
Loop Distribution with Arbitrary Control Flow �Ken Kennedy Kathryn S. McKinleyRice UniversityDepartment of Computer ScienceP.O. Box 1892Houston, TX 77251AbstractLoop distribution is an integral part of transforming asequential program into a parallel one. It is used ex-tensively in parallelization, vectorization, and memorymanagement. For loops with control
ow, previousmethods for loop distribution have signi�cant draw-backs. We present a new algorithm for loop distribu-tion in the presence of control
ow modeled by a con-trol dependence graph. This algorithm is shown opti-mal in that it generates the minimum number of newarrays and tests possible. We also present a code gen-eration algorithm that produces code for the resultingprogram without replicating statements or conditions.Although these algorithms are being developed for usein an interactive parallel programming environmentfor Fortran, they are very general and can be used inautomatic parallelization and vectorization systems.Keywords: parallelization, vectorization, transfor-mation, control dependence, data dependence, loopdistribution1 IntroductionLoop distribution is a fundamental transformation inprogram restructuring systems designed to supportvector and parallel machines. In its simplest form,loop distribution consists of breaking up a single loopinto two or more loops, each of which iterates over adistinct subset of the statements in the body of theoriginal loop. The usefulness of this transformation�This research is supported by the National Science Foundationunder grants ASC8518578 and CDA8619893, and by the IBMCorporation.

derives from its ability to convert a large loop whoseiterations cannot be run in parallel into multiple loops,many of which can be parallelized. Consider the fol-lowing code.DO I = 2, NA(I) = B(I) + CD(I) = A(I-1)*EENDDOIf we wish to retain the original meaning of this codefragment, the iterations cannot be run in parallel with-out explicit synchronization lest a value of A(I-1) isfetched before the previous iteration has a chance tostore it. However, if the loop is distributed, each ofthe resulting loops can be run in parallel.DOALL I = 2, NA(I) = B(I) + CENDDODOALL I = 2, ND(I) = A(I-1)*EENDDOIn the presence of conditionals, distribution is com-plicated. Consider, for example the following loop.DO I = 2, NIF (A(I).EQ.0) THENA(I) = B(I) + CD(I) = A(I-1)*EENDIFENDDOIn order to place the �rst assignment in the �rst loopand the second assignment in the second loop, the re-sult of the if statement must be known in both loops.The if cannot be replicated in both loops, becausethe �rst assignment changes the value of A. One solu-tion to this problem is to convert all if statements toconditional assignment statements, as follows:DO I = 2, NP(I) = A(I).EQ.0IF (P(I)) A(I) = B(I) + CIF (P(I)) D(I) = A(I-1)*EENDDOThe resulting loop can be distributed by consideringonly data dependence, because the control dependencehas been converted to a data dependence involvingthe logical array P. This approach, called if-conversion

[AKPW83, All83], has been used successfully in a vari-ety of vectorization systems [AK87, SK86, KKLW84].However, it has several drawbacks. If vectorizationfails, it is not easy to reconstruct e�cient branchingcode. In addition, if-conversion may cause signi�cantincreases in the code space to hold conditionals.For these reasons, research in automatic paral-lelization has concentrated on an alternative approachthat uses control dependences [FOW87, ABC+87,ABC+88] to model control
ow. Reconstructing se-quential code from a control dependence graph is nottrivial, but it is easier than reconstructing from codethat has been subject to if-conversion [FM85, FMS88,CFS90].Unfortunately, the control dependence representa-tion complicates loop distribution. Although controldependences can be used like data dependences fordetermining the placement of statements in loops, aproblem arises in generating code for a distribution:\How does one generate two loops that have a con-trol dependence between statements in their respec-tive bodies?" The only way to accomplish this is torecord the results of evaluating the predicate in a logi-cal array and test the logical array in the second loop.This paper presents a method for performing loopdistribution in the presence of control
ow based oncontrol dependences. The approach is optimal in thesense that it introduces the fewest possible new logicalarrays and tests. In particular, it introduces one ar-ray for each conditional node upon which some node inanother loop in the distribution depends. In addition,we show an algorithm for generating code for the bodyof a loop after distribution. This algorithm, which isintended for use in an interactive program transfor-mation system called ParaScope, generates code thatis very close to the original. Although this approachwas inspired by the ParaScope transformation system[BKK+89], it is also suitable for use in automatic par-allelization and vectorization systems. The algorithmsare very fast, both asymptotically and practically.2 Loop DistributionDistribution is a program transformation, introducedby Muraoka [Mur71], that converts a single loop intomultiple loops. The placement of statements intoloops must preserve the data1and control dependencesof the original loop. We use the following de�nitionsof postdominance and control dependence, which aretaken from the literature [FOW87, CFS90].1A data dependence exists between two statements if they ref-erence the same memory location and at least one of them is awrite [Ber66, Ban88, AK84, Wol82].

