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Abstract
Applications continue to increase in size and complexity which
makes debugging and program understanding more challenging.
Programs written in managed languages, such as Java, C#, and
Ruby, further exacerbate this challenge because they tend to en-
code much of their state in the heap. This paper introducesdy-
namic shape analysiswhich seeks to characterize data structures in
the heap by dynamically summarizing the object pointer relation-
ships and detecting dynamic degree metrics based on class. The
analysis identifies recursive data structures, automatically discov-
ers dynamic degree metrics, and reports errors when degree met-
rics are violated. Uses of dynamic shape analysis include helping
programmers find data structure errors during development,gen-
erating assertions for verification with static or dynamic analysis,
and detecting subtle errors in deployment. We implement dynamic
shape analysis in a Java Virtual Machine (JVM). UsingSPECjvm
andDaCapo benchmarks, we show that most objects in the heap
are part of recursive data structures that maintain strong dynamic
degree metrics. We show that once dynamic shape analysis estab-
lishes degree metrics from correct executions, it can find automati-
cally inserted errors on subsequent executions in microbenchmarks.
These suggests it can be used in deployment for improving software
reliability.

Categories and Subject Descriptors D. Software [D.2. SOFT-
WARE ENGINEERING]: D.2.5. Testing and Debugging

General Terms debugging aids, testing tools

Keywords dynamic shape analysis, degree metrics, dynamic in-
variants

1. Introduction
Object-oriented languages encode program state in objects. With a
growing number of objects allocated in the heap, it is unsurprising
that many semantic, data structure, and concurrency bugs manifest
themselves in heap allocated data structures. Heap analysis there-
fore has the potential to help developers detect errors and specify
their programs correctly.
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To manage objects, programmers use regular data structures,
such as arrays and recursive data structures. Arecursive data struc-
ture (RDS) forms a regular pattern of nodes and references (point-
ers), such that removing references between any two nodes results
in two instances of the same data structure. For example, a singly-
linked list with n nodes is a simple recursive data structure and
can be divided into two smaller singly-linked lists: one of size
x and another of sizen − x. For a long time, researchers have
usedstatic shape analysisto characterize recursive data structures
in the heap based on the code that creates and manipulates them
using [9, 10, 16, 28, 29]. By analyzing program statements, static
shape analysis detects recursive data structures and theirinvariants.
For example, it can detect that a singly-linked list has two invari-
ants:n− 1 nodes have exactly one incoming pointer as well as one
outgoing pointer. Despite its recent advances [9], static shape anal-
ysis is not used extensively because it requires flow- and context-
sensitivity, which makes it very expensive and necessarilyconser-
vative.

In this paper, we introducedynamic shape analysis, which dy-
namically detects recursive data structures and degree invariants
that hold during a particular program execution by piggybacking
on periodic garbage collections. Our analysis computes aclass-
field summary graph(CFSG) which summarizes the dynamic ob-
ject graph based on class definitions. TheCFSGrecords the number
of objects and their recursive degree metrics as in- and out-degree
invariants. When a specific number of nodes of a data structure
exhibit a particular degree, we call it afixed metricand track the
number of objects that exhibit the fixed metric. For example,in a
singly-linked list withn nodes, exactlyn − 1 nodes have an out-
degree equal to one and the last node has an out-degree equal to
zero. For any degree invariant, that is not fixed, theCFSGrecords a
range metricas the fraction of objects with a given property along
with its variance.

A fully accurate dynamic shape analysis requires analysis of
the heap after every pointer mutation which is extremely costly. To
make the costs more tractable, we piggyback on garbage collection
in a tool called ShapeUp that we add to a Java Virtual Machine
(JVM). Since garbage collection is periodic and relativelyinfre-
quent, dynamic shape analysis can be made efficient. For example,
ShapeUp adds an average 4 to 8% to total runtime and less than 1%
to space overheads in our system. Performing dynamic shape anal-
ysis less frequently trades accuracy for efficiency. ShapeUp loses
accuracy since the program can violate degree metrics between col-
lections. Our results, however, indicate that performing dynamic
shape analysis relatively infrequently is sufficient to produce infor-
mation accurate enough to find many errors.

We evaluate ShapeUp by first identifying a variety of both li-
brary and custom recursive data structures in SPECjvm and Da-
Capo Java benchmarks. We demonstrate that the vast majorityof
objects in the heap are part of recursive data structures andthat
these data structures maintain dynamic degree metrics for their en-
tire execution. While individual data structures maintaindegree



metrics (e.g., an in-degree of one), the heap as a whole does not
because of its transient nature. Using microbenchmarks, weshow
a unique application of dynamic shape analysis in which ShapeUp
uses correct executions to develop invariants and then findserrors
in incorrect executions. We automate the generation of incorrect ex-
ecutions and find that some errors trigger anomalies in the degree
metrics that ShapeUp detects and reports. These results suggest that
ShapeUp may be useful for hard-to-find errors that make it into de-
ployment.

In summary, dynamic heap analysis effectively summarizes the
objects in the heap by class, finds dynamic invariants, and finds
violations by mining much of the heap’s regular structure from
the object graph. This paper begins the study of dynamic shape
analysis by degree metrics by showing how degree metrics canbe
used to detect and report errors in microbenchmarks. It leaves as
future work the study of more precise summaries that can handle
multiple instances of a single data structure as well as application to
real programs. We begin in the next section by discussing potential
uses for dynamic shape analysis in more detail and explain how it
differs from its static counterpart.

