn@intel.com groved@us.ibm.com

David Grove
IBM Research

Kathryn Xintey *
The Wmsity of Texas at Austin
mckinley@cs.utexas.edu

1. Introduction

The imbalance in memory and processor speeds creates a mem-
ory gap that software can help alleviate by improving datd an
instruction locality, and consequently reduce long lagemem-

ory accesses. This paper focuses on improving instructioald

per, we show how to take advantage of dynamic code generationity in managed run-times to keep the processor pipeline fetl a

in a Java Virtual Machine (VM) to improve instruction lodsliat
run-time. We develop a dynamic code reordering (DCR) system
low overhead, online approach for improving instructionality.
DCR has three optimizations: (1) Interprocedural methquhse
tion; (2) Intraprocedural code splitting; and (3) Code pagddDCR
uses the dynamic call graph and an edge profile that most VMs al
ready collect to separate hot/cold methods and hot/cold wdithin

a method. It also puts padding between methods to minimiae co
flict misses between frequent caller/callee pairs. It ineptally
performs these optimizations only when the VM is optimiziang
method at a higher level. We implement DCR in Jikes RVM and
show its overhead is negligible. Extensive simulation andtime
experiments show that a simple code space improves aveeage p

prevent pipeline stalls. Programming languages with medagn-
times, such as Java and C# are gaining enormous populadty an
features such as JIT compilation provide opportunigiesun-time

to reorder instruction, improving their locality.

Most previous work [14, 15, 23, 24, 25] uses static schemes to
improve instruction locality. They first profile dynamic kgtaphs
and basic block execution frequencies. Then they apply parex
sive algorithm on the profile to generate a code layout whizh ¢
locates frequent caller/callee pairs together to create gpatial
locality and to avoid conflict misses. They apply the pre-pated
code layouts at compile or link time. Because these algosthre
expensive (e.g., Pettis/THansen(@n?), wheren is the number
of methods), they are not suitable for dynamic systems. Byoa

formance on a Pentium 4 by around 6% on SPEC and DaCapo Javaschemes for improving instruction locality include Cherake{9].

benchmarks. These programs however have very small itistnuc
cache footprints that limit opportunities for DCR to impeoper-
formance. Consequently, DCR optimizations on average &ttt
effect, sometimes degrading performance and occasiongbisov-

ing performance by up to 5%. Our work shows that the VM has the
potential to dynamically improve instruction locality ineenentally

by simply piggybacking omotspot recompilation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental Compilers, Compilers, Opti-
mization

General Terms Languages, Performance, Experimentation, Al-
gorithms

Keywords dynamic, locality, instruction, JIT compilation

* This work is supported by NSF ITR CCR-0085792, NSF CCR-029218
NSF EIA-0303609, DARPA F33615-03-C-4106, ARC DP04520htel|
and IBM. Any opinions, findings and conclusions expressedihare the
authors and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’06 June 10-11, 2006, Ottawa, Ontario, Canada.
Copyright(© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

This approach allocates methods in invocation order anibeeh
performance improvements. Java Virtual Machines impjicise
this order when they perform lazy compilation. Huang et 59] [
develop several new dynamic code management algorithnesi bas
on a complete call graph. Their algorithms regenerate alctide

in the program at once, causing a large pause, and are treerefo
only suitable for long running programs.

This paper introduces dynamic code reordering (DCR) which
performs online code reordering with low overhead by pigmis
ing on just-in-time (JIT) recompilation. DCR seeks to imdn-
struction locality by attacking capacity and conflict cachisses.

It uses dynamic call graph and basic block profiles. It penfor
three optimizations using multiple code spaces: (1) imtapdu-

ral hot/cold method separation, (2) intraprocedural lodd/code
splitting, and (3) interprocedural hot code padding. Tauoedca-
pacity misses, DCR allocates hot and cold methods into apar
spaces in the heap. DCR also performs code splitting of hdt an
cold basic blocks within the same method to further redueéntit
instruction working set size. To reduce conflict misses ffier ¢ur-
rent method, DCR examines the dynamic call graph and finds hot
caller/callee pairs. If they map to the same lines in the eattiey
will have too many conflict misses. Therefore, DCR appliedeco
padding on either caller or callee method (whichever it legyspto

be recompiling) to eliminate the potential conflict misses.

DCR piggybacks on adaptivieotspot compilation. DCR per-
forms its code layout optimizations when the dynamic redtanp
tion system has already selected a method to recompile ghathi
level, and thus must generate and allocate space for theatgde
way. DCR uses the dynamic call graph and edge profile for the cu

rent method, and never examines the entire graph nor reatdls
the code, as does the prior work [19, 24]. This design redtiees
overhead of DCR to a negligible level.

We run our experiments on two architectures, an Intel Pentiu
4 and an IBM PowerPC 970, using SPEC [28, 29] and DaCapo [6]
Java benchmarks. Because the instruction working set fiwes
these benchmarks are modest compared to the availabledtisir
cache (or trace cache), DCR does not improve most of these pro
grams. However, a few programs are sensitive to instructante
layout: compared to the Jikes RVM default configuration Mahic
mixes code and data in the heap, a simple instruction codsespa

improves total performance on average by around 6% and on one

benchmark by 30%. The DCR optimizations improve one bench-
mark by 5%, but sometimes degrade performance and on averag
have a negligible impact.

This paper makes the following contributions:

¢ An instruction locality optimization framework (DCR) thain-
gybacks on hotspot recompilation to achieve negligibler-ove
heads and reduced instruction cache footprints.

e The design of four code space optimizations: (1) one space
with all cod€'; (2) two spaces: separate hot/cold methods; (3)
three spaces: cold methods, hot blocks of hot methods, ddd co
blocks of hot methods; (4) three spaces with method padding
for hot caller/callee pairs.

¢ A thorough evaluation on two architectures and in simutatio
of the potential and actual performance of code space aqmi
tions. Simulation results show potential improvementspage
sible, but DCR has a negligible effect in practice becaugbef
small instruction cache footprint of these benchmarks.

2. Background

We build DCR on the existing adaptive optimization systedikes
RVM 1, 2, 21], an open source Java virtual machine writtemceit
entirely in a slightly extended Java. We now briefly revievevant
aspects of this system. The features we use, dynamic pgpéitid
hotspot recompilation, are typical of many VMs. Section flains
DCR and how we integrate it into this framework.