Def: x is postdominated by y in the control
ow graph Gf if every path from x to the exitnode of Gf contains y.Def: Given two statements x, y 2 Gf , y iscontrol dependent on x if and only if:1. 9 a non-null path p, x ! y, suchthat y postdominates every nodebetween x and y on p, and2. y does not postdominate x.Based on these de�nitions, a control dependence graphGcd can be built with the control dependence edges(x, y)l where l is the label of the �rst edge on pathx ! y. Intuitively, control dependence between twostatements, x and y, indicates that the source of thecontrol dependence x directly determines whether thesink y will execute.For our purposes, a node in Gf usually represents asingle statement. Exceptions to the single statementper node rule are inner loops and irreducible regions;all of their statements are represented with a singlenode. If Gf is structured, rooted and acyclic, the re-sulting Gcd is a tree, where structured is as de�nedby B�ohm and Jacopini [BJ66]. Also, if Gf is unstruc-tured, rooted and acyclic, the resulting Gcd is a dag[CFS90].For the purposes of this paper, loop distribution isseparated into a three-stage process: (1) the state-ments in the loop body are partitioned into groupsto be placed in di�erent output loops; (2) the controland data dependence graphs are restructured to e�ectthe new loop organization and (3) an equivalent pro-gram is generated from the dependence graphs. Themethod we present is designed to work on any parti-tion that is legal, i.e., any partition that preserves thecontrol and data dependences of the original program.A partition can preserve all dependences if and only ifthere exists no dependence cycle spanning more thanone output loop [KKP+81, AK87]. If there is a cycleinvolving control and/or data dependences, it mustbe contained entirely within a single partition (thereare a few additional considerations for loops with exitbranches, which are discussed in Section 3.4).This condition is necessary and su�cient. Considerwhat must be done to generate code given a partition-ing into loops: some linear order for the loops must bechosen. If we treat each output loop as a single nodeand de�ne dependence between loops to be inheritedin the natural way from dependences between state-ments, then the resulting graphs will be acyclic if andonly if each original recurrence is con�ned to a singleloop. Since an acyclic graph can always be orderedusing topological sort and a cyclic graph can never beordered, the condition is established.Because our algorithm accepts any legal partitionas input, it is as general as possible. It can be used for

vectorization, which seeks a partition of the �nest pos-sible granularity, or for MIMD parallelization, whichseeks the coarsest possible granularity without sacri-�cing parallelism.3 Restructuring for Loop DistributionIn the original program, control decisions are madeand used in the same loop on the same iteration, buta partition may specify that decisions that are madein one loop be used in another. This problem is il-lustrated below by Example 1. Its corresponding Gcdand data dependence graph are shown in Figure 1.Example 1DO I = 1, NS1 IF (A(I) .GT. T) THENS2 A(I) = IELSES3 T = T + 1S4 F(I) = A(I)S5 IF (B(I) .NE. 0) THENS6 U = A(I) / B(I)ELSES7 U = A(I) - US8 C(I) = B(I) + C(I)ENDIFENDIFS9 D(I) = D(I) + C(I)ENDDOThe data dependence graph in Figure 1(b) showstrue dependences with solid lines and anti depen-dences with dashed lines. Loop carried edges are la-beled with lc. In this example, output dependencesare redundant and are not included. Given the dataand control dependences in Figure 1, the statementsmay be placed in four partitions: (S1, S2, S3), (S4,S5), (S6, S7), and (S8, S9). This particular partitionis chosen solely for exposition of the algorithm, and inFigure 1(a) it is superimposed on Gcd such that eachpartition is enclosed by dashed lines.Given this partition, some statements are no longerin the same loop with statements upon which theyare control dependent. For example, S4 is control de-pendent on S1, but S1 and S4 are not in the samepartition. In Figure 1 the Gcd edges that cross parti-tions represent decisions made in one loop, and usedin a later loop. There may be a chain of decisions onwhich a node n is control dependent, but given a legalpartition, all of n's predecessors and ancestors in Gcdare guaranteed either to be in n's partition, or in anearlier one. Therefore the execution of n may be de-termined solely from the execution of n's predecessors.We introduce execution variables to compute and storedecisions that cross partitions in Gcd for both struc-tured and unstructured code.