2. Motivation
Dynamic and static shape analysis differ in their use cases.

Static shape analysis is a flow and context-sensitive analysis
that proves that a program correctly constructs and manipulates
a recursive data structure. Static analysis strives to detect that a
data structure will never violate some invariant, such as the nodes
in a binary tree have an in-degree of at most one. Unfortunately
there are points in the program (i.e., when a data structure is
manipulated) that invariants are temporarily violated. Toaid static
shape analysis, programmers specify the invariants and thepoints at
which they expect the invariants to hold. Even with this help, static
analysis, which is necessarily conservative, cannot always prove
some properties even if they do hold. Furthermore, static shape
analysis is still intractable for all but modestly-sized programs.

Dynamic shape analysis, instead, samples data structures in the
heap for a given program run. It analyzes the current shape ofthe
data structure and, given correct invariants, can determine if the
current dynamic shape violates these invariants. It cannotguaran-
tee a data structure will never violate its invariants as invariants
can be violated between samples. However, dynamic shape analy-
sis can help developers find bugs that persist early in development,
during testing, and after deployment. Data structure reports dur-
ing development can help programmers find obvious errors. For
example, consider the case when a developer intends to create a
doubly-linked list, but forgets to set the back pointer and creates
a singly-linked list instead. The ShapeUp invariant reportwould
clearly indicate thatn− 1 nodes showed an in-degree of one rather
than the expected value of two.

More interestingly, perhaps, is the case of detecting invariant
violations during or after deployment. This paper demonstrates
that dynamic shape analysis can develop invariants by observing
correct executions and then can find anomalous ones, such as when
a well-tested program exhibits a runtime error as a result ofa
race. If the errors persist over time, periodic analysis of the heap
detects them. Furthermore, the information from dynamic shape
analysis augments static analysis and verification. For example,
users can provide dynamically detected invariants as inputto static
or dynamic verification. Dynamic shape analysis therefore has the
potential to help programmers at many stages of developmentand
deployment.

3. Related Work
Related work includes dynamic invariants based on program-
counter locations, static shape analysis, error detectionand cor-
rection using invariant specifications, and C heap analysis.

For a long time, static shape analysis has sought to understand
heap structure by analyzing code to identify recursive datastruc-
tures [9, 10, 16, 28, 29]. Unfortunately, it is not widely used because
it requires flow and context-sensitivity which makes it veryexpen-
sive and necessarily conservative. Our analysis efficiently gives the
same information, but is specific to one or more program executions
since it observes the current state of the heap rather than analyzing
all possible heap states. Dynamic shape analysis, like static shape
analysis, can be used to generate specifications and tests.

More recently, dynamic analyses have discovered likely invari-
ants by mining dynamic program behavior, correlating it with pro-
gram locations, and then identifying anomalous executions[15, 17,
18, 22, 21, 23, 25, 31]. For example, Hangal and Lam showed that
crashes are often preceded by anomalous behavior, i.e., theprogram
violates one or more dynamic invariants that were established ei-
ther on previous executions or earlier in the current execution. They
show that recording variable and condition values while reporting
unseen values aids debugging. We show that this hypothesis applies
to the heap as well, i.e., the heap object graph encodes semantics
and unusual heap relationships reveal software flaws.

Recent work has also shown how to detect and correct data
structure errors using programmer-specified invariants [1, 4, 11]
or user-defined predicate routines [8, 14]. This approach requires
a programmer to specify the nature of the data structure and then
uses model checking and partial evaluation to detect and fix er-
rors as they occur in the wild. User-defined predicates can encode
valuable information, such as which value encodes the number of
nodes that should be in the data structure, which ShapeUp will not
discover. The advantage of ShapeUp is that it is fully automated
and does not require a predicate routine. It detects similarerrors
by automatically discovering many of the same properties that user
predicates contain. Developers can use the results of our analysis to
write predicate routines for complex recursive data structures.

HeapMD examines simple heap properties in C programs [12].
Specifically, it shows that many C heaps contain a stable fraction
of objects with an in- or out-degree of zero, one, or two. While
HeapMD provides inspiration, our work shows that the more tran-
sient nature of the Java heap and more complex relationshipsin the
object graph rarely provide stable whole-heap invariants.Differen-
tiating the heap by class and connectivity, however, reveals recur-
sive data structures that do have many stable degree invariants.

Pheng and Verbrugge visualize dynamic data structure evolu-
tion from program traces, showing how memory usage and drag
varies over time [26]. They analyze complete program traces,
whereas we show how to efficiently compute summaries by pig-
gybacking on the garbage collector. Their analysis identifies lists,
trees, and directed acyclic graphs, whereas ShapeUp develops in-
variants.

Jump and McKinley introduce theclass points-from graph
which summarizes the entire heap by user classes and the pointer
relationships between them [20]. This heap representationhelped
developers find memory leaks by identifying growing parts ofthe
graph. Our work is orthogonal and complimentary. This paperex-
tends the class points-from graph by adding field edges, creating a
class-field summary graph. Furthermore, we use the resulting graph
to characterize data structures in theSPECjvm andDaCapo Java
programs, to identify recursive degree invariants in correct program
executions, and to identify malformed data structures quickly and
precisely.

