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Abstract

Applications continue to increase in size and complexityiciwh
makes debugging and program understanding more challgngin

To manage objects, programmers use regular data structures
such as arrays and recursive data structurescArsive data struc-
ture (RD forms a regular pattern of nodes and references (point-

Programs written in managed languages, such as Java, C#, an@'s). such that removing references between any two nodekse

Ruby, further exacerbate this challenge because they teed-t
code much of their state in the heap. This paper introdages
namic shape analysishich seeks to characterize data structures in
the heap by dynamically summarizing the object pointertiaia
ships and detecting dynamic degree metrics based on class. T
analysis identifies recursive data structures, autonibtidesscov-

ers dynamic degree metrics, and reports errors when degeee m
rics are violated. Uses of dynamic shape analysis inclutfgrtge
programmers find data structure errors during developnggnt;
erating assertions for verification with static or dynammalgsis,
and detecting subtle errors in deployment. We implemenanya
shape analysis in a Java Virtual Machine (JVM). UsERECjvm

and DaCapo benchmarks, we show that most objects in the heap
are part of recursive data structures that maintain stromgdic
degree metrics. We show that once dynamic shape analyals-est
lishes degree metrics from correct executions, it can findraati-
cally inserted errors on subsequent executions in micicibaarks.
These suggests it can be used in deployment for improvirngard
reliability.

Categories and Subject Descriptors D. Software P.2. SOFT-
WARE ENGINEERIN{ED.2.5. Testing and Debugging

General Terms debugging aids, testing tools

Keywords dynamic shape analysis, degree metrics, dynamic in-
variants

1. Introduction

Object-oriented languages encode program state in obj#fts a

growing number of objects allocated in the heap, it is unssirg

that many semantic, data structure, and concurrency bugsgesa
themselves in heap allocated data structures. Heap an#hgsie-
fore has the potential to help developers detect errors pacifg

their programs correctly.

* This work is supported by NSF CCR-0311829, NSF ITR CCR-00257
NSF CCF-0429859, NSF EIA-0303609, DARPA F33615-03-C-4106
DARPA NBCH30390004, Intel, IBM, and Microsoft. Any opinisnfind-
ings and conclusions expressed herein are the authors’canatchecessar-
ily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’09, June 19-20, 2009, Dublin, Ireland.
Copyright(© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00.

in two instances of the same data structure. For exampleagéysi
linked list with n nodes is a simple recursive data structure and
can be divided into two smaller singly-linked lists: one @es

x and another of size. — x. For a long time, researchers have
usedstatic shape analysi® characterize recursive data structures
in the heap based on the code that creates and manipulates the
using [9, 10, 16, 28, 29]. By analyzing program statemertigics
shape analysis detects recursive data structures andrfeiants.

For example, it can detect that a singly-linked list has tmaii-
ants:n — 1 nodes have exactly one incoming pointer as well as one
outgoing pointer. Despite its recent advances [9], stéidps anal-
ysis is not used extensively because it requires flow- antegbn
sensitivity, which makes it very expensive and necessadhser-
vative.

In this paper, we introducdynamic shape analysig/hich dy-
namically detects recursive data structures and degreeiamis
that hold during a particular program execution by piggyiag
on periodic garbage collections. Our analysis computetass-
field summary grapfiCFSQ which summarizes the dynamic ob-
jectgraph based on class definitions. THeSGrecords the number
of objects and their recursive degree metrics as in- andlegtee
invariants. When a specific number of nodes of a data strictur
exhibit a particular degree, we call itfixed metricand track the
number of objects that exhibit the fixed metric. For examieg
singly-linked list withn nodes, exactly: — 1 nodes have an out-
degree equal to one and the last node has an out-degree equal t
zero. For any degree invariant, that is not fixed, @€SGrecords a
range metricas the fraction of objects with a given property along
with its variance.

A fully accurate dynamic shape analysis requires analysis o
the heap after every pointer mutation which is extremelylgoso
make the costs more tractable, we piggyback on garbagetiotie
in a tool called ShapeUp that we add to a Java Virtual Machine
(JVM). Since garbage collection is periodic and relativigifre-
quent, dynamic shape analysis can be made efficient. Forpdeam
ShapeUp adds an average 4 to 8% to total runtime and less%an 1
to space overheads in our system. Performing dynamic shegbe a
ysis less frequently trades accuracy for efficiency. Shapedes
accuracy since the program can violate degree metrics batoa-
lections. Our results, however, indicate that performiggainic
shape analysis relatively infrequently is sufficient todarce infor-
mation accurate enough to find many errors.

We evaluate ShapeUp by first identifying a variety of both li-
brary and custom recursive data structures in SPECjvm and Da
Capo Java benchmarks. We demonstrate that the vast majbrity
objects in the heap are part of recursive data structuregteatd
these data structures maintain dynamic degree metrickdardn-
tire execution. While individual data structures maintdiegree



metrics (e.g., an in-degree of one), the heap as a whole dies n
because of its transient nature. Using microbenchmarkshoes

a unique application of dynamic shape analysis in which 8bap
uses correct executions to develop invariants and then éindss

in incorrect executions. We automate the generation ofecoex-
ecutions and find that some errors trigger anomalies in thecde
metrics that ShapeUp detects and reports. These resuffssiibat
ShapeUp may be useful for hard-to-find errors that makedtdet
ployment.