(a) Gcd..S1S2 S3 S4 S5S6 S7 S8S9..t f f ft f f(b) Data Dependence..S1S2 S3 S4 S5S6 S7 S8S9..lclc lclc lclcFigure 13.1 Execution VariablesExecution variables are only needed for branch nodes,because they correspond to control decisions in theoriginal program. Any node in Gcd that has a suc-cessor must be a branch node, but only branch nodeswith at least one successor in a di�erent partition areof interest here. For each branch in this restricted set,a unique execution variable is created. Only one ex-ecution variable is created, regardless of the numberof successors or the number of di�erent partitions towhich the successors belong. The execution variableis assigned the value of the test at the branch, cap-turing the branch decision. Later this variable willbe tested to determine control
ow in a subsequentpartition. Hence, the creation of an execution vari-able will replace control dependences between parti-tions with data dependences. Execution variables arearrays, with one value for each iteration of the loop,because each iteration can give rise to a di�erent con-trol decision. If desired, loop invariant decisions canbe detected [AC72] and represented with scalar exe-cution variables.All other known techniques, whether they are Gcdbased or not, use boolean logic when introducing ar-rays to record branch decisions. This requires eithertesting and recording the path taken in previous loopsor introducing additional arrays. In Example 1 in the

loop with statements (S6, S7), either S6, or S7, or nei-ther may execute on a given iteration. Because thereare three possibilities, the correct decision cannot bemade with a single boolean variable. For example,if S1 takes the true branch, then neither S6 nor S7should execute. If just S5's decision is stored, thenone of S6 or S7 will mistakenly be executed, becausethe branch recording array for S5 must either be trueor false, regardless of S1's decision.Given this drawback, we have formulated execu-tion variables to have three possible values: true, falseand >, which represents \unde�ned". Every execu-tion variable is initialized to > at the beginning of theloop in which it will be assigned, indicating that thebranch has not yet been executed. Because of the ex-istence of a \not executed" value, the control depen-dent successors in di�erent partitions need only testthe value of the execution variables for their predeces-sors; they do not need to test the entire path of theircontrol dependence ancestors. This is true whetherthe control
ow is unstructured or structured. Execu-tion variables completely capture the control decisionat a node, making them extremely powerful.3.2 RestructuringThe restructuring algorithm in Figure 2 creates and in-serts execution variables and guards, given a distribu-tion partition. It also updates the control and data de-pendence graphs to re
ect the changes it makes. Thealgorithm is applied in partition order and, within apartition, in statement order over Gcd (statement or-der can be the original lexical order or interval or-der). The algorithm can be subdivided into threeparts. First, execution variables for a branch noden are created where needed. Next, guard expressionsare inserted for any nodes control dependent on n.Then the control and data dependences are updated,re
ecting the new guards and execution variables.The need for an execution variable for n is deter-mined by considering n's successors. If there is anoutgoing edge from n to a node that is not in n's par-tition, an execution variable is created. In Example1, execution variables are needed for S1 and S5. Theinitialization of the execution variable is inserted atthe beginning of n's partition, ensuring it will alwaysbe executed. Next, an assignment of the executionvariable to n's test is inserted in node n. If n hassuccessors in its partition, its branch is changed totest the execution variable. Otherwise, its branch isdeleted.For each partition Pk that contains a successor ofn, a guard on n's execution variable is built. Here thesuccessors of n are also considered in statement order.A guard is built for every distinct label from n into Pk.Each guard compares n's execution variable, EVn(I),to the distinct label l. All of n's successors in Gcd

Execution Variable and Guard CreationInput: partitions, Gcd, statement orderOutput: modi�ed Gcd with execution variablesfor each partition, Pfor each n 2 P, in orderif (9 an edge (n, o)l 2 Gcd, where o 62 P)insert \EVn (I) = >" into P at toplet test be n's branch conditionif (9 (n, m)l where m 2 P)replace n with � \EVn(I) = test"\IF (EVn (I) .EQ. true)"elsereplace n with \EVn (I) = test"for each Pk 6= P containing a successor of nf* Build guards, and modify Gcd *gfor each l where 9 (n, p)l with p 2 Pkcreate new statement N:\IF (EVn(I) .EQ. l)",add N to Pk f* N is new and unique *ginsert data dependences for EVnfor each (n, q)l where q 2 Pkf* Update control dependences *gdelete (n, q)l from Gcdadd (N, q)true to GcdendforendforendforendforendforFigure 2 Restructuring for Distributionin Pk on label l are severed from n, and connected tothe newly created corresponding guard. Our exampleshave only two labels, true and false, but any numberof branch targets can be handled.Consider Example 1. S5 has successors in two parti-tions, (S6, S7) and (S8, S9). The successors in (S6, S7)are on di�erent branches. S6 is on the true branch, sothe guard expression created is \EV5(I) .EQ. true."S7 is on the false branch, so its guard expression is\EV5(I) .EQ. false." The old edges (5, 6) and (5, 7)are deleted from Gcd, and new edges attaching 6 and7 to their corresponding guards are created. Similarlya guard is created for and connected to S8.The following simple optimization is included in thealgorithm and examples but, for clarity, does not ap-pear in the statement of the algorithm. Determin-ing whether the initialization of an execution variableis necessary, can be accomplished when an executionvariable is created for a node n. If n is not controldependent on any other node, that is, a root in thecontrol dependence graph, then there is no need forinitialization to be inserted. During guard creationfor the successors of this node, the execution variableis known to have a value other than >. Therefore, ifcontrol
ow is structured, only one guard is needed for