4. Data Structure Analysis
To manage large amounts of data, programs written in modern
languages use recursive data structures. Developers implicitly and
explicitly maintain invariants over data structures and inthe code
that allocates and manipulates them. Arecursive data structure
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Figure 1. Recursive data structure in the heap

(RDS) is a set of objects linked by references (pointers) in a regular
pattern such that any part is composed of a smaller or simpler
instance of the same data structure. For example, a subset ofa
singly-linked list is also a singly-linked list. While the definition
of the data structure is unbounded, the size of any particular RDS
in the heap is bounded.

We examine the composition of the heap in terms of the recur-
sive data structures forSPECjvm and DaCapo benchmarks and
present them in Figure 1. We separate recursive data structures
based on where they are implemented. Acustomdata structure
is one that is specifically implemented by the application. Other
data structures are implemented in libraries and are simplyused by
the application. Figure 1 shows that recursive data structures are
used ubiquitously in the benchmarks analyzed. Whilecompress
andmpegaudio rely strictly on arrays for handling their data, in
other benchmarks, 91% of all objects are part of aRDS, 33% of
which are contained in custom data structures.

In Java and other object-oriented languages, a recursive data
structure is implemented separately from the data that the data
structure contains. Thus we refine the definition ofRDSto include
object class and differentiate objects of the class that implement the
recursive backbone of the data structure. Therecursive backbone
defines the shape of theRDSand consists of objects of a single
class that reference other object(s) of the same class. For instance,
a tree is composed of smaller trees (sub-trees) where the smallest
tree is a single node. A given class definition of a tree contains a
classNode with some number of references to otherNodes, as well
as references to one or more data objects. Table 1 details themi-
crobenchmarks that we implemented to evaluate ShapeUp includ-
ing singly-linked lists, doubly-linked lists, binary trees, binary trees
with parent pointer, and a simplified hashmap. For each data struc-
ture, the first column illustrates example instantiations.The second
column presents the definition of theNode class. The third column
shows theclass-field summary graph(CFSG, explained in the next
Section), which summarizes the recursive backbone and reflects the
shape of theRDS. It is this shape that both static and dynamic shape
analysis seek to characterize. We next describe how ShapeUppig-
gybacks on the garbage collector to create this summary.

4.1 Summarizing Data Structures for RDS Analysis

Dynamic shape analysis examines the heap at each garbage collec-
tion. The state of a program’s heap can be expressed as a directed
graphG = {V, E}, whereV is the set of all heap-allocated ob-
jects andE is the set of references between objects in the heap.
That is, if an objecto with field f that refers to objectp, then the
edge(o.f, p) exists in the graphG. The in-degree of an objecto is
the number of other objects in the heap that referenceo. The out-
degree of an objecto is the number of objects to whicho actually
refers (not the potential number specified by the object’s class). The

1 void scanObject (ObjectRef obj ) {

2 MMType objClass = getObjectType (obj );
3 summaryGraph .incNodeCount (objClass );

4

5 int out = 0;
6 for(int field = 0 ; field < ob.refs ; field ++) {

7 ObjectRef childRef = class . getChildRef (obj,field );
8 MMType childClass = getObjectType (child );

9 summaryGraph .incEdge (objClass , field , childClass );
10 if ( objClass == childClass ) {
11 out ++;

12 // incrementally accumulate in- degree histogram
13 int in = childRef .getIndegree ();

14 // decrement old histogram bin
15 summaryGraph .decInHistogram (childRef , in);

16 in ++;
17 // increment new histogram bin
18 summaryGraph .incInHistogram (childRef , in);

19 childRef .setIndegree (in);
20 }

21 }
22 // directly increment out- degree histogram
23 summaryGraph .incOutHistogram (out );

24 }

Figure 2. Pseudocode for accumulating in- and out-degree metrics
during object scan.

rootsof the heap-graph are references stored in the statics (global
variables), stacks, and registers. A tracing garbage collector starts
at these roots and detects live objects by performing a transitive
closure through all the live object references in the heap. ShapeUp
piggybacks on this scan and summarizes the structure of the heap in
aclass-field summary graph(CFSG), which describes the dynamic
shape of objects per class.

TheCFSGsummarizes the entire heap byclass nodesandfield
edges. The class summary nodes record the total number of objects
of this class in the heap. For each reachable (live) objectoc1

dis-
covered during the garbage collection’s trace of the heap, ShapeUp
determines the object’s classc1 and increments the counter of the
corresponding class node. The field edges represent each reference
(o.f, p) as a directed edge betweeno andp distinguished by fieldf .
In order to capture the shape of a recursive data structure, ShapeUp
uses degree metrics. Adegree metricis defined as the in- and out-
degree of an object instance. Since dynamic shape analysis tries
to characterize the shape of theRDSas defined by the recursive
backbone, ShapeUp tracks only those degree metrics correspond-
ing to the objects and edges that define the recursive backbone of
theRDS. ShapeUp tracks these edges in theCFSGclass node in a
distribution histogram.

By definition, the backbone edges of aRDS are defined as
(oc1

.f, pc2
) such thatc1 = c2. In this case, ShapeUp increments

and accumulates the out-degree ofoc1
and the in-degree ofpc2

in a
histogram that tracks the number of objects with each in- andout-
degree in theCFSGclass node. Object scanning allows ShapeUp
to compute the in- and out-degree of each individual object at low
cost. When the collector scans an object, the out-degree is known
and ShapeUp directly increments the out-degree histogram that
corresponds to the number of non-null outgoing references.Since
the in-degrees of object instances are not completely knownuntil
the collector completes its transitive closure over the heap, the in-
degree histogram is computed incrementally. We detail thisprocess
both in pseudocode found in Figure 2 and in the following section.