Jikes RVMdoes not have a bytecode interpreter. Instead, a fast
template-driverbaseline compiler produces machine code when
the VM first executes each Java method, and then a sepgrate
timizing compiler recompiles frequently executed methods at pro-
gressively higher levels of optimization. The adaptiveteysperi-
odically samples the currently executing code and recdifithe
currently executing method and (2) the caller of the cutyezre-
cuting method. Jikes RVM feeds this profile data into a cestdfit
model to identify methods to optimize further. Jikes RVMaee
piles and optimizes these methods asynchronously on aatepar
compilation thread. The system uses the profiled calldeeaéla-
tionships to build a weighted dynamic call graph that drivexile-
directed inlining during optimizing compilation.

When generating code, the baseline compiler inserts imsnd
tation for every bytecode-level conditional branch to nueasts
execution frequency and its taken/not-taken distributidhe opti-
mizing compiler uses this edge profile data to compute bdsikb
frequencies and branch probabilities. A number of optitizes
in the optimizing compiler exploit this information. Mosele-
vant to our work is basic block layout. At the lowest optintiaa
level (O0), the compiler simply moves infrequently exedubs-
sic blocks to the bottom of the compiled method’s code. At O1
and 02, it employs Pettis and Hansen’s bottom-up positgpain
gorithm (Algo2) [24].

* This design is common in commercial VMs

3. Dynamic Code Reordering

The Dynamic Code Reordering (DCR) system is designed to be
low overhead and to exploit dynamic program behavior. Badief
Jikes RVM allocates code in the heap with all the other VM and
application objects. DCR first adds a separate space food#.c
(This design is prevalent in commercial JVMs for code Idgalind
ease of implementation for JVMs written in C.)

DCR performs two types of optimizationistter procedural and
intraprocedural code reordering. When Jikes RVM initially com-
piles a hot method with its optimizing compiler, DCR allaesthe
hot method in a separate space from baseline compiled c@cie. D
also splits the hot method into hot and cold basic blocksdase
their execution frequencies and allocates them into diffespaces.
®CR determines whether a basic block is hot or cold by computi
its relative execution frequency from online edge profil®ima-
tion and then applying a simple threshold. It also identfiieguent
caller/callee pairs by applying a threshold to the dynaralcgraph
edges. DCR calculates and inserts padding in front of thebet
tion of each optimized method to minimize the likelihood ohe
flicts with its callers and callees in the instruction cache.

Figure 1(a) shows code and data layout for the default configu
ration of Jikes RVM. In the figure, ‘B’ denotes baseline colegbi
code; ‘O’ denotes optimized compiled code; and ‘D’ denotatad
objects. Figure 1(b) shows the separation of code and dataep-
arate spaces; this design is typical of most current JVMseé
method is compiled by either the baseline or optimizing cibenp
DCR allocates the code into the single shared code space.

3.1 Interprocedural Method Separation

Because of lazy compilation and dynamic class loading, liveese
compiled code and optimized code will mix in a single codecspa
The first DCR optimizationjnterprocedural method separation,
simply separates hot and cold methods. When the optimizing ¢
piler recompiles a method, DCR allocates these hot metmidsi
separate hot code space, as shown in Figure 1(c). This aptim
reduces the code footprint of the hot methods, and conséyuen
may reduce L2 cache residency, L2 cache misses, and pagag. W
manage the optimized compiled code spaces as a contigualusly
located bump-pointer copy) space in MMTKk [5].

3.2 Intraprocedural Code Splitting

The existing optimizing compiler uses the edge profilingrins
mentation from the baseline compiled code to push hot bésiks®
to the beginning of the generated code and cold ones to the end
DCR further separates the hot and cold basic blocks by ditara
them into different regions of the optimized code space.Jéveer-
ated layout is shown in Figure 1(d), where ‘OH’ denotes haiba
blocks of a method and ‘OC’ denotes cold blocks of a method.
DCR splits code during code generation. We implement DCR
system on x86 and PowerPC architectures, which both havé sho
pc-relative branch instructions for a short jump. We covestarely
use long branches if a branch is crossing the two partitiéribeo
same method. This conservative choice increases the cogléf si
the branch was a short branch before code splitting. DCRatis
16 KB size chunks for hot and cold block allocation to avoig-ha
ing a branch distance larger than the upper bound of a condlti
branch. Therefore the hot and cold blocks are approximatédy-
leaved within the heap in 16 KB chunks.

3.3 Code Padding

DCR uses the dynamic call graph to find frequent caller/ealle
pairs, based on the threshold used to identify recompilatandi-
dates. The frequent caller/callee pairs may generate comfisses

if they map into the same line in the instruction cache. AREGR
splits a method into hot/cold blocks, it checks all of the frequent

Heap

[& o[&]
B e J[o][&]
B[s [[BA[&5]

(a) Jikes RVM Default

Code Space

L 8 Jlo]l &

[e 1ol & [&]

Data Space

(b) Code Space

Baseline Code Space

L e | & B

L8 Il& |

@ El Hot Code Space

(c) Interprocedural Method Separation

Baseline Code Space

L& ([s] &
[8 [B]
e T Gidpime

(d) Intraprocedural Code Splitting

Baseline Code Space

L e | & B
[8 [8 |
T " " THotBlocks ' ColdBlocks

WMo fion | [ocffoc]

(e) Code Padding

CODE-PADDING (methodA, DCG)
1 currentPadding < 0
2 repeat
for eachmethodB in GET-ADJACENTFNODES(methodA, DCG) do
if CHECK-CONFLICTS(method A, methodB) then
padding «— CALCULATE-PADDING (methodA, methodB)
currentPadding < currentPadding + padding
if currentPadding < methodA.size then
methodA.address <+ methodA.address + padding
until (padding == 0)||(currentPadding >= methodA.size)

©CoOo~NOOA~W

HECK-CONFLICTS(methodA, methodB)
of fsetA «— methodA.address&(CACHE_SIZE — 1)
of fsetB «— methodB.address&(CACHE_SIZE — 1)
if of fsetA < of fsetB
thenreturn (of fsetA + methodA.size > of fsetB)
else return (of fsetB + methodB.size > of fsetA)

abhwNek O

CALCULATE-PADDING (methodA, methodB)

1 offsetA «— methodA.address&(CACHE_SIZE — 1)
2 offsetB < methodB.address&(CACHE_SIZE — 1)
3 padding <« of fsetB 4+ methodB.size — of fsetA
4 if (of fsetB > (of fsetA + methodA.size))
5 thenreturn 0
6 else returnpadding

Figure 2. Pseudocode for Code Padding

callers and callees of methatito see if their mappings in the cache
overlap methodd’s mapping. If DCR detects overlaps, it employs

a simple and fast algorithm to calculate a padding size thztla
conflicts. DCR does not attempt to find an optimal padding size
that minimizes the expected number of conflict misses andedas
code space. However, our experience is that the number efpot
tially conflicting methods for a method is oft@me and therefore

this simple and efficient algorithm is usually sufficient. &eoid
wasting space, we use the method size as an upper bound on the
amount of padding we insert.