each successor partition, instead of for each label.After restructuring is applied, each partition has acorrect Gcd, a correct data dependence graph, andpossibly some new statements (execution variable as-signments and guards). At this point the code forthe distribution partition can be generated. We use asimple code generation algorithm, which is describedin Section 4. Given the distribution in Figure 1 forExample 1, restructuring and code generation resultsin the following code.DO I = 1, NEV1(I) = A(I) .GT. TS1 IF (EV1(I) .EQ true) THENS2 A(I) = IELSES3 T = T + 1ENDIFENDDODO I = 1, NEV5(I) = >IF (EV1(I) .EQ. false) THENS4 F(I) = A(I)S5 EV5(I) = B(I) .EQ. 0ENDIFENDDODO I = 1, NS6 IF (EV5(I) .EQ. true) U = A(I) / B(I)S7 ELSE IF (EV5(I) .EQ. false) U = A(I) - UENDDODO I = 1, NS8 IF (EV5(I) .EQ. false) C(I) = B(I) + C(I)S9 D(I) = D(I) + C(I)ENDDOThe advantages of three-valued logic are illustratedby the concise guards for S6 and S7. As shown inSection 3.1, EV5(I) must be explicitly tested for trueor false, because if S1 evaluated to true, then EV5(I)will be > and neither S6 nor S7 should execute. Notonly do we avoid testing EV1(I) here, if S4 and S5were in S1's partition, there would be no need to storeS1's decision at all, even though S6 are S7 indirectlydependent on S1 and S1 remains in a di�erent loop.3.3 OptimalityGiven a distribution, this section proves that our algo-rithm creates the minimal number of execution vari-ables needed to track control decisions a�ecting state-ment execution in other loops. It also establishes thatthe algorithm produces the minimal number of guardson the values of an execution variable required to cor-rectly execute the distributed code. Therefore, ouralgorithm is optimal for a given distribution partition.Lemma 1: Each execution variable represents aunique decision that must be communicated betweentwo loops.Proof: An execution variable is only created when adecision in one partition directly a�ects the executionof a statement in another partition, as speci�ed byGcd. The de�nition of Gcd guarantees that no decision

node subsumes another, and therefore any decisionsrepresented by execution variables are unique. 2The restructuring algorithm creates the minimalnumber of guards on the values of an execution vari-able required to correctly determine execution. Letp = the number of distinct partitions, P, andm = the number of distinct branch labels, l,that contain successors of node n. There are at most ktests on the value of an execution variable EVn, wherek = pXi=1 mXj=1(lj 2 Pi):k is the sum of distinct labels into every distinct par-tition, and is bounded by the number of n's successorsthat are in separate partitions Pi.Theorem 1: The number of guards that test an ex-ecution variable is the minimal required to preservecorrectness for the given distribution.Proof by contradiction. If there exists a version ofthe distribution with fewer guards, then guards wouldbe produced that were either unnecessary or redun-dant. If there were unnecessary guards, then Lemma1 would be violated. If there were redundant guards,then there would be multiple guards for nodes in thesame partition with the same label. However the al-gorithm produces at most one guard per label used ina partition. 23.4 Exit BranchesBecause exit branches determine the number of iter-ations that are executed for an entire loop, they aresomewhat sequential in nature. It is possible to per-form distribution on such loops in a limited form byplacing all exit branches in the �rst partition. Ofcourse any other statements involved in recurrenceswith these statements must also be in the �rst parti-tion. This forces the number of iterations to be com-pletely determined by the �rst loop. If there are anystatements left, any legal partitioning of them may beperformed. The control dependences for each of thesubsequent partitions can be satis�ed with executionvariables as described above. However, during codegeneration their loop bounds must be adjusted. If anexit branch was taken, any statements preceding it inthe original loop must execute the same number oftimes as the �rst loop, later statements must executeone less time than the �rst loop. Otherwise, when noexit branch is taken, all loops must execute the samenumber of times as the �rst loop.4 Code GenerationTo review, there are three phases to distribution in thepresence of control
ow. The �rst step determines apartitioning based on data and control dependences.