4.2 Step-by-Step Example

Figure 3 shows a step-by-step example of building theCFSG
for the recursive backbone of a doubly-linked list. In the fig-
ure, instances of the same class have the same shape (i.e., the
DoublyLinkedList object is a square andNodes are circles).



Table 1. Data structures in microbenchmarks showing example heap graphs, implementation, and correspondingCFSG.
Examples Implementation GeneralCFSG

Singly-Linked List

(1)

(2)

(3)

class SinglyLinkedList {

  Node head;

  static class Node {

    Object data;

    Node next;

  }

  ...

}

Node

(n)

SLL

(1) 1

n-1

in=0(1)

in=1(n-1)

out=0(1)

out=1(n-1)

Doubly-Linked List

(1)

(2)

(3)

class DoublyLinkedList {

  Node head;

  Node tail;

  static class Node {

    Object data;

    Node next;

    Node prev;

  }

  ...

}

Node

(n)

DLL

(1) 1

n-2

in=0(0)

in=1(2)

in=2(n-2)

out=1(2)

out=2(n-2)

n-2

Binary Tree

(1) complete (2) full (3) random class BinaryTree {

  Node root;

  static class Node {

    Object data;

    Node left;

    Node right;

  }

  ...

}

Node

(n)

BT

(1) 1

*

in=0(1)

in=1(n-1)

out=0( * )

out=1( * )

out=2( * )

*

Binary Tree with Parent

(1) complete (2) full (3) random class BinaryTreeParent {

  Node root;

  static class Node {

    Object data;

    Node left;

    Node right;

    Node parent;

  }

  ...

}

Node

(n)

BTP

(1) 1

*
in=0(0)

in=1( * )

in=2( * )

in=3( * )

out=1( * )

out=2( * )

out=3( * )

**

Linked HashMap (simplified)

(1)

(2)

class LinkedHashMap {

  LinkedHashEntry root;

  static class LinkedHashEntry {

    HashEntry[] entries;

    LinkedHashEntry nextGrp;

  }

  static class HashEntry {

    Object key;

    Object data;

    HashEntry next;

  }

  ...

}

Hash 

Entry

(n)

Linked 

Hash 

Map

(1)

Linked 

Hash 

Entry[ ]

(e)

* *

in=0(1)

in=1( * )

out=0(1)

out=1( * )

in=0( * )

in=1( * )

out=0( * )

out=1( * )



(1)

(2)

(3)

(4)

(5)

(6)

1 0

1 1

1 2

1 3

1 4

1 5

1 n

1

1
1

1
2

1

1
3

2

1
4

3

1
4

4

1
n-1

n-1

. . . . . .

† 0 1

† 1 1 1

† 1 2 1

† 1 2 2 1 1

† 1 2 2 2 1

† 1 2 2

1

1

† †

in=0(1)

in=1(1)
out=1(1)

in=0(0)

in=1(3)

out=1(1)

out=2(1)

in=0(0)

in=1(3)

in=2(1)

out=1(1)

out=2(2)

in=0(0)

in=1(3)

in=2(2)

out=1(1)

out=2(3)

in=0(0)

in=1(2)

in=2(3)

out=1(2)

out=2(3)

in=0(0)

in=1(2)

in=2(n-2)

out=1(2)

out=2(n-2)

GC's Object Scan CFSG

Figure 3. Step-by-step example of building theCFSG. Histogram
bins are represented byin = k(#) where# is the number of
objects in that bin.

The left side of the figure shows the heap graph during the garbage
collector’s object scan. Following the three-color abstraction [13],
black objects have already been scanned by the collector, gray ob-
jects have been enqueued for scanning, and white object havenot
yet been seen. The right side shows the correspondingCFSG. We
walk through this figure step-by-step:

Step 1: We start after theDoublyLinkedList object has been
scanned (black square). Above each object, the figure shows the
in-degree of that object instance. In this case, both objects are
marked with† indicating that neither object has been identified
as a recursive-backbone object. In theCFSG, the node for the
DoublyLinkedList class shows one instance with one edge to
theNode class. Notice that the number ofNode objects in the
CFSG is zero since theNode object has only been enqueued
but not scanned (gray). No recursive-backbone object has been
identified.

Step 2: The collector scans the firstNode object that defines the
recursive backbone. TheCFSG captures and identifies the
recursive-backbone objects with aself-edgerepresenting the
nextfield in theNode and increments the in-degree histogram
for this root object (in = 0(1)). We track in- and out-degree
with separate histograms in theCFSG node. Since the out-
degree is known, the corresponding bar in the histogram is
incremented (out = 1(1)). The in-degree, which must be com-
puted incrementally, requires a byte in the object header to
count in-degree for each instance. As the collector scans each
object, the children are examined and the in-degree in the ob-
ject header is incremented. For each gray child, which has al-
ready been enqueued for scanning, ShapeUp decrements the
histogram bar corresponding to the child’s previous in-degree
and increments the bar corresponding to the child’s new in-
degree. For each white child, ShapeUp only increments the bar
corresponding to thein = 1 (out = 1(1)).

Step 3: The scan of the secondNode object adds a second self-
edge in theCFSGrepresenting theprevpointer in theNode and
out = 2 is added to theCFSGnode. The in-degree is computed
incrementally for each child (in = 0(0), in = 1(3)).