The detailed algorithm is in Figure 2. For each conflicting
method,CHECK-CONFLICTS computes where in the given cache
size they map and their overlap. If they overlap, it compwes
padding, accumulating any non-zero padding unless theipgdd
size exceeds the method size. Because DCR contiguoustatdo
with a bump pointer in the code space, DCR applies the padding
by simply adding the padding size to the bump pointer beftre a
locating the hot blocks of methad. Figure 1(e) depicts this code
layout.

4. Experimental Results

This section evaluates DCR and compares it to Jikes RVM with
and without a separate code space. For our evaluation, wedirs
form simulations to expose the magnitude of the performéosse
due to instruction cache conflicts of our Java applicatiansl, the
benefits of padding in a controlled setting. We find that fori-a d
rect mapped cache, programs lose around 6% on average and up t
17% of their performance to instruction cache conflict mesie
further explore the performance impact of DCR using two idech
tures: Pentium 4 and PowerPC; and two Jikes RVM configuration
one that excludes most compilation and thus consists maggi-
cation time, and one that mixes the adaptive compilationtaad
application. The latter experiment more accurately relaanulti-
programmed workload, and is when DCR is most effective. A sim
ple code space improves the default Jikes RVM configuration b
about 6%. Because the code footprint of our benchmarks if,sma

Figure 1. Code Reordering Heap LayoutB: baseline code; O:
optimized code; D: application objects; OH: hot basic blocks; CC:
cold basic blocks

additional DCR optimizations have little impact, occasilbyim-
proving them and occasionally slowing them down.

|| Baseline] O0] OOH] Ol1] OIH] 02] O2H
DaCapo Benchmarks
antlr || 1,385,368 109,232| 48,892 118,252| 57,928 17,656 | 10,052
bloat | 1,178,616|| 193,716| 103,104 | 307,020 | 123,484 || 140,836 | 39,968
fop || 1,841,528| 37,868 | 17,352 41,396| 15,872 4,068 | 2,484
hsgldb 516,800| 15,628 6,024 || 284,332| 74,328 || 104,956 | 33,324
jython || 1,217,868| 13,916 9,184 8,992 2,384 || 43,824 | 11,432
pmd || 1,166,364| 59,932| 31,132| 48,708 | 20,996| 51,892| 25,144
xalan || 1,397,848| 20,356| 10,232| 97,388| 32,004 4,528 | 1,016
ps 205,472| 16,212 9,068 | 17,648| 10,004 5,264 | 3,432
SPEC Java Benchmarks
_201_compress 173,432 2,208 1,392 180 112 4,248 2,108
-202_jess 355,296 8,400 4,012 || 29,724 9,820 6,104 | 3,628
_205_raytrace 220,508 | 13,560 7,232 || 15,808| 10,736 1,228 960
-209.db 175,640 2,476 1,156 0 0 5,804 | 3,412
-213_javac 612,128| 93,032| 42,900(53,720| 27,784 2,168 836
_222_mpegaudio 546,512 | 21,968 8,320 || 22,104 8,280 6,464 | 4,116
_227_mtrt 221,032| 14,124 7,500 || 14,700 9,988 1,336 960
_228_jack 465,028 9,964 4,440 || 36,756 | 21,008 4,352 | 2,604
pseudojbb 404,512|| 85,456| 43,368| 24,916| 15,240 2,588 | 2,028
[Arithmetic mean]] 710,820] 42,238] 20,900] 65,979] 25,880 23,960] 8,677]

Table 1. Benchmark Code Size Characteristics in Bytes with Replay@iation

4.1 Application and Compiler Mix

We use two Jikes RVM compiler and application mixes for our
experiments, which we cadecond run andadaptive.

(1) Thesecond run methodology uses profiling of the adaptive
compiler from previous runs (compiler replay [4, 20])dgtermin-
istically optimize methods to their highest level when the method
first executes. We then perform a whole heap collection t tius
heap of compiler objects, and execute the benchmark againe S
additional, but minimal recompilation may take place dgrthe
second run of the benchmark. We report measurements ofittis s
ond run because it consists almost entirely of applicati@tetion
and it is easier to understand and measure [6]. Eeckhoutstal/
that measuring the first iteration on SPECjvm98, whietiudes
the adaptive compiler, is dominated by the compiler rathenthe
benchmark behavior [13]. This methodology gives a simplgeco
space an advantage because more compilation takes placarehr
together (as we show below). This methodology would alsoimim
the Arnold et al. system that combines offline and online f@efio
drive compilation [3].

(2) Theadaptive methodology lets the optimizing compiler be-
have as intended, is non-deterministic, and measures tarpi
and application time. Section 4.5 reports these resultshnbe-
cause the compilezompetes with the application, are most indica-
tive of a multiprogrammed workload, and may be more indica-
tive of results on programs with larger icache footprintantfour
benchmarks. For example, SPECjAppServer loses signifizemt
formance to poor instruction cache behavior [10].

4.2 Benchmarks and Instruction Code Sizes

level O2. Replay compilation only optimizes methad at level

02. Table 1 thus shows the amount of compilation at each,level
and each method is compiled once at one level (althoughiriglin
produces copies of some code). Column one lists the ben&smar
Thebaseline column shows the total amount of baseline compiled
code in bytes, which ranges from 173 KB up 1841 KB. These vol-
umes clearly exceed the capacity of typical 8 to 32 KB ingiouc
caches, and demonstrate that for the most part, the DaCagb-be
marks have larger code footprints than SPEC. For each ohtke t
levels of optimization (OO0, O1, O2), the next six columnddiathe
methods into hot (indicated with a suffix ‘H’) and cold codee W
use the edge profile to determine the hot basic blocks. TheCSPE
Java benchmarks always produce less than 8 KB of hot code in th
O2H space, and the total size of the hot methods at O1 and O2 is
always less than 32 KB. For the DaCapo benchmarks at O2, there
are two programs with a hot code size of greater than 32 KB, and
at O1 plus O2, there are five of eight. The table thus indicttas

the working set of code (i.e., the hot code) in these progiamet
putting very much pressure on the instruction cache.