The second step inserts execution variables and guardsto e�ect the partition and updates the control anddata dependences. The third step is code generation.In step two the only changes to the data dependencegraph are the addition of edges that connect the def-initions of execution variables to their uses. A Gcd isbuilt for each new loop during this phase. In each newloop's Gcd there are no control dependences betweenguards. However, there may be relationships betweenexecution variables that may be exploited and insertedduring code generation.Now we consider code generation for unstructuredor structured control
ow without exit branches (Sec-tion 3.4 contains the extensions necessary for exitbranches). Because the data and control dependencegraphs, as well as the program statements are cor-rect on entry to the code generation phase, a varietyof code generation algorithms could be used. For ex-ample, any of the code generation algorithms based onthe program dependence graph [FM85, FMS88, CFS90,BB89] could be used in conjunction with the abovealgorithm. A very simple code generation scheme isdescribed here. It is designed to be used in ParaScope,an interactive parallelizing environment.When transformations are applied in an interactiveenvironment it is important to retain as much similar-ity to the original program as possible. The program-mer can more easily recognize and understand trans-formed code when it resembles the original. For thisreason, although partitioning may cause statementsto change order, the original statement order and con-trol structure within a partition is maintained. If theoriginal loop is structured, the resulting code will bestructured. If the original loop was unstructured anddi�cult to understand, so most likely will be the dis-tributed loop.To maintain the original statement ordering, an or-dering number is computed and stored in order[n]. Allthe nodes in Gcd are numbered relative to their origi-nal lexical order, from one to the number of nodes. Allof the execution variable initialization nodes are num-bered zero, so they will always be generated beforeany other node in their partition. The newly createdguard nodes have an order number and a relative num-ber, rel[n]. Their order numbers are the number of thenode whose execution variable appears in the guardexpression. Their relative numbers rel[n] are the num-ber of the guard's lowest numbered successor. Bothof these numbers can be computed when the guard iscreated. To simplify the discussion, branches are as-sumed to have only two label values, true and false,but the algorithm may be easily extended for multi-valued branches.The rest of this section is divided into three parts.First relabeling, which corrects and renames state-ment labels, is described. Then the code generation

discussion is separated into sections for structured andunstructured code.4.1 Label RenamingA distribution partition may specify that the destina-tion of a goto, that is, a labeled statement, be in adi�erent loop from the goto. Replication and labelrenaming of gotos of this type must be performedto compensate for this after restructuring and beforecode generation. Renaming is easily accomplished byreplacing the destination of a goto that is no longerin the same loop with an existing label or a new la-bel, lPj , which may require a continue. The newdestination has the same relative ordering as the orig-inal label. Often this will be the last statement in thepartition. Reuse of labels is done whenever possible.Example 2DO I = 1, NS1 IF (p1) GOTO 4S2S3 GOTO 54 IF (p4) GOTO 65 S56 S6ENDDOGcdS1S2 S3 S4 S5S6...f f t ffConsider Example 2 with a distribution partition(S1, S2, S3, S6) and (S4, S5). The destination of S1'sgoto, S4, is not in the same partition as S1, there-fore the goto's label must be renamed. In this case,the new destination of S1's jump must not interferewith the execution of S6. To determine the destina-tion and new label, the statement number of the orig-inal labeled statement (in this case 4) is compared toeach statement in the partition following S1 in order.When a statement number greater than the original isfound (S6 in our example), its label is used or a newone is created for it. Any empty jumps are deleted.A straightforward relabeling of the �rst partition inExample 2 after restructuring results in the following.DO I = 1, NEV1[I] = p1S1 IF (EV1[I] .EQ. true) GOTO 6S26 S6ENDDO4.2 Structured Code GenerationBecause code generation based on Gcd when it is atree, is relatively simple [FM85, FMS88, BB89], thisdiscussion emphasizes properly selecting and insertingthe appropriate control structures for newly created

guards. Other Gcd code generation algorithms mustselect and create control structures for all branches.Because we use the original control structures for allbut the newly created guards, only they are of in-terest here. When the guards are created they areidenti�ed by setting guard[n] to true. For all othernodes, guard[n] evaluates to false. With structuredcontrol
ow the only two control structures that needbe inserted when generating guards are if-then andif-then-else.Our algorithm for code generation given structuredor unstructured code appears in Figure 3. It considerseach partition and its nodes based on their order num-ber, from lowest to highest. If a node n is not a guardnode, it is generated with its original control structurefollowed by any descendents using depth-�rst recur-sion on Gcd. Given a tree Gcd, and that all controlFigure 3Code Generation after DistributionInput: Gcd, ordered partitions, order[n], rel[n],guard[n], goto[n]Output: The distributed loopsfor each partition, Pgen (DO) f* The original loop header *gwhile (9 n 2 P)choose n with smallest order[n] andif goto[n] and not only predecessor,with greatest rel[n], otherwise smallest rel[n]done = falsedelete n from Pif (guard[n])genguard (n)elsegen (n) f* all matches any branch label *ggensuccessors (n, all)endwhileendforprocedure gensuccessors (n, l)while (done = false and 9 (n, m)l 2 Gcd and P)choose m with smallest order[m]if (9 (p, m) where p 6= n)f* In structured code m has one predecessor *gf* so this will never occur *gdone = trueelsedelete (m) from Pgen (m)gensuccessors (m, all)endwhileend