Steps 4-5: The scan continues to process eachNode of the doubly-
linked list.

Step 6: At the tail of the data structure, we process the finalNode
of the data structure. At this point, ShapeUp has captured the
shape of the entire data structure in theCFSG.

The bottom of Figure 3 shows the most general form of theCFSG
for a correct doubly-linked list. In the summary, it shows that
n − 2 objects have in-degree and out-degree equal to two, while2
objects (the head and the tail) have in-degree and out-degree equal
to one. We call thesefixed metricsof the data structure. Column
three of Table 1 shows the generalCFSG for several different
data structures. At the end of the collection, theCFSGcompletely
summarizes the number of objects of each class and the numberof
objects with each in- and out-degree that are live at the timeof the
collection.

Finally, we add a phase to the end of garbage collection during
which we add the currentCFSGin to a cumulativeCFSGfor the
program. We aggregate the average percent of objects with each
degree metric (e.g.,in = 0, in = 1, in = 2, etc.). For single data
structures, we record afixed metricif 0, 1, 2, n, n − 1, or n − 2
objects exhibit the degree metric. Otherwise, we record arange
metricas a percentage of objects observed by ShapeUp during one
or more executions. We find that fixed metrics are very sensitive to
violation when anomalies are introduced while range metrics are
more tolerant. In the next section, we evaluate theCFSGand show
how it can be used to detect errors in recursive data structures.

5. Experimental Methodology
We implement ShapeUp in MMTk, a memory management toolkit
in Jikes RVM version 2.9.1 [2, 3]. MMTk implements a number
of high-performance collectors [5, 6]. We measure performance on
SPECjvm [30] andDaCapo v.06-10-MR2 [7] benchmark suites
using full-heap mark-sweep and generational mark-sweep collec-
tors. We use configurations that precompile as much as possible,
including key libraries and the optimizing compiler (theFastbuild-
time configuration), and turn off assertion checking. Additionally,
we remove the nondeterministic behavior of the adaptive compila-
tion system by applying replay compilation [19].

Overhead. We configure ShapeUp to perform dynamic shape
analysis together with garbage collection at the natural garbage
collection points that are triggered when the heap is full. We ex-
periment with a range of heap sizes that are proportional to the live
memory size for a given benchmark, following best practices[7].
We select heap sizes that range from the minimum in which the
program can execute to six times the minimum. Common prac-
tice for production systems is to select heap sizes of aroundtwo
times the minimum. The current implementation ofCFSGadds
an average of 4.6% to the total time of all the benchmarks when
using a full-heap collector (maximum of 39% forpmd) and an
average of 8.4% when using a generational collector (maximum
of 92% forhsqldb), while adding<1% to the space requirements
of the program. We omit these results for brevity. We believethat
this overhead can be reduced further with performance tuning. If
users can tolerate more overhead and would like more samplesfor
debugging, such as during testing or development, ShapeUp can
analyze the heap more frequently. Users can easily obtain samples
at specific program points of interest during debugging by inserting
calls toSystem.gc() in their source code.
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Figure 4. Rate of change of degree metrics.

6. Degree Metrics Detection
In this section, we analyze the data structures in theSPECjvm and
DaCapo benchmarks, classifying them as either library or custom
implementations. We find that whole-heap degree metrics arenot
stable while class degree metrics are, including the degreemet-
rics for classes that define recursive backbones. We then evaluate
ShapeUp with microbenchmarks that implement singly-linked and
doubly-linked lists, binary trees, and linked hashmaps.

6.1 SPECjvm and DaCapo Benchmarks

Recall from Figure 1, programs ubiquitously useRDSsto man-
age the large number of objects in the heap. In our benchmarks,
91% of all objects are part of aRDS. Of these objects, 67% come
from library implementations and 33% from custom data struc-
ture implementations. We gain inspiration from previous work that
showed that measuring whole-heap degree metrics was sufficient
to discover data structure bugs in C programs [12]. Using thesame
measure of stability, we find that whole-heap measurements are too
granular to predict errors in data structures for Java.

Figure 4 presents two sample whole-heap degree metrics. Fig-
ure 4(a) shows the rate of change of out-degree metrics for the en-
tire heap as a function of megabytes of allocation forjython. Fig-
ure 4(b) shows the same whole-heap metrics forpmd, whereas (c)
shows out-degree metrics for the dominantRDS in pmd. Notice
that the y-axis scale in (b) is two orders of magnitude largerthan
in (a) and (c). Figure 4 shows that out-degree metrics forjython
are relatively constant, whereas the out-degree metric forthe whole
heap varies wildly forpmd. The results forpmd are representa-
tive of most of our benchmarks. Of 18 benchmarks fromSPECjvm
andDaCapo, 11 do not have any stable whole-heap degree metrics:
jess, raytrace, db, javac, mtrt, jbb2000, bloat, eclipse, fop, luse-

arch, andpmd. Two programs have many stable degree metrics: 7
degree metrics forcompress and 5 forjython. Four programs have
1 or 2 stable degree metrics:mpegaudio (2), luindex (2), jack (1),
andantlr (1). Simply monitoring whole-heap degree metrics is not
sufficient to understand most program behavior in Java.