In summary, dynamic heap analysis effectively summarizes t
objects in the heap by class, finds dynamic invariants, arus fin
violations by mining much of the heap’s regular structurenfr
the object graph. This paper begins the study of dynamiceshap
analysis by degree metrics by showing how degree metricbean
used to detect and report errors in microbenchmarks. leleas
future work the study of more precise summaries that canlband
multiple instances of a single data structure as well as@gjon to
real programs. We begin in the next section by discussingnpiai
uses for dynamic shape analysis in more detail and explainitho
differs from its static counterpart.

2. Moativation

Dynamic and static shape analysis differ in their use cases.

Static shape analysis is a flow and context-sensitive aisalys
that proves that a program correctly constructs and maatigsi|
a recursive data structure. Static analysis strives tocti¢bat a
data structure will never violate some invariant, such asnbdes
in a binary tree have an in-degree of at most one. Unfortlynate
there are points in the program (i.e., when a data strucsire i
manipulated) that invariants are temporarily violated ai static
shape analysis, programmers specify the invariants arbihts at
which they expect the invariants to hold. Even with this hetptic
analysis, which is necessarily conservative, cannot awapve
some properties even if they do hold. Furthermore, statipsh
analysis is still intractable for all but modestly-sizedgrams.

Dynamic shape analysis, instead, samples data structuties i
heap for a given program run. It analyzes the current shapieeof
data structure and, given correct invariants, can deterrfithe
current dynamic shape violates these invariants. It cagnatan-
tee a data structure will never violate its invariants asiirants
can be violated between samples. However, dynamic shape ana
sis can help developers find bugs that persist early in dexedat,
during testing, and after deployment. Data structure itspdur-
ing development can help programmers find obvious errors. Fo
example, consider the case when a developer intends teaeat
doubly-linked list, but forgets to set the back pointer anelates
a singly-linked list instead. The ShapeUp invariant repeould
clearly indicate that — 1 nodes showed an in-degree of one rather
than the expected value of two.

More interestingly, perhaps, is the case of detecting ianar
violations during or after deployment. This paper demaist
that dynamic shape analysis can develop invariants by wibger
correct executions and then can find anomalous ones, sudhess w
a well-tested program exhibits a runtime error as a resula of
race. If the errors persist over time, periodic analysishef lieap
detects them. Furthermore, the information from dynamigpsh
analysis augments static analysis and verification. Fomeie,
users can provide dynamically detected invariants as itgpstiatic
or dynamic verification. Dynamic shape analysis therefa®the
potential to help programmers at many stages of developarent
deployment.

3. Related Work

Related work includes dynamic invariants based on program-
counter locations, static shape analysis, error deteetiah cor-
rection using invariant specifications, and C heap analysis

For a long time, static shape analysis has sought to understa
heap structure by analyzing code to identify recursive datac-
tures[9, 10, 16, 28, 29]. Unfortunately, it is not widely déecause
it requires flow and context-sensitivity which makes it verpen-
sive and necessarily conservative. Our analysis effigigites the
same information, but is specific to one or more program ei@tsl
since it observes the current state of the heap rather thayzamy
all possible heap states. Dynamic shape analysis, likie staape
analysis, can be used to generate specifications and tests.

More recently, dynamic analyses have discovered likelgrinv
ants by mining dynamic program behavior, correlating itwato-
gram locations, and then identifying anomalous execufibBsl7,

18, 22, 21, 23, 25, 31]. For example, Hangal and Lam showed tha
crashes are often preceded by anomalous behavior, i.eradgeam
violates one or more dynamic invariants that were estadufish-
ther on previous executions or earlier in the current exesuThey
show that recording variable and condition values whilergpg
unseen values aids debugging. We show that this hypothgsies

to the heap as well, i.e., the heap object graph encodes teman
and unusual heap relationships reveal software flaws.

Recent work has also shown how to detect and correct data
structure errors using programmer-specified invariants4[111]
or user-defined predicate routines [8, 14]. This approaghires
a programmer to specify the nature of the data structure lzem t
uses model checking and partial evaluation to detect andrfix e
rors as they occur in the wild. User-defined predicates candm
valuable information, such as which value encodes the nuwibe
nodes that should be in the data structure, which ShapeUpaetil
discover. The advantage of ShapeUp is that it is fully autecha
and does not require a predicate routine. It detects siraitars
by automatically discovering many of the same propertiasuker
predicates contain. Developers can use the results of alyssito
write predicate routines for complex recursive data stnest.

HeapMD examines simple heap properties in C programs [12].
Specifically, it shows that many C heaps contain a stabldidrac
of objects with an in- or out-degree of zero, one, or two. Whil
HeapMD provides inspiration, our work shows that the moae-tr
sient nature of the Java heap and more complex relationships
object graph rarely provide stable whole-heap invaridbifferen-
tiating the heap by class and connectivity, however, revesdur-
sive data structures that do have many stable degree intaria

Pheng and Verbrugge visualize dynamic data structure evolu
tion from program traces, showing how memory usage and drag
varies over time [26]. They analyze complete program traces
whereas we show how to efficiently compute summaries by pig-
gybacking on the garbage collector. Their analysis idetifists,
trees, and directed acyclic graphs, whereas ShapeUp gevielo
variants.

