
Maximizing Loop Parallelism andImproving Data Localityvia Loop Fusion and Distribution?Ken Kennedy1 and Kathryn S. McKinley21 Rice University, Houston TX 77251-18922 University of Massachusetts, Amherst MA 01003-4610Abstract. Loop fusion is a program transformation that merges multi-ple loops into one. It is e�ective for reducing the synchronization over-head of parallel loops and for improving data locality. This paper presentsthree results for fusion: (1) a new algorithm for fusing a collection of par-allel and sequential loops, minimizing parallel loop synchronization whilemaximizing parallelism; (2) a proof that performing fusion to maximizedata locality is NP-hard; and (3) two polynomial-time algorithms for im-proving data locality. These techniques also apply to loop distribution,which is shown to be essentially equivalent to loop fusion. Our approachis general enough to support other fusion heuristics. Preliminary ex-perimental results validate our approach for improving performance byexploiting data locality and increasing the granularity of parallelism.1 IntroductionLoop fusion transforms multiple distinct loops into a single loop. It increases thegranule size of parallel loops and exposes opportunities to reuse variables fromlocal storage. Its dual, loop distribution, separates independent statements in aloop nest into multiple loops with the same headers.PARALLEL DO I = 1, NA(I) = 0.0 PARALLEL DO I = 1, NEND =) A(I) = 0.0fusion B(I) = A(I)PARALLEL DO I = 1, N ENDB(I) = A(I) (=END distributionIn the example above, the fused version on the right experiences half the loopoverhead and synchronization cost as the original version on the left. If all A(1:N)references do not �t in cache at once, the fused version at least provides reuse incache. Because the accesses to A(I) now occur on the same loop iteration ratherthan N iterations apart, they could also be reused in a register. For sequential ex-ecution of this example, performance improvements of up to 34% were measuredon an RS/6000 Model 540.? This research was supported by the Center for Research on Parallel Computation, a NSF Scienceand Technology Center. Use of the Sequent Symmetry S81 was provided under NSF CooperativeAgreement No. CDA-8619393.

This paper examines two fusion problems. The �rst is to fuse a collectionof parallel and sequential loops, minimizing synchronization between parallelloops without reducing the amount of parallelism. We refer to this criterionas maximizing parallelism. The fusion problem arises when generating e�cientcode for parallel architectures. We present an optimal algorithm for this problembased on a greedy algorithm.The second problem is to maximize data locality by minimizing the numberof data dependences between fused nests. We show this problem is NP-hardand present two heuristics for solving it. The �rst is also based on the greedyalgorithm and is linear in time and space. It produces solutions of unknownprecision when compared to an optimal solution. The second solution is basedon the maximum-
ow/minimum-cut algorithm and is therefore not as quick, butallows us to prove a tight worse-case bound on the precision of its solution.All of the algorithms are
exible in that they will completely reorder loopnests to improve fusion. The two algorithms for improving reuse may also beused independently or integrated into the parallelization algorithm. Preliminaryexperimental results demonstrate the e�cacy of our approach.We begin with a brief technical background. We then review the technicalcriteria for safe fusion, for fusions which do not reduce parallelism, and for mod-eling fusion as a graph problem. The same review of loop distribution follows aswell as the map of a distribution problem to one of fusion. Section 4 formally de-scribes the graph framework for fusion we use in the remaining sections. Section 5presents an optimal greedy algorithm which fuses to maximize parallelism. Thenext three sections explore fusion to improve reuse of array and scalar references,adding an explicit representation of reuse, proving it NP-hard, and presentingthe heuristics. Our experimental results, a careful comparison to related work,and conclusions complete the paper.2 Technical Background2.1 DependenceWe assume the reader is familiar with data dependence [5] and the terms true,anti, output and input dependence, as well as the distinction between loop-independent and loop-carried dependences [4].Parallel loops have no loop-carrieddependences and sequential loops have at least one.Intuitively, a control dependence, S1�cS2, indicates that the execution of S1directly determines whether S2 will be executed [10, 12]. In addition to usingcontrol dependence to describe program dependence, we will use the controldependence and postdominance relations for an arbitrary graph G. These de�-nitions are taken from the literature [12].De�nition 1 y postdominates x in G if every path from x to the exit nodecontains y.De�nition 2 Given two statements x, y 2 G, y is control dependent on xi� (1) 9 a non-null path p, x! y, such that y postdominates every node betweenx and y on p, and (2) y does not postdominate x.