Although degree metrics were unstable across the whole heap,
the degree metrics of classes are stable. Figure 4(c) illustrates this
stability by plotting the out-degree metrics forHashMap$HashEntry
in pmd, its biggest data structure. Table 2 reports the dominant
recursive data structures for each benchmark in column two.Col-
umn three indicates whether it is implemented in a library (L) or
the benchmark has a custom (C) implementation. If the dominant
recursive data structure is library-implemented, the table also in-
cludes the most dominant custom recursive data structure. One
exception isluindex which does not implement any custom data
structures. Column four indicates the average fraction of the heap
the dominant data structure occupies. Notice that only two pro-
grams contain one very dominateRDS that occupies more than
90% of the heap, e.g.,jython andluindex. The remaining nine pro-
grams have one data structure that occupies 40 to 80% of the heap
and many, but not all, are defined in the libraries. For example,ray-
trace uses a single custom data structure which consumes 78% of
the heap on average. Hashmap and its variants are common in the
benchmarks and thus we include this more complex data structure
in our microbenchmarks.

Columns five through nine enumerate in- and out-degree met-
rics of zero, one, two, and three, respectively. The top row of these
columns reports in-degree metrics and the bottom row reports out-
degree metrics. Since these metrics are with respect to theRDS, an
object can have an in-degree of zero in theCFSGwhen the object
has only an incoming pointer from an object of another class.

Each entry is either a fixed or a range metric. For example, allin-
stances (n) of OctNode with out = 0 in raytrace. This information
can be useful during development because even a single node with
out = 0 would indicate an error. We indicate a range metric with
square brackets and show the minimum and maximum fraction of
objects observed during the entire execution of the benchmark. If
they are the same, we report one number.

Two key trends emerge: (1) Many range metrics are tight,
some having zero variance. For example, 72.91% of Linked-
HashMap$LinkedHashEntry nodes have in-degree equal to two
in jack and luindex. (2) EachRDSexhibit fixed degree metrics.
Given an expected fixed metric value by the programmer or de-
rived from previous executions, the system can easily automate
and report fixed metric violations. For example, if the programmer
asserts no object should have an in-degree greater than or equal to
two (also called an ownership type [24]), the system can report an
error if this metric is violated. The next two sections explore this
potential with microbenchmarks and automated error insertion.

6.2 Microbenchmarks

We implement the following microbenchmarks to study them in
more detail: singly-linked lists, doubly-linked lists, binary trees,
binary trees with parent pointers, and simplified linked hashmaps.
We include hashmap because hashmaps account for more than 50%
of RDSsin 8 of the 16 benchmarks we tested. Recall from Section 4
that Table 1 shows the microbenchmark implementations, sample
heap graphs, and correspondingCFSG.

Table 3 lists the microbenchmark variations that we tested.We
performed 100 trials on correct executions consisting of a random
number between 100 and 100,000 of nodes in theRDSto collect
dynamic degree metrics. At each garbage collection measurement
point, ShapeUp calculates the degree metric and merges it topre-
vious correct runs. If the degree metric is fixed, ShapeUp indicates
the fixed value for future comparison. If the metric is not fixed,



Table 2. DominantRDSsfor selectedSPECjvm andDaCapo benchmarks.
(L)ibrary

or
Benchmark RDSNode (C)ustom % heap metric = 0 = 1 = 2 = 3

raytrace OctNode C 78.0 in n 0 0 0
out n 0 0 0

jack LinkedHashMap$ L 44.2 in 0 2 [72.91,72.91] [27.07,27.07]
LinkedHashEntry out 0 2 [72.91,72.91] [27.07,27.07]
RuntimeNfaState C 9.4 in [91.30,91.30] [8.69,8.69] 0 0

out [91.30,91.30] [8.69,8.69] 0 0
bloat HashMap$ L 56.6 in [74.76,87.89] [12.10,25.23] 0 0

HashEntry out [74.76,87.89] [8.69,8.69] 0 0
CallMethodExpr C 3.7 in [61.40,90.57] [7.17,30.71] [1.89,7.78] 0

out [68.50,90.57] [4.53,15.74] [3.77,15.75] 0
eclipse LinkedHashMap$ L 59.0 in [0.01,0.04] [72.91,72.97] [26.99,27.06] 0

LinkedHashEntry out [0.01,0.04] [72.91,72.98] [26.98,27.06] 0
AND AND Expression C 0.4 in [80.00,100.00] [0.00,20.00] 0 0

out [80.00,100.00] [0.00,20.00] 0 0
fop HashMap$ L 51.4 in [74.73,76.46] [23.53,25.26] 0 0

HashEntry out [74.73,76.46] [23.53,25.26] 0 0
PropertyList C 4.4 in [47.77,49.92] [35.12,37.55] [11.62,13.38] [0.78,1.90]

out 1 n 0 0
jython PyFrame C 94.6 in 1 n-1 0 0

out 1 n-1 0 0
luindex LinkedHashMap$ L 99.3 in 0 [0.01,0.02] [72.91,72.92] [27.05,27.06]

LinkedHashEntry out [0.01,0.02] [72.92,72.92] [27.05,27.05] 0
lusearch WeakHashMap$ L 47.5 in [43.64,75.62] [24.37,45.85] [0,1.04] [0,0.05]

WeakBucket out [43.54,75.62] [23.37,46.00] [0,1.04] 0
HitDoc C 2.0 in [0,100] [0,100] [0,66.66] 0

out [0,100] [0,100] [0,66.66] 0
pmd HashMap$ L 51.4 in [73.51,87.50 [12.49,26.48] 0 0