Jump and McKinley introduce thelass points-from graph
which summarizes the entire heap by user classes and thipoin
relationships between them [20]. This heap representtidped
developers find memory leaks by identifying growing partshef
graph. Our work is orthogonal and complimentary. This paper
tends the class points-from graph by adding field edgesticgea
class-field summary grapRurthermore, we use the resulting graph
to characterize data structures in $iRECjvm andDaCapo Java
programs, to identify recursive degree invariants in adnpeogram
executions, and to identify malformed data structuresldyiand
precisely.

4. Data StructureAnalysis

To manage large amounts of data, programs written in modern
languages use recursive data structures. Developerscitiypéind
explicitly maintain invariants over data structures andhie code
that allocates and manipulates them.récursive data structure
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Figure 1. Recursive data structure in the heap
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(RDS is a set of objects linked by references (pointers) in aleggu Z

pattern such that any part is composed of a smaller or simpler

instance of the same data structure. For example, a subset of
singly-linked list is also a singly-linked list. While theefinition

of the data structure is unbounded, the size of any parti®RizS

in the heap is bounded.

We examine the composition of the heap in terms of the recur-
sive data structures f@PECjvm and DaCapo benchmarks and
present them in Figure 1. We separate recursive data stesctu
based on where they are implementedcéstomdata structure
is one that is specifically implemented by the applicatiothe®
data structures are implemented in libraries and are siogey by
the application. Figure 1 shows that recursive data strestare
used ubiquitously in the benchmarks analyzed. Whdepress
and mpegaudio rely strictly on arrays for handling their data, in
other benchmarks, 91% of all objects are part ®RS 33% of
which are contained in custom data structures.

In Java and other object-oriented languages, a recursiize da
structure is implemented separately from the data that ttie d
structure contains. Thus we refine the definitiorR&iSto include
object class and differentiate objects of the class thalemepnt the
recursive backbone of the data structure. Témursive backbone
defines the shape of tHRDSand consists of objects of a single
class that reference other object(s) of the same classnEiamice,

a tree is composed of smaller trees (sub-trees) where thikestna
tree is a single node. A given class definition of a tree costai
classiode with some number of references to otlNedes, as well
as references to one or more data objects. Table 1 detaitnithe
crobenchmarks that we implemented to evaluate ShapeUgpdincl
ing singly-linked lists, doubly-linked lists, binary treebinary trees
with parent pointer, and a simplified hashmap. For each date-s
ture, the first column illustrates example instantiatidriee second
column presents the definition of thiede class. The third column
shows theclass-field summary grapifCFSG explained in the next
Section), which summarizes the recursive backbone andtefle
shape of th&DS It is this shape that both static and dynamic shape
analysis seek to characterize. We next describe how Shapigdp
gybacks on the garbage collector to create this summary.

4.1 Summarizing Data Structuresfor RDS Analysis

Dynamic shape analysis examines the heap at each garbieme col
tion. The state of a program’s heap can be expressed as tedirec
graphG = {V, E}, whereV is the set of all heap-allocated ob-

jects andF is the set of references between objects in the heap.

That is, if an objecb with field f that refers to objecp, then the
edge(o. f, p) exists in the graplds. The in-degree of an objeetis
the number of other objects in the heap that referendéhe out-
degree of an objeat is the number of objects to whichactually
refers otthe potential number specified by the object’s class). The

void scanObject (ObjectRef obj) {
MMType objClass = getObjectType (obj);
summaryGraph . incNodeCount (objClass);

int out = 0;

for(int field = 0 ;
ObjectRef childRef =
MMType childClass =

field < ob.refs ; field++) {
class .getChildRef (obj,field);
getObjectType (child);

summaryGraph . incEdge (objClass, field, childClass);
if (objClass == childClass) {
out ++;

// incrementally accumulate in-degree histogram
int in = childRef .getIndegree ();
// decrement old histogram bin
summaryGraph .decInHistogram (childRef ,
in++;
// increment new histogram bin
summaryGraph . incInHistogram (childRef, in);
childRef .setIndegree (in);
}

}

// directly increment out-degree histogram

summaryGraph . incOutHistogram (out);

in);

}

Figure2. Pseudocode for accumulating in- and out-degree metrics
during object scan.

roots of the heap-graph are references stored in the staticsalglob
variables), stacks, and registers. A tracing garbageatoliestarts

at these roots and detects live objects by performing aithans
closure through all the live object references in the hebhpp8Up
piggybacks on this scan and summarizes the structure oétiqeih
aclass-field summary grapftFSQ, which describes the dynamic
shape of objects per class.

The CFSGsummarizes the entire heap tiass nodesindfield
edgesThe class summary nodes record the total number of objects
of this class in the heap. For each reachable (live) ohjgcdis-
covered during the garbage collection’s trace of the hehap&Up
determines the object’s class and increments the counter of the
corresponding class node. The field edges represent eacaneé
(o.f,p) as adirected edge betweeandp distinguished by field'.

In order to capture the shape of a recursive data structhege®p
uses degree metrics. degree metrigs defined as the in- and out-
degree of an object instance. Since dynamic shape anatiess t
to characterize the shape of tRDSas defined by the recursive
backbone, ShapeUp tracks only those degree metrics cormasp
ing to the objects and edges that define the recursive baektfon
the RDS ShapeUp tracks these edges in @&SGclass node in a
distribution histogram.