4.3 Simulation Results

To examine the potential of DCR’s capability to remove canfli
misses, we use Dynamic SimpleScalar (DSS) [18], a variant of
widely used SimpleScalar simulator [8] that is extendeditoJava
programs. We simulate a fully associative instruction eaahd
compare with a direct-mapped cache with the same access time
to show how much performance is lost to instruction cachdlicon
misses. The base DSS configuration uses an aggressive sgpoces
model with five-stage pipeline. The details of this standsindu-

We use the SPECjvm98 [28], SPECjbb [29], and DaCapo bench- lated microprocessor are as follows:

marks [6]. Other work [6, 12, 20] characterizes the memolabe

ior and memory system performance of the data for these bench

marks. Table 1 shows instead the code size characteri$tihese
benchmarks in bytes. We use treplay compilation methodology
to measure the size of generated code at each optimizatige.st
Therefore the numbers here only include the final optimizetkc
for every method, since replay specifies exactly at whiclelléy
compile each method. An adaptive compilation would instead-
pile a very hot method\/ at multiple levels, e.g., baseline com-
piled first, and then optimizing compiled at level OO, levdl,@nd

¢ Five-stage pipeline based on a 16 entry Register Update Unit
(RUU), which combines the physical register file, reorder
buffer, and issue window into a single data structure

e Out-of-order issue, including speculative execution

¢ Issue width, decode width, and commit width are 4

e 2-level branch predictor that uses its own 1 KB L1, 16 KB L2,
and a 14 bit history register. The BTB is 2 way associativéwit
256 sets.

¢ An 8-entry load-store queue

20.0%
@ Code Splitting
15.0% | [mCode Padd|.ng. + Splitting
OFully Associative IL1
10.0%

5.0% 1 ' -’
0.0% 1 — Ful!

$ Q O & & o «O ol o
Tl G & & FhC 7 S . L
2 O I < . N o

N +9 > K qq,} 06 wp&

Improvement over code space

§ /7 @
-5.0% @Q &\q’ o) > 17
) g 7oy & <
N4 ’ s 4
¥ o

-10.0%

Figure 3. Simulation Results for Directed-Mapped and Fully As-
sociative 32 KB IL1, 512 KB L2

We use two instruction cache configurations for these sitions.

(1) A 32 KB direct-mapped instruction cache and 512 KB unified
L2 cache; L1 access latency is 2 cycles and L2 access lateiacy i
(2) A 32 KB fully-associative instruction cache and 512 KB unified
L2 cache with the same latencies as configuration (1). We make
the hit latency of (1) and (2) the same to examine the potentia
performance improvement if we have no conflict misses onegtlir
mapped instruction cache. We use #geond run methodology
described above. We perform functional simulation for thst fi
iteration, turn off the adaptive compiler, and then switottycle
level simulation right before the second iteration, anchtsienulate

2 billion instructions.

Figure 3 compares the relative performance of DCR using as
its baseline hardware instruction cache configuration (ith &
simple code space. It shows the benefits of DCR code splitting
code splitting, padding, and a fully associative instmttcache
(hardware configuration (2)). DCR code splitting and paddiar-
forms 7.1% better than a simple code spacgython although just
DCR code splitting itself degrades the performance 7.6¥%RD&s
the opposite trend oralan where code splitting improves perfor-
mance by 14.0% but combined with code padding the performanc
degrades by 1.2%. Although the geometric mean of DCR perfor-
mance over all benchmarks is about the same (0.5% bette8%r O.
worse) as a simple code space on these benchmarks with yodest
sized instruction footprints, we believe that by carefudhoosing
the DCR optimizations for each individual program, we may be
able to achieve better average results. The performante dfilly
associative cache shows that even these relatively smglicap
tions lose on average around 6% to instruction cache canftict
that DCR is not consistently able to achieve that potential.

4.4 1A32 and PowerPC Performance Results

We report run-time results for our implementation on théofeing
two platforms.

3.2GHz Pentium 4with hyper-threading enabled, a 64 byte L1
and L2 cache line size, an 8 KB 4-way set associative L1 data
cache, a 12 kops L1 instruction trace cache, a 512 KB unified
8-way set associative L2 on-chip cache, and 1 GB main memory
running Linux 2.6.0.

1.6 GHz PowerPC 970with a 128 byte L1 and L2 cache line size,
a 32 KB 2-way set associative L1 instruction and data (split)
caches, a 512 KB unified 8-way set associative L2 on-chip
cache, and 1 GB main memory running Linux 2.6.0.

For each experiment we report, we run the experiment fivestime
interleaving the compared systems. We use the methodslogie

Heap size (MB)

1 15 2 25
Heap size relative to minimum heap size

w

20 30 40 50 60 70
14 T T T T —T T 111
b, JikesRVM Default —e—
1.35 Code Splitting ---e-—-
3 Code Space ---2--- | 155
13k Ly Code Splitting+Code Padding = :
’ B Method Separation -
' 4 10
= p .)
2 12 5\\~ 'S 4 95 gi
N s @
< 1.15 S : £
g \g . 19 F
S 11
\ 185
1.05 \g
1 e 08
0.95 1 1 1 1 1
1 15 2 25 3
Heap size relative to minimum heap size
(a) antlr
Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB100MA 10MB 20MB
1.
T " T JikesRVM Defatilt —o—
1.35 Code Splitting ---e---
Code Space ---2--- 4 1.5
13 | Code Splitting+Code Padding =
: Method Separation -
.qg’ 1.25 = 14
=)
E 12 g,i
T 115 2 413 ¢
£ £
S 11
4 1.2
1.05
1
49 11
0.95 1 1 1 1 1
1 15 2 25 3
Heap size relative to minimum heap size
(b) fop
Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 100MB
1.4
T T T JikesRVM Default —o— |
1.35 Code Splitting ---e---
Code Space ---4--- 7 10
13 | Code Splitting+Code Padding =
: Method Separation -~ | 95
_GE’ 1.25
= o
3 12 1° &
= o
g 1.15 d 85 E
2 11
418
1.05
1 4 75
0.95 1 1 1 1 1
1 1.5 2 25 3
Heap size relative to minimum heap size
(c) Geometric Mean
Figure 4. Code Optimizations on Pentium 4
Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 100MB
T ' " JikesRVM Default —o— |
135 F Code Splitting ---e-—- 7| 21
Code Space ---4---
13 | Code Splitting+Code Padding = 4 20
: Method Separation .
2 1.25
€ n
= 85
3 2 ik
5 115 18
I [=
2 11 4 17
i%
105 e 1 16
1
4 15
0.95 1 1 1 1 1