dependences are satis�ed, the ancestors of a node nin Gcd must be generated before n is. If the node isa guard node, the control structure for it must be se-lected and created. This work is done in the proceduregenguard.If the guard node has true and false branches, anif-then-else is generated, where the conditional isthe guard expression. For each successor on the truebranch, it and its descendents are generated recur-sively, in order. The false successors are generatedsimilarly under the else. If there are two guards withthe same order number, they are ordered by their rel-ative number, and an if-then-else-if-then is gen-erated. The �rst guard expression becomes the �rstconditional, and its successors and their descendentsare generated in the corresponding then. The secondFigure 3: (continued)procedure genguard (n)if (9 (p, rel[n]) p 6= n and p still 2 P)f* Generate unstructured code *glet L be the statement label of node rel[n]gen (IF n GOTO L)f* Generate structured constructs *gelse if (9 (n, q)true and (n, r)falsewhere order[q] < order[r])f* The original conditional was structured *ggen (IF n THEN)gensuccessors (n, true)gen (ELSE)gensuccessors (n, false)gen (ENDIF)else if (9 o where order[o] = order[n])f* n chosen s.t. rel[n] < rel[o] *gf* The original conditional was structured *ggen (IF n THEN)gensuccessors (n, true)delete o from Pgen (ELSE IF o THEN)gensuccessors (o, true)gen (ENDIF)elsef* Unstructured or structured *gf* original conditional *ggen (IF n THEN)gensuccessors (n, true)gen (ENDIF)end

guard expression conditions the else-if-then, and isfollowed by its descendents. Otherwise the guard isthe only node with this order number, and an if-thenis generated for the guard and its descendents.In Example 3 the control dependence graph is a longnarrow tree. Example 3DO I = 1, NS1 IF (p1) THENS2ELSES3 IF (p3) THENS4ELSES5 IF (p5) THENS6ELSES7ENDIFENDIFENDIFENDDOGcd
S1S2 S3S4 S5S6 S7

..
..

..
......................
......................

t ft ft fAfter performing the above algorithms, the code belowresults.DO I = 1, NEV3[I] = >EV5[I] = >S1 EV1[I] = p1IF (EV1[I] .EQ. false) THENS3 EV3[I] = p3IF (EV3[I] .EQ. false) THENS5 EV5[I] = p5IF (EV5[I] .EQ. false) THENS7ENDIFENDIFENDIFENDDODO I = 1, NIF (EV1[I] .EQ. true) S2IF (EV3[I] .EQ. true) S4IF (EV5[I] .EQ. true) S6ENDDOThe �rst loop shows the dead branch optimization.The second loop illustrates that it is possible to gener-ate correct code without adding control dependencesbetween guards. More e�cient code could be gener-ated by noticing in the second loop nest if EV1[I] istrue then neither EV3[I] or EV5[I] can be true, andsimilarly if EV3[I] is true then EV5[I] cannot be true.This code would not have fewer tests, but would bemore e�cient and have a di�erent structure.

4.3 Unstructured Code GenerationWe can avoid the usual problems when generatingcode with a dag Gcd for unstructured control
ow byusing the original structure and computing some addi-tional information about the origin of the new guards.This information can be computed during code gener-ation, or when the guards are created. If a guard isthe only predecessor of its successors, the ordering andstructure selection for structured control
ow can beused. For guards that have successors with multiplepredecessors, goto's are generated.The key insight is that, although a node can becontrol dependent on many nodes, only one of thesedependences may be from a structured construct. Ob-serve that in a connected subpart of Gcd, when guardsare created from gotos outside the partition into thesubpart, the guards with the highest order numberswill be generated �rst. One or two gotos may re-sult. When a goto will result in a guarded goto anda structured construct, care is taken to generate thegoto �rst. In this case the node with larger relativenumber between the two guards will be selected, anda goto for it is generated.The recursive generation of successors and their de-scendents must choose the lowest numbered successorto generate �rst. In structured code this is guaranteedto be the true branch, but with an if-goto the falsebranch is lower. In structured code, the generation ofsuccessors is immediately preceded by their one andonly predecessor. In unstructured code, to ensure allcontrol dependences are satis�ed, the recursion mustcease if a node has other predecessors that have notyet been generated. When there are multiple goto'sthis situation may arise.Now returning to Example 2, and applying codegeneration results in the code below.DO I = 1, NEV1[I] = p1S1 IF (EV1[I] .EQ. true) GOTO 6S26 S6ENDDODO I = 1, NIF (EV1[I] .EQ. false) GOTO 5IF (EV1 .EQ true) THENS4 IF (p4) GOTO P25 S5P2 CONTINUEENDDONotice that when the second partition is generatedthe goto is generated �rst. The guards for S4 andS5 have the same order number, i.e. 1, but becauseS1 was a goto, the jump to S5 is generated �rst.Then S4's guard, S4, and S5 are generated. Here andin Example 4 there are jumps into structured con-structs. Although these jumps are non-standard For-tran, many compilers accept them, and regardless can