By definition, the backbone edges ofRDS are defined as
(0c, -f, Dey ) Such thate; = cz. In this case, ShapeUp increments
and accumulates the out-degreegf and the in-degree ¢f., ina
histogram that tracks the number of objects with each in-aarte
degree in theCFSGclass node. Object scanning allows ShapeUp
to compute the in- and out-degree of each individual objekiva
cost. When the collector scans an object, the out-degreeoisrk
and ShapeUp directly increments the out-degree histoghen
corresponds to the number of non-null outgoing referergexe
the in-degrees of object instances are not completely knawih
the collector completes its transitive closure over thephéze in-
degree histogram is computed incrementally. We detailtiisess
both in pseudocode found in Figure 2 and in the followingisect

—

4.2 Step-by-Step Example

Figure 3 shows a step-by-step example of building @E€SG

for the recursive backbone of a doubly-linked list. In the- fig
ure, instances of the same class have the same shape g.e., th
DoublyLinkedList object is a square anNodes are circles).



Table 1. Data structures in microbenchmarks showing example hesgghgrimplementation, and correspond@igSG
| Examples | Implementation | GeneralCFSG |

Singly-Linked List

(1) .".".".".".". class SinglyLinkedList { -1
Node head; ® s . =0 out=o1)
2) ..»..». [N E) in=1(n-1)  out=1(n-1)

static class Node {

Object data;
3) h””. Node next;
}

Doubly-Linked List

) . > ./:/./-L./‘tm‘. class DoublyLinkedList {
Node head; DLL out=1(2)
. )
B o e Node tail; CHE in=2(n-2)  OU=22)

static class Node {

3) h.‘/.’:/. Object data;

Node next;
Node prev;

}

Binary Tree

(1) complete (2) full (3) random class BinaryTree {
Node root;

A A static class Node {
Object data;
&. &. .&. ‘. & Node left;
[ ) Node right;

}
o0 ° }
Binary Tree with Parent
(1) complete (2) full (3) random class BinaryTreeParent {
= : Node root;

static class Node {
Object data;
Node left;
Node right;
Node parent;

}

Linked HashMap (simplified)
: : :I; :I: I:I class LinkedHashMap { * *
LinkedHashEntry root;
:; . . i nked b . Linked Q
static class LinkedHashEntry Hash >
HashEntry[] entries; E':‘;‘)f” @

Hash
LinkedHashEntry nextGrp; T

T 31”3'31”31 I } > (

in=0(*) out=0(")

static class HashEntry { in=0(1)  out=0(1)
in=1(*) out=1(*)

K in=1(*) out=1(*
Object key;
Object data;
HashEntry next;

}




GC's Object Scan CFSG Step 3: The scan of the secoritbde object adds a second self-
edge in theCFSGrepresenting thprevpointer in theNode and

o Wb2or0r020 @ out = 2 is added to th€FSGnode. The in-degree is computed
incrementally for each childi¢ = 0(0), in = 1(3)).

o 1 ’ Steps4-5: The scan continues to process eletie of the doubly-

@ ﬁ—».;‘,.@()’:,ogj) @p ) ou=) linked list.
Step 6: At the tail of the data structure, we process the filade
5 of the data structure. At this point, ShapeUp has captured th

1 1 1 in=( out= i i

@ i"WvO@ a :0[@9, B e i shape of the entire data structure in ®eSG
’

The bottom of Figure 3 shows the most general form ofGRSG

1,2 1 1 for a correct doubly-linked list. In the summary, it showstth
) i"Wv’@ n — 2 objects have in-degree and out-degree equal to two, \@hile
objects (the head and the tail) have in-degree and out-€&gyeal
s a1 to one. We call theséixed metricsof the data structure. Column
(5) i"va three of Table 1 shows the genel@FSG for several different
data structures. At the end of the collection, @eSGcompletely
summarizes the number of objects of each class and the nwhber
1.2 2 2 1 objects with each in- and out-degree that are live at the tifike
® i"W‘m collection.

Finally, we add a phase to the end of garbage collection gurin
which we add the currel@FSGin to a cumulativeCFSGfor the
out=1(2) program. We aggregate the average percent of objects with ea
degree metric (e.gin = 0, in = 1, in = 2, etc.). For single data
structures, we record fixed metricif 0, 1,2, n,n — 1, 0rn — 2
objects exhibit the degree metric. Otherwise, we recordrae
metricas a percentage of objects observed by ShapeUp during one
or more executions. We find that fixed metrics are very seediti
violation when anomalies are introduced while range metaie
more tolerant. In the next section, we evaluate@R&SGand show
how it can be used to detect errors in recursive data stestur

out=2(n-2),

Figure 3. Step-by-step example of building t#-SG Histogram
bins are represented by, = k(#) where# is the number of
objects in that bin.