Figure 5. Code Optimizations on PowerPC 970:

Geometric Mean

350

300 | O Adaptive Compilation

W Replay Compilation

250 -

200 +

150 4

Methods Compiled

100 -

50

Time

Figure 6. Compiler Activity Histogram on First Iteration

above, and take the fastest time. The variation betweee thea-
surements is low. We believe this number is relatively undied
by other system factors. When measuring the system ovethead
the adaptive compiler, we believe the low variation from festest
time reflects a good application of the adaptive compilerustkea
generational copying collector with a 4MB bounded nurseithw
five heap sizes ranging from the smallest in which the apiina
runs up to three times larger [4, 6].

4.5 Application Performance

We use thesecond run methodology in experiments we report in
this section, and thus measure only the application behaWie
first compare the performance of DCR with the method separati
and the default configuration in Jikes RVM (code is mixed ithwi
data in the heap) on the Pentium 4. Most of the benchmarksoére n
sensitive to the code layout, but we found that a few bencksnar
have some sensitivity. Figure 4 shows two of these programidr (
and fop), and the geometric mean of all programs. All the per-
formance numbers report relative heap size (bottom), hbkap
size in KB (top), the normalized times on the left legend, sad-
onds on the right legend. We normalize the time to the best tim
each figure, so it is easy to see the relative performancerelifte
between the configurations. Although most systems use atepar
spaces for code and data, method separation, which furdper s
arates optimized compiled code from baseline compiled cizde
the worst performing configuration fantlr. Forfop, mixing code

and data in the heap degrades its performance and DCR ogtimiz pcRr optimizations offer some additional
tions perform worse than just having a simple code space. DCR y

optimizations perform about the same as Jikes RVM defauit co
figuration for the geometric mean over all benchmarks.

The compiler histograms in Figure 6 show the differenceween
when the recompilation takes place in the first run with astapt
compiler versus the first run using replay compilation. Wed#
each of the two executions of the program into twenty bucketbs
then record the number of methods compiled at level OO0 ordnjgh
and sum over all programs. When we use compiler replay (te-eli
inate non-determinism from adaptive recompilation), cibation
happens earlier in the program. We see this behavior because
play compilation compiles to the highest level of optimiaatin
the profile on the first execution of the method, instead obmec
piling at multiple levels. The adaptive methodology is thuisning
the compiler throughout the execution of the program. Thé pe
odic execution of the compiler displaces application cadenfthe
instruction cache and thus we believe the adaptive metbggas

a suitable environment in which to study instruction cacbdqr-
mance programs because the competition for the cache manics
multiprogramming environment. In this case, the applaatnd
JIT compiler interfere with each other.

Figure 7 shows the performance of various configurations of
DCR when using thedaptive methodology. The figures show the
total time, mutator time (program only without garbage ection),
and the trace cache flushes. We report trace cache flushgslusin
Pentium 4 performance counters configured for this measmem
We measure all the programs and present the geometric méan an
three programs 213_javac, _227_mtrt, fop) across four heap sizes
(the bottom axis reports relative to the smallest and theatdp
reports in MB). Again, we normalize the total and mutatoreim
figures to the best point to show relative differences.

The results show that a simple code space improves over the
Jikes RVM default configuration by 6% on average and by 30% on
fop. There are two reasons for this large difference in perfocea

1. The Pentium 4’s trace cache is flushed whenever the program
writes to a page in the trace cache (e.g., when the VM writes
new code on to a page or writes data on the same page as
code). By mixing data and code together in the heap, Jikes RVM
greatly increases the possibility of flushing the trace eduwd
cause writing to the data space happens more often than writ-
ing to the instruction space. This effect is very clear in-Fig
ures 7(c),(f),(i) and (1), and is the reason that the cowadmg
mutator time increases as the heap size grows for each of the
benchmarks and the geometric mean.

2. By scattering instructions into the heap, Jikes RVM agstr
the instruction spatial locality between methods. Thisdfis
especially crucial for architectures with hardware prefefor
instructions.

but modest improv
ments on a few programs. For example, 827 _mtrt, DCR code
splitting is most effective, and improves over a code spgogpto
5%. These results demonstrate that DCR has no appreciatte ov

We also performed the same experiments on the PowerPCpeags and has the potential to improve performance over a ba

which has a traditional instruction cache instead of th&ucsion

sic code space in a multiprogrammed environment. Prograths w

trace cache on the Pentium 4. Figure 5 shows these resul®. DC |5ger instruction cache working sets may benefit, but coggams
has even less impact on performance on the PowerPC than on thgy, ot exercise this space.

Pentium 4 because the PowerPC has a larger instruction (a32he
KB) and 2-way set associativity. It is thus large enough totaim
the working set of our benchmarks and its associativity cedu
the conflict misses. As the previous section showed in sitionla

a large capacity (32 KB) direct-mapped cache does howeger lo
performance to instruction cache misses (Figure 3).

4.6 Mix of Compiler and Application

This section reports on experiments using aldaptive methodol-
ogy which includes a mix of the application and the compikeita
finds hot methods and compiles them at progressively higietd.

5. Related work

Numerous researchers have studied the problem of resingtu
programs to improve memory performance. Much of the early
software-based work was aimed at reducing virtual memogge pa
faults. Some current work also tries to minimize these vepee-
sive faults [31]. However, most recent work focuses on ciatid
dynamic approaches for reordering code to reduce instruetnd
ITLB misses with offline and online profiling.