HashEntry out [73.51,87.50] [12.49,26.48] 0 0
PackageNode C 2.0 in 1 [0,80.00] 0 0

out 1 [0,80.00] 0 0
xalan ChildIterator C 34.6 in 0 n 0 0

out 0 n 0 0

Table 3. Degree metrics discovered by ShapeUp on correct data structures with between 100 and 100,000 nodes.
Data Structure = 0 = 1 = 2 = 3 = 4, = 5, = 6, =7,>7

Singly-linked list in 1 n-1 0 0 0
out 1 n-1 0 0 0

Doubly-linked list in 0 2 n-2 0 0
out 0 2 n-2 0 0

Complete binary tree in 1 n-1 0 0 0
out [50.00, 50.16] 1 [49.84, 50.00] 0 0

Full binary tree in 1 n-1 0 0 0
out [50.00, 50.13] 0 [49.87, 50.00] 0 0

Random binary tree in 1 n-1 0 0 0
out [33.66, 35.70] [28.69, 35.08] [32.26, 35.61] 0 0

Complete binary tree w/PP in 0 [50.00, 50.01] 2 [49.92, 50.00] 0
out 0 [50.00, 50.01] 2 [49.92, 50.00] 0

Full binary tree w/PP in 0 [50.00, 50.05] 1 [49.86, 50.00] 0
out 0 [50.00, 50.05] 1 [49.86, 50.00] 0

Random binary tree w/PP in 0 [33.79, 35.21] [30.02, 32.61] [33.61, 34.76] 0
out 0 [33.79, 35.21] [30.02, 32.61] [33.61, 34.76] 0

Linked Hashmap (HashEntry) in [31.96, 51.76] [48.24, 68.04] 0 0 0
out [31.96, 51.76] [48.24, 68.04] 0 0 0

ShapeUp determines the percentage of objects with that metric and
determines the range metric from the correct runs.

Table 3 uses the same format for presenting fixed and range
metrics as Table 2, which is explained in the previous section. In
isolation, data structures show a larger number of fixed metrics.
For example, the singly-linked list has 1 node without = 0 which
represents the tail of the data structure. Furthermore, thestart (or

root) of aRDShas one node within = 0. In the singly-linked list,
out-degree equals one (out = 1) for n − 1 nodes.

For the less regular data structures, we see fewer fixed metrics.
Section 6.3 shows how ShapeUp uses its automatically discovered
invariants from correct executions in our microbenchmarks(Ta-
ble 3) to detect errors when we insert errors.



Table 4. Errors introduced into microbenchmarks
Error Description Violation Type Runs

Singly-Linked List
cyclic creates cycle fromtail to head single 10
cycle creates random cycle fromtail to a random object single 100

Doubly-Linked List
cyclic creates cycle fromtail to head single 10
cycle creates a random cycle between two objects multiple 100
disconnect disconnects random link multiple 100
skip creates a skip in thenext or prev pointers multiple 100
random randomly insert errors (cycle, disconnect, or skip) multiple 100

Binary Tree
linkerror creates a connection from anull pointer to a random object multiple 100

Binary Tree with Parent Pointer
disconnect delete a random reference multiple 100
linkerror creates a connection from anull pointer to a random object multiple 100
random randomly insert errors (disconnect or linkerror) multiple 100
Linked Hashmap
bucketlink randomly connects two buckets in the hashmap multiple 100

1 if ( metric is constant ) {

2 if ( thisMeasure != constantMeasure ) {
3 // fixed metric violation

4 }
5 } else {

6 thisPercent = thisMeasure / numberOfObjects
7 if ( thisPercent < minPercent ||
8 maxPercent < thisPercent ) {

9 // range metric violation
10 }

11 }

Figure 5. Pseudocode for discovering dynamic invariant viola-
tions.

6.3 Automated Error Detection

This section explores using ShapeUp to automatically detect errors
by using dynamically discovered invariants from correct runs to
train ShapeUp. While we expect most errors to be discovered dur-
ing testing, even well-tested programs have errors. For example, a
data race that causes a cycle in a linked-list in a concurrentdata
structure may show up only in deployment.

In training, we use correct program executions to dynamically
discover degree metrics as shown in Table 3. In testing mode,we
compare the current execution to the previously discoveredde-
gree metrics. On each full-heap garbage collection, ShapeUp an-
alyzes the data structures and compares this sample to the stored
dynamic degree metrics from correct executions. Figure 5 shows
how ShapeUp compares metrics from this measurement with pre-
vious measurements to detect violations. If the metric is fixed and
the current measurement is not the same, ShapeUp reports a viola-
tion. Otherwise, ShapeUp reports a potential violation if the frac-
tion of objects with the metric falls below the minimum or above
the maximum of a given range metric.

We insert random errors into each of the data structures in our
microbenchmark as described in Table 4. For example, adisconnect
error introduced into a doubly-linked list randomly chooses a node
and than randomly chooses to disconnect one of the edges fromthat
node. In the case ofrandom, we randomly select one of the other
error types to insert for each error. The insertion and deletion of
edges inRDSschanges the shape of the recursive backbone and
thus violate degree metrics. For each type of error, we perform
100 tests that insert 1, 2, 3, 4, 5, 10, 50, and 100 errors intoRDSs
that have 100,000 nodes. Table 5 illustrates the percentageof runs
where ShapeUp successfully reports an error.

Table 5. Percentage of runs with detected errors.