The left side of the figure shows the heap graph during theagrb
collector’s object scan. Following the three-color abstioa [13],

black objects have already been scanned by the collecty,ai- 5. Experimental Methodology

jects have been enqueued for scanning, and white objectriiave  We implement ShapeUp in MMTk, a memory management toolkit
yet been seen. The right side shows the correspor@ifgG We in Jikes RVM version 2.9.1 [2, 3]. MMTk implements a number
walk through this figure step-by-step: of high-performance collectors [5, 6]. We measure perforwaaon

SPECjvm [30] and DaCapo v.06-10-MR2 [7] benchmark suites
using full-heap mark-sweep and generational mark-swe#gceo
tors. We use configurations that precompile as much as pessib
including key libraries and the optimizing compiler (tRastbuild-
time configuration), and turn off assertion checking. Aiddially,
we remove the nondeterministic behavior of the adaptivepiiam
tion system by applying replay compilation [19].

Step 1: We start after theDoublyLinkedList object has been
scanned (black square). Above each object, the figure siawvs t
in-degree of that object instance. In this case, both objact
marked with} indicating that neither object has been identified
as a recursive-backbone object. In thESG the node for the
DoublyLinkedList class shows one instance with one edge to
the Node class. Notice that the number Béde objects in the

CFSGis zero since thélode object has only been enqueued Overhead. We configure ShapeUp to perform dynamic shape

but not scanned (gray). No recursive-backbone object s be 5 sis together with garbage collection at the naturabage
identified. collection points that are triggered when the heap is fulk &X-
Step 2. The collector scans the firffode object that defines the  periment with a range of heap sizes that are proportion&lddive
recursive backbone. Th€FSG captures and identifies the  memory size for a given benchmark, following best practicgs
recursive-backbone objects withsalf-edgerepresenting the We select heap sizes that range from the minimum in which the
nextfield in theNode and increments the in-degree histogram program can execute to six times the minimum. Common prac-
for this root object{n = 0(1)). We track in- and out-degree tice for production systems is to select heap sizes of ardwod
with separate histograms in tH@FSG node. Since the out-  times the minimum. The current implementation ©@FSG adds
degree is known, the corresponding bar in the histogram is an average of 4.6% to the total time of all the benchmarks when
incrementeddqut = 1(1)). The in-degree, which must be com-  using a full-heap collector (maximum of 39% fpmd) and an
puted incrementally, requires a byte in the object header to average of 8.4% when using a generational collector (maximu
count in-degree for each instance. As the collector scacis ea of 92% for hsqldb), while adding<1% to the space requirements
object, the children are examined and the in-degree in the ob of the program. We omit these results for brevity. We belitnat
ject header is incremented. For each gray child, which has al this overhead can be reduced further with performance gunfn
ready been enqueued for scanning, ShapeUp decrements theisers can tolerate more overhead and would like more satigples
histogram bar corresponding to the child’s previous inrdeg debugging, such as during testing or development, Shapadp c
and increments the bar corresponding to the child’s new in- analyze the heap more frequently. Users can easily obtaiplsa
degree. For each white child, ShapeUp only increments the ba at specific program points of interest during debugging lsgiiting
corresponding to thér = 1 (out = 1(1)). calls toSystem.gc () in their source code.
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Figure 4. Rate of change of degree metrics.

6. Degree Metrics Detection

In this section, we analyze the data structures irStRECjvm and
DaCapo benchmarks, classifying them as either library or custom
implementations. We find that whole-heap degree metricsare
stable while class degree metrics are, including the degree
rics for classes that define recursive backbones. We thdnagea
ShapeUp with microbenchmarks that implement singly-lch&ad
doubly-linked lists, binary trees, and linked hashmaps.

6.1 SPECjvm and DaCapo Benchmarks

Recall from Figure 1, programs ubiquitously uB®Ssto man-
age the large number of objects in the heap. In our benchmarks
91% of all objects are part of RDS Of these objects, 67% come
from library implementations and 33% from custom data struc
ture implementations. We gain inspiration from previouskubat
showed that measuring whole-heap degree metrics was eunffici
to discover data structure bugs in C programs [12]. Usingtmee
measure of stability, we find that whole-heap measuremeatoa
granular to predict errors in data structures for Java.

Figure 4 presents two sample whole-heap degree metrics. Fig
ure 4(a) shows the rate of change of out-degree metrics écerth
tire heap as a function of megabytes of allocationjfohon. Fig-
ure 4(b) shows the same whole-heap metricgfad, whereas (c)
shows out-degree metrics for the domin&DSin pmd. Notice
that the y-axis scale in (b) is two orders of magnitude latban
in (&) and (c). Figure 4 shows that out-degree metricgyfdron
are relatively constant, whereas the out-degree metrihéwhole
heap varies wildly forpmd. The results fobmd are representa-
tive of most of our benchmarks. Of 18 benchmarks fi9ifECjvm
andDaCapo, 11 do not have any stable whole-heap degree metrics:
jess, raytrace, db, javac, mtrt, jbb2000, bloat, eclipse, fop, luse-

arch, andpmd. Two programs have many stable degree metrics: 7
degree metrics fatompress and 5 forjython. Four programs have

1 or 2 stable degree metriasipegaudio (2), luindex (2), jack (1),
andantlr (1). Simply monitoring whole-heap degree metrics is not
sufficient to understand most program behavior in Java.