Heap size (MB) Heap size (MB) Heap size (MB)

20 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80
15 T —— T T 15 T T —— T T T T T T T T
JikesRVM Default —e— 1 19 JikesRVM Default —e— 4 9 8 120 F JikesRVM Default —e—
Code Splitting ---e--- Code Splitting ---e--- £ Code Spliting ----—- | 40 &
£ £
Code Space ---&--- Code Space ---2--- = Code Space - S
14 - Code Splitting+Code Padding --#-- < 9.5 s M Code Splitting+Code Padding ---#-- < 8.5 T 00k Code Splitting+Code Padding & 4 35 &
Method Separation - £ Method Separation - £ Method Separation - 2
o 4 = o & 430 <
£ 13 S 5 13 18 8 O 4 2
S e
= g g 2 § 425 5
B 185 2 2 5 £ & 2
N © b (= El
5 12 g 3 12 - 5 60 420 §
18 £ s z
E - § 17 £ § 415 §
11 75 5 11 = - 4 F
B {65 & J10 8
= © £
— 47 o ES— g 20 ES
******] 2T i = 15 =
1 1 16 5
L L L L L 6.5 L L L L L - L L L "
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) -213_javac Total Time (b) -213_javac Mutator Time (c) -213_javac Trace Cache Flushes
Heap size (MB) Heap size (MB) Heap size (MB)
20 30 40 50 60 20 30 40 50 60 20 30 40 50 60
15 T T T T 15 T T T T] 55 T T T T T
JikesRVM Default —e— JikesRVM Default —e— g 8 120 | JikesRVM Default —e— o 5
Cod%Sphning ----- 4 55 Cod%Splimng - £ Cud%Splimng ————— g,\
Code Space ---&--- Code Space ---=--- 2 Code Space #-&---
14 - Code Splitting+Code Padding - o T Code Splitting+Code Padding ---= 5 100 |- Code Splitting+Code Padding”= £l
Method Separation -~ £ Method Separation - | g < Method Separation - 7| 4 e
© F o’ <
E 13 15 _ 5 13 3 9 g 3
= S g 2 [
= 8 g ? 8 \/]sE
S ri- Jas £ F S
3 12 145 £ § 12 5 &5 60 8
E R E S 12 @
<] K| s = S
= -2 S = - =
: LS S 14 g 5
. 2 {1 8
& s J E 2
1 1 5 =
2
L L L L L L L L L L L L . . .
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(d) _227_mtrt Total Time (e) _227_mtrt Mutator Time (f) _227_mtrt Trace Cache Flushes
Heap size (MB) Heap size (MB) Heap size (MB)
30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120
15 T T T T T T 15 T T T — T T T T T T T — T T T
,‘L, JikesRVM Default —e— JikesRVM Default —e— | 3 $ 120 | JikesRVM Default —e—
‘;X Code Splitting . 4 32 Code Splitting ---e--- G Code Splitting ---e--- | 20 §
b Code Space ode Space ---4--- 3 ode Space ---4--- s
14 0y Code Splitting+Code Padding s M Code Splitting+Code Padding - T 00k Code Splitting+Code Padding & S
”,‘ Method aration 43 £ Method Separation -4 1 28 S Method Separation .]
o % [o« <
E 13 1 8 13 8 9 g 115 2
= LN {28 § & 126 ¢ § P
E ! i £ 5 o £
® 12) ° 12 5 & 4
£ b 126 £ 2 e 124 & E 09
S B T £ 3 S
ST B < £ o1 2z o £
- E G 1 24 S 1 22 z / g 15 §
i | g 20 g
1 4 22 1 S =
L L L L L L L L L . = " L L L "
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(g) fop Total Time (h) fop Mutator Time (i) fop Trace Cache Flushes
Heap size (MB) Heap size (MB) Heap size (MB)
30 40 50 60 70 80 90 30 40 50 60 70 80 90 30 40 50 60 70 80 90
15 T T T T T T 15 T T T T T T T T T T — T T T
JikesRVM Default —e— | 955 JikesRVM Default —e— $ 120 | JikesRVM Default —e— . 18
Code Splitting ---e--- : Code Splitting - G Code Splitting ---e--- §
Code Space ---2--- | Code Space - 3 Code Space -4 | 15 &
14 Code Splitting+Code Padding - 12 o 4T Code Spliting+Code Padding —#—] 1; T 00k Code Splitting+Code Padding & 2
Method Separation - J 115 £ Method Separation -4 £ Method Separation - 414 3
] ’ E lw0s B & G
E 13 in 5 g 13 89 w0 2 2
= g 5 4 10 < 2
g {105 £ 3 E £ 1% %
5 12 o &3 12 {os 3 8 60 1g S
£ 1 o g g @
g S
2 o5 g 19 2 3 4 6 £
11 A s 11 o =
S .- g 20 g
1 = 4 g5 1 $ice el 8 5 42 =
L L L L L L L L L L = L L L L .
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
() Geomean Total Time (k) Geomean Mutator Time (I) Geomean Trace Cache Flushes

Figure 7. Total time, mutator time, and trace cache flushes for a sigge cache, Jikes RVM default and various DCR configurations

5.1 Static code placement to a managed runtime of exploiting profile data from the paogs

Researchers have explored code placement at compile eiirfigk ~ CUrTent execution. . .
at a number of different granularities: for example, at thang- McFarling [23] uses profile data to lay out code to reduce esiss

larity of basic blocks, groups of basic blocks, or entireqedures. in a direct-mapped instruction cache. His algorithm idesgithose
A limitation of these static layout approaches is that theydpce parts of a program that could overlap each other in the cactle a

a fixed static layout, which as we discussed in Section 1, is no th0se that should be placed in non-conflicting addresses.
suitable for a managed runtime. Furthermore, static schemusst Pettis and Hansen [24] perform profile-based code placeatent

assume that the profile data gathered on a training run iesepta- 2l three (‘Iqranularitti)es.. 1)b'|°‘t the finest grﬁnularity, basick Fr:ccx)b-
tive of all program executions and miss the opportunitiesilable sitioning lays out basic blocks to straighten out commontrasn

paths and minimize control transfers. 2) Procedure smditthoves
a procedure’s never-executed basic blocks into a diffeatata-
tion area from that of its other blocks. 3) At the coarseshglarity,
a greedy algorithm starts with an undirected weighted aalply
constructed from the profile data and progressively consbite
nodes to place frequent caller-callee procedure paire ¢tmether.
Pettis and Hansen show that combining all three optiminat@an
improve performance up to 26% (average about 12%) with a 16
KB directly-mapped unified cache. However, the improventiesy
achieve is very sensitive to cache organization. Becalsebinth
simple and effective, their procedure ordering algoritlsngéner-
ally considered the reference placement technique. Iltdsbtsis
for several more recent algorithms. However, it has peréorce
instability because small changes in the profile data oftedyce
substantially different layouts [19].