be implemented with goto's.Finally, consider Example 4 with a distribution par-tition (S1, S2) and (S3, S4, S5, S6).Example 4DO I = 1, NS1 IF (p1) GOTO 5S2 IF (p2) THENS3S4ELSE5 S5S6ENDIFENDDOGcdS1S2S3 S4 S5 S6...f ttt t f fDistribution restructuring, label renaming, and codegeneration performed on the above results in the fol-lowing code.DO I = 1, NEV2[I] = >S1 EV1[I] = p1IF (EV1[I] .EQ. true) GOTO P1S2 EV2[I] = p2P1 CONTINUEENDDODO I = 1, NIF (EV1[I] .EQ. true) GOTO 5IF (EV2[I] .EQ. true) THENS3S4ELSE IF (EV2[I] .EQ. false) THEN5 S5S6ENDIFENDDO5 Related WorkCallahan and Kalem present two methods for gener-ating loop distributions in the presence of control
ow[CK87]. The �rst, which works for structured or un-structured control
ow, replicates the control
ow ofthe original loop in each of the new loops by using Gf .Branch variables are inserted to record decisions madein one loop and used in other loops. An additionalpass then trims the new loops of any empty control
ow. Dietz uses a very similar approach [Die88]. Ithas some of the same drawbacks of if-conversion.Callahan and Kalem's second method, which worksonly for structured control
ow, uses Gf , Gcd, andboolean execution variables. Their execution vari-ables indicate if a particular node in Gf is reachedand are created for edges in Gcd that cross betweenpartitions. Their execution variables are assigned true

at the successor indicating the successor will execute,rather than assigning the decision made at the prede-cessor. Also, one execution variables may be neededfor every successor in the descendent partition. Be-cause their code generation algorithm is based on Gf ,rather than Gcd, the proof of how an execution vari-able is used is much more di�cult and is not given.Towle [Tow76] and Baxter and Bauer [BB89] use sim-ilar approaches for inserting conditional arrays.Ferrante, Mace, and Simons present related algo-rithms whose goals are to avoid replication and branchvariables when possible [FM85, FMS88]. Their codegeneration algorithms convert parallel programs intosequential ones, and like ours, are based on Gcd. Theydiscuss three transformations that restructure control
ow: loop fusion, dead code elimination, and branchdeletion.Other research concerned with the de�nition anduse of the program dependence graph does not ad-dress distribution [FOW87, FM85, FMS88]. The pa-pers describing the ptran project [CFS90, ABC+87],which also performs code generation based on Gcd, donot address distribution. Work in memory manage-ment and name space adjustment [KKP+81, Por89]uses distribution, but only when no control depen-dences are present.The Stardent compiler [All90] distributes loops withstructured control
ow by keeping groups of state-ments with the same control
ow constraints together.For example, all the statements in the true branch ofa block if must stay together, so only the outer levelof if nests can be considered. This limits e�ectivenessof distribution because partitions are arti�cially madelarger, possibly by grouping parallel statements withsequential ones.6 Conclusions and Future WorkWe have presented a very general and optimal al-gorithm for loop distribution when control
ow ispresent. The algorithm can be used to enhance thee�ectiveness of vectorizers, parallelizers and program-ming environments, alike. The generality of our sys-tem will allow future research to focus on discoveringpartitioning algorithms that are e�ective in decidingif and when a distribution can be pro�tably used.This work was motivated by the desire to han-dle loops with control
ow in the ParaScopeEditor[BKK+89], which supports a variety of transfor-mations, including loop distribution. An implementa-tion of this work is in progress.7 AcknowledgmentsWe would like to thank the reviewers for their valu-able suggestions and comments, all of which were in-