Although degree metrics were unstable across the whole heap
the degree metrics of classes are stable. Figure 4(c)rdhast this
stability by plotting the out-degree metrics ftshMap$HashEntry
in pmd, its biggest data structure. Table 2 reports the dominant
recursive data structures for each benchmark in column Geé.
umn three indicates whether it is implemented in a library ¢t
the benchmark has a custom (C) implementation. If the damhina
recursive data structure is library-implemented, thegao in-
cludes the most dominant custom recursive data structune. O
exception isluindex which does not implement any custom data
structures. Column four indicates the average fractiorheftteap
the dominant data structure occupies. Notice that only tvm p
grams contain one very dominaRDSthat occupies more than
90% of the heap, e.gython andluindex. The remaining nine pro-
grams have one data structure that occupies 40 to 80% of #pe he
and many, but not all, are defined in the libraries. For exampy-
trace uses a single custom data structure which consumes 78% of
the heap on average. Hashmap and its variants are commoa in th
benchmarks and thus we include this more complex data staict
in our microbenchmarks.

Columns five through nine enumerate in- and out-degree met-
rics of zero, one, two, and three, respectively. The top rbthese
columns reports in-degree metrics and the bottom row remurt-
degree metrics. Since these metrics are with respect tRE&an
object can have an in-degree of zero in @€SGwhen the object
has only an incoming pointer from an object of another class.

Each entry is either a fixed or a range metric. For exampl&-all
stancesif) of 0ctNode with out = 0 in raytrace. This information
can be useful during development because even a single ritide w
out = 0 would indicate an error. We indicate a range metric with
square brackets and show the minimum and maximum fraction of
objects observed during the entire execution of the bendhnifa
they are the same, we report one number.

Two key trends emerge: (1) Many range metrics are tight,
some having zero variance. For example, 72.91% of Linked-
HashMap$LinkedHashEntry nodes have in-degree equal to two
in jack andluindex. (2) EachRDSexhibit fixed degree metrics.
Given an expected fixed metric value by the programmer or de-
rived from previous executions, the system can easily aatem
and report fixed metric violations. For example, if the pesgmer
asserts no object should have an in-degree greater thamuakteq
two (also called an ownership type [24]), the system canrtegpo
error if this metric is violated. The next two sections explthis
potential with microbenchmarks and automated error ifsert

6.2 Microbenchmarks

We implement the following microbenchmarks to study them in
more detail: singly-linked lists, doubly-linked lists,nairy trees,
binary trees with parent pointers, and simplified linkedhmaaps.
We include hashmap because hashmaps account for more #tan 50
of RDSdn 8 of the 16 benchmarks we tested. Recall from Section 4
that Table 1 shows the microbenchmark implementationspkam
heap graphs, and correspond@§SG

Table 3 lists the microbenchmark variations that we tedfésl.
performed 100 trials on correct executions consisting @frelom
number between 100 and 100,000 of nodes inRBSto collect
dynamic degree metrics. At each garbage collection measune
point, ShapeUp calculates the degree metric and mergepitto
vious correct runs. If the degree metric is fixed, ShapeUatds
the fixed value for future comparison. If the metric is not fixe



Table 2. DominantRDSsfor selectedsPECjvm andDaCapo benchmarks.

(L)ibrary
or
Benchmark | RDSNode (C)ustom | % heap | metric =0 =1 =2 =3
raytrace OctNode C 78.0 | in n 0 0 0
out n 0 0 0
Jack LinkedHashMap$ L 442 [ in 0 2 [72.91,72.91]| [27.07,27.07]
LinkedHashEntry out 0 2 [72.91,72.91]| [27.07,27.07]
RuntimeNfaState C 9.4 1 in [91.30,91.30] [8.69,8.69] 0 0
out [91.30,91.30] [8.69,8.69] 0 0
bloat HashMap$ L 56.6 | in [74.76,87.89] | [12.10,25.23] 0 0
HashEntry out [74.76,87.89] [8.69,8.69] 0 0
CallMethodExpr C 371 1in [61.40,90.57T | [7.17,30.71] [1.89,7.78] 0
out [68.50,90.57] | [4.53,15.74] | [3.77,15.75] 0
eclipse LinkedHashMap$ L 59.0 | in [0.01,0.04] [72.91,72.97]| [26.99,27.06] 0
LinkedHashEntry out [0.01,0.04] [72.91,72.98] | [26.98,27.06] 0
AND _AND _Expression C 041 1in [80.00,100.00]| [0.00,20.00] 0 0
out [80.00,100.00]| [0.00,20.00] 0 0
fop HashMap$ L 514 in [74.73,76.46] | [23.53,25.26] 0 0
HashEntry out [74.73,76.46] | [23.53,25.26] 0 0
PropertyList C 4.4 ] in [47.77,49.92] | [35.12,37.55]| [11.62,13.38]| [0.78,1.90]
out 1 n 0 0
Jjython PyFrame C 946 | in 1 n-1 0 0
out 1 n-1 0 0
luindex LinkedHashMap$ L 99.3 | in 0 [0.01,0.02] | [72.91,72.92]| [27.05,27.06]
LinkedHashEntry out [0.01,0.02] [72.92,72.92] | [27.05,27.05]
lusearch WeakHashMap$ L 475 [ in [43.64,75.62] | [24.37,45.85] [0,1.04] [0,0.05]
WeakBucket out [43.54,75.62] | [23.37,46.00] [0,1.04] 0
HitDoc C 20 [ in [0,100] [0,100] [0,66.66] 0
out [0,100] [0,100] [0,66.66] 0
pmd HashMap$ L 514 in [73.51,87.50 | [12.49,26.48] 0 0
HashEntry out [73.51,87.50] | [12.49,26.48] 0 0
PackageNode C 20| in 1 [0,80.00] 0 0
out 1 [0,80.00] 0 0
xalan Childlterator C 346 | in 0 n 0 0
out 0 n 0 0