3 TransformationsLoop fusion and distribution are loop-reordering transformations; they changethe order in which loop iterations are executed. A safe reordering transformationpreserves any true, anti and output dependences in the original program. (Inputdependences need not be preserved for correctness.)3.1 Loop FusionSafety. Consider safe loop fusion between two loops or loop nests with com-patible loop headers. Compatible loop headers have exactly the same numberof iterations, but not necessarily the same loop index expressions. It is possibleto make loop headers with di�ering numbers of iterations compatible by usingconditionals, but the additional complexity may make reuse harder to exploit inregisters.Between two candidate nests the following dependences may occur: (1) nodependence, (2) a loop-independent dependence, and (3) a dependence carriedby an outer loop which encloses the candidates. Clearly, fusion is always safe forcase (1). Fusion is safe in case (3) as well; any loop-carried dependence betweentwo loops must be on an outer loop which encloses them and fusing them doesnot change the carrier. The dependence will therefore always be preserved.In the case of a loop-independent dependence, fusion is safe if the sense ofthe dependence is preserved, i.e., if the dependence direction is not reversed. Asimple test for this case performs dependence testing on the loop bodies as if theywere in a single loop. After fusion, a loop-independent dependence between theoriginal nests can (a) remain loop-independent, (b) become forward loop-carriedor (c) become backward loop-carried. Since the direction of the dependence ispreserved in the �rst two cases, fusion is legal. Fusion is illegal when a loop-independent dependence becomes a backward carried dependence after fusion.These dependences are called fusion-preventing dependences [1, 25].Since a loop is parallel if it contains no loop-carried dependences and is se-quential otherwise, fusion in case (b) is safe but prevents parallelization of theresultant loop. If either one or both of the loops were parallel, fusion wouldreduce loop parallelism. Therefore, maximizing loop parallelism requires thesedependences to be classi�ed as fusion-preventing.Model.We represent the fusion problem with a graph in which each candidateloop nest is represented by a node and each dependence from a statement inone loop to a statement in another is represented as a directed edge between thenodes. If there are fusion-preventing dependences or incompatible loop headersbetween two nodes, the edge between them is marked fusion-preventing. If otherprogram fragments are interspersed between the loops and these statements arenot connected by dependences to any loop, these statements can be ignoredduring fusion. If there are dependences, the formulation captures the programfragments by placing them in a node(s) and using fusion-preventing edges. Forexample, a group of statements between two loops is represented as a node inthe fusion graph, and the dependence edges between the statements and a loop

are marked fusion-preventing. For loops on which the statements do not depend,fusion-preventing edges are added and if possible are oriented such that the nodecontaining the statements may move either before or after pairs of fusable loops.Given the de�nition of dependence on the original loop ordering, the fusiongraph is a dag. A safe fusion partitions nodes in the graph such that:1. a partition contains a set of loops that can be legally fused, and2. the ordering of nodes in the partitioned graph respects all the dependences.Achieving maximum granularity of loop parallelism is thus equivalent to parti-tioning this graph into the fewest number of partitions.3.2 Loop DistributionLoop distribution is the dual of loop fusion. Rather than merge loops together, itseparates independent statements inside a single loop (or loop nest) into multipleloops (or loop nests) with identical headers. Loop distribution exposes partialparallelism by separating statements which may be parallelized from those thatmust be executed sequentially and is a cornerstone of vectorization and paral-lelization. Loop distribution preserves dependences if all statements involved ina recurrence (i.e., dependence cycle) in the original loop are placed in the sameloop [18]. Loops containing recurrences must be executed sequentially.Loop distribution �rst places each set of statements involved in a recurrencein a separate sequential node. Statements without recurrences are parallel andare placed in nodes by themselves. Dependences are edges between nodes andsome may be fusion-preventing. Fusion-preventing edges connect pairs of nodesthat must be sequential if fused. Since the statements execute correctly, butsequentially in the same loop, the edges are not required for correctness. Thisgraph is a dag and therefore can always be ordered using topological sort. Theconstruction partitions the graph to its �nest possible granularity. Maximizingthe granularity of loop parallelism however requires a partition of the graphwith the fewest number of parallel loops, an application of fusion to the �nestpartition graph. Distribution may therefore be viewed as fusion with a precedingstep that divides the original nest into the �nest partitions. Consequently, weonly discuss fusion since our results apply to distribution as well.4 The Partition ProblemThe following description formally maps fusion to a graph partitioning problem.Partitioning problem: Given a dag wherenodes = loops and are marked parallel or sequentialedges = dependence edges, some of which are fusion-preventingRules: 1. Separation constraint: cannot fuse sequential and parallel nodes.2. Fusion-preventing constraint: two nodes connected by a fusion-preventing edge cannot fuse.3. Ordering constraint: the relative ordering of two nodes connected byan edge cannot change.Goal: group parallel loops together such that parallelism is maximized whileminimizing the number of partitions.