Cohn et al [11] describe the Spike post-link optimizer for Al
pha/NT executables which includes the Pettis-Hansen guoee
code layout algorithm. They report that, on a set of largechen

Chen and Leupen’s just-in-time code layout technique glace
the procedures of Windows applications in the order of their
vocation at runtime [9] . Their results show improvementsilgir
to that of the Pettis and Hansen. It also substantially reslilce
program’s working set size, often by about 50%. Pettis-ldaiss
procedure layout also reduces the working set, but beingte st
approach, it is less effective because the procedures texktypi-
cally do not exactly match those of the training run. Chenlasat
pen’s approach lays out procedures at allocation time, @aseour
approach reorders hot procedures during recompilation.

Scales’ DPP (dynamic procedure placement) system uses run-
time information to dynamically lay out procedure code [OPP
uses a loader component that is invoked on procedure cdlis. T
copies the code of the called procedure to a new code regloerew
it will be close to the caller, then fixes up all referenceshi pro-
cedure to refer to the new copy. Because this system supports
and other languages that are not strongly typed, it deals it
direct calls by memory protecting the original code spaoehat

marks, Spike speeds up most by at least 5%, and often 10% orattempts to call a procedure at its original address resuttrap

better. Ispike [22] is a post-link optimizer for the ItanidPnocess
Family (IPF). It uses the IPF performance counters to colize

cost detailed profile information for instruction and dagdimiza-

tions including inlining, branch forwarding, layout, anefetching
of both code and data. Their code layout optimization inetud)

basic-block chaining to lay out basic blocks in sequendeeifd is a
frequently-executed control flow edge between them, 2)qutoe
splitting, and 3) procedure layout that keeps hot procedalese
together. On a set of small benchmarks, they found that eyaeit

by itself helps one-third of the benchmarks by over 4%.

Hashemi et al. [15] take the cache configuration into acctaunt
lay out procedures using cache line coloring. Their albamitol-
ors each cache line in the instruction cache and uses a gaégaly
rithm similar to Pettis and Hansen’s to place procedurel shat
the most frequent caller-callee pairs will not occupy thmsaache
lines. In simulation, they achieve better performance ettis and
Hansen. Gloy and Smith [14] also compute procedure laybiats t
reflect the cache configuration. They collect complete o
interleaving information that in combination with the caatonfig-
uration and procedure sizes, they use to produce a layduniha
mizes both cache conflicts and the instruction working st 8y
making use of temporal locality information, their techunécelim-
inates more cache conflict misses than Pettis and Hansen.

Ramirez et al. [25] developed a code reordering systeneaall
the Software Trace Cache (STC), that not only tries to improv
the instruction cache hit rate, but also increase the psociss
effective instruction fetch width. Using profile informati, STC
determines traces (hot basic block paths) then maps théingsu
traces into memory locations that minimize cache conflittslso
makes effective use of instruction cache lines while tegittirkeep
sequentially-executed instructions in order. STC alsemres a
region in the instruction cache for hot instructions to avanflict
misses with cold instructions.

Since these static approaches generate code layouts ahead-
time, they lose the flexibility of determining layouts usitige
actual information for a particular run of a program. Thegaoal
cannot cope with different program phases. The time contglex
of these algorithms is too high for a dynamic scheme. For @kam
Pettis and Hansen’s algorithm has a time complexityOgh®).
These limitations make them less useful in the context dabiair
machines.

5.2 Dynamic code placement

Dynamic schemes for improving instruction locality tygiganon-
itor system behavior and apply optimizations at runtimestasn
that behavior.

whose handler then invokes the new copy of that procedurB!DP
overhead is high because of the virtual memory protectiapstr
and the many calls to the DPP loader. The DPP system cantrestar
procedure placement to try to improve the layout, but eastare

is expensive due to the overhead of the new loader calls. feanex
sion of DPP supports runtime profiling: at each call to thaléra

the call stack is recorded to build a profile of the calls. Tihfer-
mation is used later to improve the layout. However, thiifing

is extremely expensive and slows down the program by a factor
ten or more.

Whaley [30] very briefly outlines a never implemented dyrmami
procedure code layout optimization for Jikes RVM. It alsgqyi-
backs on branch and call stack profiling, but suggests passis
information to the garbage collector as a hint to reordereciod
the heap (see Figure 1(a)). In contrast, DCR separates coate f
data objects in the heap which sometimes improves perfaean
Furthermore, DCR pads conflicting hot caller/callee painemthe
methods are recompiled, and does not wait until garbageatiih.

Huang et al. [19] developed several more efficient algorihm
for generating a code layout. Their algorithms are up to 6000
times faster than the popular Pettis-Hansen algorithm. édew
they use fairly expensive instrumentation to gather thedfile
data and perform a complete reorganization of all the caedpil
code. Both of these factors result in large overheads fortsho
running applications. Our techniques try to allocate cadehie
right place when it is generated and piggyback on the natural
actions of the adaptive recompilation system. This orgitn
achieves significantly lower overheads than previous ambres,
and may have the potential to obtain speedups on prograrhs wit
modest running times.

Recent research [7, 16, 17, 26] investigates code cacheg@ana
ment for dynamic binary optimizing systems. This work faesis
on frameworks for software managed code caches, creatsig ba
block sequences (superblocks) for a trace cache, replatqrok-
cies for hardware instruction caches, and sharing betweeads.
Our work is complementary to theirs since we not only redhee t
working set size by code splitting, but also reduce conflictses
by code padding.

Our system thus differs from the prior work in several key siay
it is not restricted to invocation order [9], nor rely on erpie
page protection [27], nor does it require special hardwage 17],
and it is implemented in a JVM [30].

6. Conclusions

This work develops and throughly evaluates a dynamic code re

ordering system specifically tailored for use in a virtualcimae.
By exploiting existing online profiling mechanisms and piggck-
ing on the activities of the adaptive recompilation syst&TR
seeks to improve instruction locality in a completely oalifash-
ion with negligible overhead. DCR employs three optimizasi
(1) interprocedural hot/cold method separation, (2) privaedural
hot/cold code splitting, and (3) interprocedural hot codeding
that together improve instruction locality by reducingtbotipac-
ity and conflict misses.