Table 3. Degree metrics discovered by ShapeUp on correct datastesavith between 100 and 100,000 nodes.

| Data Structure | | =0 | =1 | =2 | =3 [ =4,=5,=6,=7>7 |
Singly-linked list in 1 n-1 0 0 0
out 1 n-1 0 0 0
Doubly-linked list in 0 2 n-2 0 0
out 0 2 n-2 0 0
Complete binary tree in 1 n-1 0 0 0
out | [50.00, 50.16] 1 [49.84, 50.00] 0 0
Full binary tree in 1 n-1 0 0 0
out | [50.00, 50.13] 0 [49.87, 50.00] 0 0
Random binary tree in 1 n-1 0 0 0
out | [33.66,35.70] | [28.69, 35.08] | [32.26, 35.61] 0 0
Complete binary tree w/PP | in 0 [50.00, 50.01] 2 [49.92, 50.00] 0
out 0 [50.00, 50.01] 2 [49.92, 50.00] 0
Full binary tree w/PP in 0 [50.00, 50.05] 1 [49.86, 50.00] 0
out 0 [50.00, 50.05] 1 [49.86, 50.00] 0
Random binary tree w/PP in 0 [33.79, 35.21] | [30.02, 32.61]| [33.61, 34.76] 0
out 0 [33.79, 35.21] | [30.02, 32.61] | [33.61, 34.76] 0
Linked Hashmap (HashEntry) in [31.96,51.76] | [48.24, 68.04] 0 0 0
out | [31.96,51.76]| [48.24, 68.04] 0 0 0

ShapeUp determines the percentage of objects with thatomaeil
determines the range metric from the correct runs.

Table 3 uses the same format for presenting fixed and range

metrics as Table 2, which is explained in the previous sectio
isolation, data structures show a larger number of fixed iogetr
For example, the singly-linked list has 1 node witht = 0 which
represents the tail of the data structure. Furthermoresténe (or

root) of aRDShas one node withy = 0. In the singly-linked list,
out-degree equals oneut = 1) for n — 1 nodes.

For the less regular data structures, we see fewer fixedasetri
Section 6.3 shows how ShapeUp uses its automatically disedv
invariants from correct executions in our microbenchmgfka-
ble 3) to detect errors when we insert errors.




Table 4. Errors introduced into microbenchmarks

[ Error | Description | Violation Type | Runs |
Singly-Linked List
cyclic creates cycle fromail to head single 10
cycle creates random cycle fromail to a random object single 100
Doubly-Linked List
cyclic creates cycle fromail to head single 10
cycle creates a random cycle between two objects multiple 100
disconnect| disconnects random link multiple 100
skip creates a skip in theext or prev pointers multiple 100
random randomly insert errors (cycle, disconnect, or skip) multiple 100
Binary Tree
linkerror | creates a connection fromnall pointer to a random object | multiple | 100
Binary Tree with Parent Pointer
disconnect| delete a random reference multiple 100
linkerror creates a connection fromnall pointer to a random object multiple 100
random randomly insert errors (disconnect or linkerror) multiple 100
Linked Hashmap
bucketlink | randomly connects two buckets in the hashmap | multiple | 100

if (metric is constant) {
if (thisMeasure constantMeasure ) {
// fized metric wiolation

} else {
thisPercent = thisMeasure/numberOfObjects
if (thisPercent < minPercent ||
maxPercent < thisPercent) {
// range metric wiolation
}
}

Figure 5. Pseudocode for discovering dynamic invariant viola-
tions.

6.3 Automated Error Detection

This section explores using ShapeUp to automatically tieteors
by using dynamically discovered invariants from correaisruo
train ShapeUp. While we expect most errors to be discovened d
ing testing, even well-tested programs have errors. Fanpie a
data race that causes a cycle in a linked-list in a concudatat
structure may show up only in deployment.

In training, we use correct program executions to dynaryical
discover degree metrics as shown in Table 3. In testing mode,
compare the current execution to the previously discoveied
gree metrics. On each full-heap garbage collection, ShapstJ
alyzes the data structures and compares this sample todtesl st
dynamic degree metrics from correct executions. Figuredwsh
how ShapeUp compares metrics from this measurement with pre
vious measurements to detect violations. If the metric isdfiand
the current measurement is not the same, ShapeUp repodkaa vi
tion. Otherwise, ShapeUp reports a potential violatiohd frac-
tion of objects with the metric falls below the minimum or abo
the maximum of a given range metric.

We insert random errors into each of the data structuresiin ou
microbenchmark as described in Table 4. For examplés@nnect
error introduced into a doubly-linked list randomly cho®senode
and than randomly chooses to disconnect one of the edgestedm
node. In the case aindom we randomly select one of the other
error types to insert for each error. The insertion and teledf

Table5. Percentage of runs with detected errors.