Number of errors injected
Error 1 2 3 4 5 10 50 100

Singly-Linked List
cyclic 100 n/a
random 100 n/a

Doubly-Linked List
cyclic 100 n/a
cycle 100 100 100 100 100 100 100 100
disconnect 100 100 100 100 100 100 100 99
skip 100 100 100 100 100 100 100 100
random 100 100 95 98 99 96 98 98

Complete Binary Tree
linkerror 100 100 100 100 100 100 100 100

Full Binary Tree
linkerror 100 100 100 100 100 100 100 100

Random Binary Tree
linkerror 100 100 100 100 100 100 100 100

Complete Binary tree with Parent Pointer
disconnect 53 92 93 99 100 100 100 100
linkerror 100 100 100 100 100 100 100 100
random 85 97 100 100 100 100 100 100

Full Binary Tree with Parent Pointer
disconnect 72 83 92 97 100 99 100 100
linkerror 100 100 100 100 100 100 100 100
random 86 97 99 100 100 100 100 100

Random Binary Tree with Parent Pointer
disconnect 14 22 27 35 41 69 100 100
linkerror 31 63 73 84 94 97 100 100
random 29 36 56 66 64 90 100 100
Linked Hashmap
bucketlink 0 0 0 1 0 3 12 25

In Figure 6, we report the percentage of runs for which ShapeUp
reported a fixed metric violation, a range metric violation,or either
violation for the binary tree with parent pointer. Fixed metrics
show a greater degree of sensitivity to shape violations. Infact,
for every range metric violation, there was a correspondingfixed
violation. Figure 6(a-c) show results forlinkerror, which adds a
link from a leaf nodenodel to a randomly selected nodenoder

in the tree. Adding a link fromnodel to noder changes the in-
degree ofnoder which is quickly detected except in the case of
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(a) Complete Binary Tree w/ PP (linkerror)
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(b) Full Binary Tree w/ PP (linkerror)
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(c) Random Binary Tree w/ PP (linkerror)
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(d) Complete Binary Tree w/ PP (disconnect)
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(e) Full Binary Tree w/ PP (disconnect)
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(f) Random Binary Tree w/ PP (disconnect)
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(g) Complete Binary Tree w/ PP (random)
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(h) Full Binary Tree w/ PP (random)
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(i) Random Binary Tree w/ PP (random)

Figure 6. Errors detected in binary trees with parent pointer

the random binary tree with parent pointer. Examination of the
degree invariants in Table 3 shows why this is true. For the complete
and full versions of the binary tree with parent pointer, shifting
the in-degree by one results in a fixed metric violation. For the
random binary tree with parent pointer, ShapeUp has less success
detecting errors in the corresponding random structure. Figure 6(d-
f) show results fordisconnecterrors. Since our approach will not
detect errors if the error makes objects unreachable, we findmixed
success detecting disconnect errors. For example, disconnecting the
edge connecting a leaf node makes the corresponding leaf node
unreachable and thus the resulting data structure does not violate
its degree invariants. Disconnect errors require semanticinvariant
detection which is orthogonal to this work. We believe theseerrors
would be caught earlier in development, or could be detectedby
adding code that keeps track of the expected number of objects in
the data structure. Finally, Figures 6(g-i) show results when errors
are randomly inserted.

Since ShapeUp only samples the heap at garbage collection
time, one issue is how quickly ShapeUp will detect an error, or
if ShapeUp will miss an error that gets corrected before the next
garbage collection. Our experience shows that data structure errors
are likely to persist in the heap because programmers do not gener-
ally include code to correct these types of errors (or many others).
Depending on the application, there are a variety of actionsthe sys-
tem might take once an error is discovered. The system could halt
the program or report the error to the developers. If developers in-
clude correction code, the system could execute this code, as pro-
posed in prior work [8, 14].

7. Conclusions
Programmers are increasingly challenged by the size and complex-
ity of the programs they create. As programs allocate an increas-
ing number of objects in the heap, heap analysis becomes criti-
cal for program understanding and debugging. In this paper,we
presentShapeUpa dynamic shape analysistool that characterizes
the shape of recursive data structures by summarizing the heap-
graph in aclass-field summary graph(CFSG) with very low over-
heads. TheCFSGcompletely summarizes the number of objects of
each class and the references between them by field. Degree met-
rics of recursive-backbone objects capture the shape of therecur-
sive data structures in the form of dynamic invariants. We evaluate
ShapeUp by characterizing recursive data structures inSPECjvm
andDaCapo benchmarks. We demonstrate that the vast majority
of objects in the heap are part of recursive data structures.While
summarizing degree metrics across the entire heap in Java isnot
sufficient to understand most program behavior, we show thatde-
gree metrics for a single recursive data structure maintaininvari-
ants for their entire execution. We show how to use dynamically-
discovered degree metrics to find errors in incorrect executions of
microbenchmarks showing that for some data structures a single er-
ror is sufficient to trigger a violation that was reported by ShapeUp.

Future work should (1) explore more precise summaries for de-
gree metrics including cases where multiple instances of a recur-
sive data structure exist using lightweight techniques to separate
RDSinstances [27]; (2) consider data objects in addition to recur-
sive types; and (3) evaluate ShapeUp in real applications. This pa-
per shows that dynamic heap analysis can efficiently summarize



the heap by class in such a way to find dynamic invariants and dis-
cover violations by mining degree metrics from the heap’s regular
structure.
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