We have completely implemented DCR in Jikes RVM for both

the 1A32 and PowerPC architectures and present experihreata

sults using the SPEC Java and DaCapo benchmark suites én Inte
Pentium 4 and PowerPC 970 machines. We also present siotulati

results that demonstrate the effectiveness of DCR at editimg
conflict misses. Overall, the results show that instructarality
can have an important impact on overall performance of save J
applications. Although on average the improvement is miD@R
occasionally improves performance by improving instrttocal-
ity and thus merits further investigation on larger benctiksa

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Architecture and policy for adaptive optimization in visfumachines.
Technical Report 23429, IBM Research, Nov. 2004.

M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.afstlve
optimization in the Jalapefio JVM. ICM Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
47-65, Minneapolis, MN, October 2000.

M. Arnold, A. Welc, and V. T. Rajan. Improving virtual maine
performance using a cross-run profile repository. AGM Confer-
ence on Object-Oriented Programming Systems, Languages, and
Applications, pages 297-311, 2005.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths andlities:
The performance impact of garbage collection. AGM Conference

on Measurement & Modeling Computer Systems, pages 25-36, NY,
NY, June 2004.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and watéligh
performance garbage collection in Java with IMTk.Phoceedings
of the International Conference on Software Engineering, pages
137-146, Scotland, UK, May 2004.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, S. Z. Guyer,
A. Hosking, M. Jump, J. E. B. Moss, D. Stefanovi¢, T. VanDeon

2

—

13

—

[4

o

5

—_

[6

—_

D. von Dincklage, and B. Wiedermann. The DaCapo Benchmarks:

Java benchmarking development and analysis. TechnicabrRep
TR-CS-06-01, Dept. of Computer Science, Austrailian Netlo
University, Mar. 2006. http://ali-www.cs.umass.edu/RaG/-
Benchmarks.

[7

—

D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. réad-shared
software code caches. IEEE/ACM International Symposium on
Code Generation and Optimization, pages 28-38, NY, NY, Mar.
2006.

D. Burger and T. M. Austin. The SimpleScalar tool set i@ns2.0.
Technical Report 1342, Computer Sciences Department,eliify
of Wisconsin, June 1997.

[8

-

[9] J. B. Chen and B. D. D. Leupen. Improving instruction ligawvith
just-in-time code layout. lfProceedings of the USENIX Windows NT
Wbrkshop, pages 25-32, 1997.

[10] C. Click. Personal communication, Jan 2006.

[11] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin. Spike: An
Optimizer for Alpha/NT Executables. IWSENIX Windows NT
Workshop, pages 17-24, 1997.

[12] S. Dieckmann and U. Hblzle. A study of the allocatiorhaeior of
the SPECjvm98 Java benchmarks. Riroceedings of the European
Conference on Object-Oriented Programming, pages 92-115, June
1999.

[13] L. Eeckhout, A. Georges, and K. D. Bosschere. How Jasgnams
interact with virtual machines at the microarchitectuesel. InACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 244-358, Anaheim, CA, Oct. 2003.

[14] N. Gloy and M. D. Smith. Procedure Placement Using Terapo
Ordering Information. ACM Transactions on Programming Lan-
guages and Systems, 21(5):977-1027, 1999.

[15] A. H. Hashemi, D. R. Kaeli, and B. Calder. Efficient Prdaee
Mapping Using Cache Line Coloring. IACM Conference on
Programming Languages Design and Implementation, pages 171—
182, 1997.

[16] K. Hazelwood and R. Cohn. A cross-architectural irsteef for code
cache manipulation. IFEEE/ACM International Symposium on Code
Generation and Optimization, pages 17-27, NY, NY, Mar. 2006.

[17] K. Hazelwood and J. E. Smith. Exploring code cache @&wict
granularities in dynamic optimization systems. |hternational
Symposium on Code Generation and Optimization, pages 89-99,
Palo Alto, CA, March 2004.

[18] X.Huang, J. E. B.Moss, K. S. McKinley, S. Blackburn, dadBurger.
Dynamic SimpleScalar: Simulating Java virtual machine=chhical
Report TR-03-03, University of Texas at Austin, Departmeht
Computer Sciences, Feb. 2003.

[19] X. Huang, B. T. Lewis, and K. S. McKinley. Dynamic code
management: Improving whole program code locality in madag
runtimes. InInternational Conference on Mirtual Execution
Environments, Ottawa, Canada, June 2006.

[20] X. Huang, Z. Wang, S. M. Blackburn, K. S. McKinley, J. E.Hoss,
and P. Cheng. The garbage collection advantage: Improviogram
locality. In ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, Vancouver, BC, 2004.

[21] Jikes Research Virtual Machine (RVM). http://jikesnsourceforge.net.

[22] C.-K. Luk, R. Muth, H. Patil, R. S. Cohn, and P. G. Lownéspike: A
Post-link Optimizer for the Intel Itanium Architecture. IEEE/ACM
International Symposium on Code Generation and Optimization,
pages 15-26, 2004.

[23] S. McFarling. Program Optimization for Instruction @es. INACM
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 183-191, 1989.

[24] K. Pettis and R. C. Hansen. Profile-guided code positmnin ACM
Conference on Programming Languages Design and | mplementation,
pages 16-27, 1990.

[25] A. Ramirez, J.-L. Larriba-Pey, C. Navarro, J. Torrgjland M. Valero.
Software Trace Cache. Imternational Conference on Supercomput-
ing, pages 119-126, 1999.

[26] E. Rotenberg, S. Bennett, and J. E. Smith. A Trace Cache
Microarchitecture and EvaluatiohEEE Transactions on Computers,
48(2):111-120, 1999.

[27] D. Scales. Efficient Dynamic Procedure Placement. fiieet Report
WRL-98/5, Compaq WRL Research Lab, May 1998.

[28] Standard Performance Evaluation Corporati®ECjvm98 Docu-
mentation, release 1.03 edition, March 1999.

[29] Standard Performance Evaluation CorporatiSRECjbb2000 (Java
Business Benchmark) Documentation, release 1.01 edition, 2001.

[30] J. Whaley. Dynamic Optimization Through the Use of Auttic
Runtime Specialization. Master’s thesis, Massachuseststute of
Technology, May 1999.

[31] B. Zorn. Performance in the Age of Trustworthy Compgtidanuary
2004. Presentation at the DaCapo winter meeting. The Usifyesf
Colorado, Boulder, CO.