Number of errors injected
Error 1] 2| 83| 4] 5 | 10 ] 50| 100
Singly-Linked List
cyclic 100 n/a
random 100 n/a
Doubly-Linked List
cyclic 100 n/a
cycle 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
disconnect|| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99
skip 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
random 100 | 100 | 95 98 99 96 98 98
Complete Binary Tree
linkerror ] 100 ] 100 | 100 | 100 | 100 | 100 [ 100 | 100
Full Binary Tree
linkerror ] 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Random Binary Tree
linkerror ]| 100 ] 100 | 100 | 100 | 100 | 100 [ 100 | 100
Complete Binary tree with Parent Pointer
disconnect]|| 53 92 93 99 | 100 [ 100 | 100 | 100
linkerror 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
random 85 97 | 100 | 100 | 100 | 100 | 100 | 100
Full Binary Tree with Parent Pointer
disconnect]|| 72 83 92 97 | 100 [ 99 | 100 | 100
linkerror 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
random 86 97 99 | 100 | 100 | 100 | 100 | 100
Random Binary Tree with Parent Pointer
disconnect|| 14 22 27 | 35 41 69 [ 100 [ 100
linkerror 31 63 73 84 94 97 | 100 | 100
random 29 36 56 66 64 | 90 | 100 | 100
Linked Hashmap
bucketink [ 0 T 0 ] 0 J 1 ] 0] 3 [12] 25

In Figure 6, we report the percentage of runs for which ShapeU
reported a fixed metric violation, a range metric violationgither
violation for the binary tree with parent pointer. Fixed net
show a greater degree of sensitivity to shape violationsadn,

edges inRDSschanges the shape of the recursive backbone and for every range metric violation, there was a correspondixed

thus violate degree metrics. For each type of error, we parfo
100 tests that insert 1, 2, 3, 4, 5, 10, 50, and 100 errorsRili6s
that have 100,000 nodes. Table 5 illustrates the percenfagms
where ShapeUp successfully reports an error.

violation. Figure 6(a-c) show results ftinkerror, which adds a
link from a leaf nodenode; to a randomly selected nodende,

in the tree. Adding a link frommode; to node, changes the in-
degree ofnode, which is quickly detected except in the case of
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the random binary tree with parent pointer. Examinationhef t
degree invariants in Table 3 shows why this is true. For tieptete
and full versions of the binary tree with parent pointer ftirn
the in-degree by one results in a fixed metric violation. R t
random binary tree with parent pointer, ShapeUp has lessssc
detecting errors in the corresponding random structurgurgi6(d-
f) show results fordisconnecterrors. Since our approach will not
detect errors if the error makes objects unreachable, wearfired
success detecting disconnect errors. For example, discting the
edge connecting a leaf node makes the corresponding leaf nod
unreachable and thus the resulting data structure doesialatey
its degree invariants. Disconnect errors require semamtariant
detection which is orthogonal to this work. We believe thesers
would be caught earlier in development, or could be detebted
adding code that keeps track of the expected number of ahject
the data structure. Finally, Figures 6(g-i) show resultemvarrors
are randomly inserted.

Errors detected in binary trees with parent pointer

7. Conclusions

Programmers are increasingly challenged by the size angleam

ity of the programs they create. As programs allocate areawr
ing number of objects in the heap, heap analysis becomes crit
cal for program understanding and debugging. In this paper,
presentShapeUpa dynamic shape analystsol that characterizes
the shape of recursive data structures by summarizing tap-he
graph in aclass-field summary graplCFSQ with very low over-
heads. Th&€FSGcompletely summarizes the number of objects of
each class and the references between them by field. Degtee me
rics of recursive-backbone objects capture the shape akthe-
sive data structures in the form of dynamic invariants. Weueate
ShapeUp by characterizing recursive data structuré&PBCjvm

and DaCapo benchmarks. We demonstrate that the vast majority
of objects in the heap are part of recursive data structisle
summarizing degree metrics across the entire heap in Jawat is
sufficient to understand most program behavior, we showdéat

Since ShapeUp only samples the heap at garbage collectiongree metrics for a single recursive data structure mairitaari-

time, one issue is how quickly ShapeUp will detect an error, o
if ShapeUp will miss an error that gets corrected before #ad n
garbage collection. Our experience shows that data steietvors
are likely to persist in the heap because programmers doemetrg
ally include code to correct these types of errors (or mahgrs).
Depending on the application, there are a variety of actioasys-
tem might take once an error is discovered. The system caitd h
the program or report the error to the developers. If deverom-
clude correction code, the system could execute this cadprca
posed in prior work [8, 14].

ants for their entire execution. We show how to use dynaiyical
discovered degree metrics to find errors in incorrect execsitof
microbenchmarks showing that for some data structuregéesn-

ror is sufficient to trigger a violation that was reported haeUp.

Future work should (1) explore more precise summaries for de

gree metrics including cases where multiple instances etarf
sive data structure exist using lightweight techniquesejoasate
RDSinstances [27]; (2) consider data objects in addition tairec
sive types; and (3) evaluate ShapeUp in real applicatiohis. Ja-
per shows that dynamic heap analysis can efficiently surzmari



the heap by class in such a way to find dynamic invariants asd di
cover violations by mining degree metrics from the heapiptar
structure.
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