corporated. We are also grateful to Marina Kalem andChau-Wen Tseng for their signi�cant contributions tothis work.References[ABC+87] F. Allen, M. Burke, P. Charles, R. Cytron, andJ. Ferrante. An overview of the PTRAN analysissystem for multiprocessing. In Proceedings of theFirst International Conference on Supercomputing.Springer-Verlag, Athens, Greece, June 1987.[ABC+88] F. Allen, M. Burke, P. Charles, J. Ferrante,W. Hsieh, and V. Sarkar. A framework for detect-ing useful parallelism. In Proceedings of the SecondInternational Conference on Supercomputing, St.Malo, France, July 1988.[AC72] F. Allen and J. Cocke. A catalogue of optimizingtransformations. In J. Rustin, editor, Design andOptimization of Compilers. Prentice-Hall, 1972.[AK84] J. R. Allen and K. Kennedy. PFC: A program toconvert Fortran to parallel form. In K. Hwang,editor, Supercomputers: Design and Applications,pages 186{203. IEEE Computer Society Press, Sil-ver Spring, MD, 1984.[AK87] J. R. Allen and K. Kennedy. Automatic translationof Fortran programs to vector form. ACM Trans-actions on Programming Languages and Systems,9(4):491{542, October 1987.[AKPW83] J. R. Allen, K. Kennedy, C. Porter�eld, and J. War-ren. Conversion of control dependence to data de-pendence. In Conference Record of the Tenth An-nual ACM Symposium on the Principles of Pro-gramming Languages, Austin, TX, January 1983.[All83] J. R. Allen. Dependence Analysis for SubscriptedVariables and Its Application to Program Transfor-mations. PhD thesis, Dept. of Computer Science,Rice University, April 1983.[All90] J. R. Allen. Private communication,February 1990.[Ban88] U. Banerjee. Dependence Analysis for Supercom-puting. Kluwer Academic Publishers, Boston, MA,1988.[BB89] W. Baxter and H. R. Bauer, III. The programdependence graph and vectorization. In Proceed-ings of the Sixteenth Annual ACM Symposium onthe Principles of Programming Languages, Austin,TX, January 1989.[Ber66] A. J. Bernstein. Analysis of programs for paral-lel processing. IEEE Transactions on ElectronicComputers, 15(5):757{763, October 1966.[BJ66] C. B�ohm and G. Jacopini. Flow diagrams, turingmachines, and languages with only two formationrules. Communications of the ACM, 19(5), May1966.[BKK+89] V. Balasundaram, K. Kennedy, U. Kremer, K. S.McKinley, and J. Subhlok. The ParaScope Editor:An interactive parallel programming tool. In Pro-ceedings of Supercomputing '89, Reno, NV, Novem-ber 1989.[CFS90] R. Cytron, J. Ferrante, and V. Sarkar. Experiencesusing control dependence in PTRAN. In D. Gelern-ter, A. Nicolau, and D. Padua, editors, Languagesand Compilers for Parallel Computing. The MITPress, 1990.[CK87] D. Callahan and M. Kalem. Control dependences.Supercomputer Software Newsletter 15, Dept. ofComputer Science, Rice University, October 1987.[Die88] H. Dietz. Finding large-grain parallelism in loopswith serial control dependences. Proceedings of the1988 International Conference on Parallel Process-ing, August 1988.

[FM85] J. Ferrante and M. Mace. On linearizing parallelcode. In Conference Record of the Twelfth An-nual ACM Symposium on the Principles of Pro-gramming Languages, New Orleans, LA, January1985.[FMS88] J. Ferrante, M. Mace, and B. Simons. Generatingsequential code from parallel code. In Proceedingsof the Second International Conference on Super-computing, St. Malo, France, July 1988.[FOW87] J. Ferrante, K. Ottenstein, and J. Warren. Theprogram dependence graph and its use in optimiza-tion. ACM Transactions on Programming Lan-guages and Systems, 9(3):319{349, July 1987.[KKLW84] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe.The structure of an advanced retargetable vector-izer. In Supercomputers: Design and Applications,pages 163{178. IEEE Computer Society Press, Sil-ver Spring, MD, 1984.[KKP+81] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J.Wolfe. Dependence graphs and compiler optimiza-tions. In Conference Record of the Eighth AnnualACM Symposium on the Principles of Program-ming Languages, Williamsburg, VA, January 1981.[Mur71] Y. Muraoka. Parallelism Exposure and Exploita-tion in Programs. PhD thesis, Dept. of Com-puter Science, University of Illinois at Urbana-Champaign, February 1971. Report No. 71-424.[Por89] A. Porter�eld. Software Methods for Improvementof Cache Performance. PhD thesis, Dept. of Com-puter Science, Rice University, May 1989.[SK86] R. G. Scarborough and H. G. Kolsky. A vectorizingFortran compiler. IBM Journal of Research andDevelopment, 30(2):163{171, March 1986.[Tow76] R. A. Towle. Control and Data Dependence forProgram Transformation. PhD thesis, Dept. ofComputer Science, University of Illinois at Urbana-Champaign, March 1976.[Wol82] M. J. Wolfe. Optimizing Supercompilers for Super-computers. PhD thesis, Dept. of Computer Science,University of Illinois at Urbana-Champaign, Octo-ber 1982.