.. ...S1 P1P2S1 P1P2 ...S1P1P2(a) original (b) greedy (c) bestFig. 1. Partition Example, s = sequential, p = parallelThe separation constraint contributes to maximizing parallelism by requiringthat a particular partition contains only sequential or parallel loops. The orderingconstraint is required for correctness. As discussed in Section 3, some fusion-preventing edges are necessary for correctness and others are needed to achievean optimal solution.Allen, Callahan and Kennedy refer to maximal parallelism with minimumbarrier synchronization [3, 6]. By omitting the separation constraint, they arriveat an optimal greedy algorithm. Their work also tries to partition the graph intominimal sets, but uses a model of parallelism with both loop-level and fork-jointask parallelism. These criteria are not equivalent to minimizing synchronizationoverhead when considering loop-level parallelism. Consider Fig. 1 where the edge(S1; P2) is an ordering constraint, S1 is a sequential node, and P1 and P2 areparallel nodes.The greedy algorithm places as many nodes as possible into a single partitionwithout sequentializing a parallel node, but not all nodes in a partition are fused.Only nodes of the same type in the same partition are fused. For the programin Fig. 1(a), the greedy algorithm forms two partitions, fP1; S1g and fP2g, asillustrated in Fig. 1(b). S1 and P1 are not fused, but by using a parallel taskconstruct, they may execute concurrently with each other. The iterations of theparallel loop P1 also execute concurrently. Once they both complete, the parallelloop P2 executes concurrently.Because it ignores the node type, the greedy algorithm is provably optimal,minimizing the total number of partitions and maximizing task parallelism [3, 6].The greedy algorithm however fails for the partition problem de�ned above, i.e.restricting it to loop-level parallelism, no task parallelism. For example, theparallel loop overhead and synchronization in the partitioning fS1g fP1; P2gin Fig. 1(c), is half that of the partitioning in 1(b), although the amount ofparallelism is equivalent. The greedy algorithm cannot achieve maximum loop-level parallelism because it unable to determine which node to select �rst. Forexample, if P1 is selected �rst in Fig. 1(a), then three partitions result.Our model considers the overhead of parallel loop startup and synchroniza-tion. The parallelization algorithm presented below maximizes the granularityand amount of loop parallelism by minimizing the number of parallel loops with-out sacri�cing any parallelism. If task and loop parallelism are both advanta-geous, �rst using our loop parallelism algorithm and then Allen, Callahan andKennedy may glean the bene�ts of both.

5 An Unweighted Fusion AlgorithmThe following algorithm for maximizing the granularity of parallel loops is basedon the observation that the problem may be divided based on node type becauseparallel and sequential nodes cannot be placed into the same partition. It consistsof the following steps.� Create a parallel component graph Gp from the original fusion graph Go by placingall parallel nodes and edges between parallel nodes in Go into Gp.� Add fusion-preventing edges to Gp that preserve constraints in Go not presentin Gp.� Partition Gp using the greedy algorithm into Gp0 and perform the partition spec-i�ed by Gp0 on Go, collapsing the original edges and forming Go0 .� Create a sequential component graph Gs similarly from Go0 , but using sequentialnodes and edges and then adding fusion-preventing edges to Gs that preserveconstraints in Go0 not present in Gs.� Partition Gs into Gs0 with the greedy algorithm. Perform the partition speci�edby Gs0 on Go0 , forming the solution dag.This algorithm takes advantage of the constraint that sequential and parallelnodes cannot be fused by �rst separating the problem into a a parallel graphGp, partitioning it, tanslating it onto Go, and then creating the sequential graphGs, partitioning it, and translating it. As we show in Section 5.2, partitioningthe parallel graph �rst is required to minimize the number of parallel loops.However, because the process is the same for both of the component graphs Gpand Gs, we discuss them below simultaneously.A component graph Gc represents an independent fusion problem with nodesof type c, in this case parallel or sequential. It consists of nodes of type c and theedges connecting them from Go. These edges are not su�cient however becauseGo may represent relationships that prevent nodes of the same type from beingin the same partition, but that do not have an edge between them.Example. Consider P4 and P7 in Go in Fig. 2(a) where fusion-preventing de-pendences are marked with a slash. Although the edge (P4; P7) is not fusion-preventing, P4 and P7 may not legally fuse together without including S6. Placinga parallel node and sequential node in the same partition however forces the par-tition to be executed sequentially, violating the maximal parallelism constraint.We prevent it by adding fusion-preventing dependences when we create Gp.Transitive Fusion-Preventing Edges. The simplest way to �nd and preserveall the fusion-preventing relationships in Go for Gc is to compute a modi�ed tran-sitive closure Gtr on Go before pulling out Gc. In general, a fusion-preventingedge is needed between any two nodes of type c when a path between themcontains a node not of type c. For example, if there is a path between any twoparallel nodes that contains at least one sequential node, then they cannot beplaced in the same partition and a fusion-preventing edge is added between themin Gp. Adding all of these edges unfortunately introduces redundant constraints.

Go Gp Gp0 Go0..S1 S2 P3P4 S5S6P7 P8P4 P3P7 P8 P3P4P7P8...S1 S2P3P4 S5S6P7P8(a) original (b) component (c) partitioned (d) mergedGs Gs0 Go0..S1S6 S2S5 S1S2S6S5S1S2P3P4 S5S6P7P8(e) component (f) partitioned (g) mergedFig. 2. Partitioning for ParallelismExample. Assume for the moment that S1 in Fig. 2(a) is parallel and call it P1.Applying a full transitive closure algorithm for parallel nodes to this modi�edversion of Go would results in the following fusion-preventing edges: (P1; P7),(P1; P8), (P4; P7), (P4; P8). However, the edges (P1; P7) and (P1; P8) are redun-dant because of the original ordering edge (P1; P4) and the two other fusion-preventing edges (P4; P7) and (P4; P8) which together prevent P1 from beingfused with P7 or P8.To simplify the discussion here, we present the algorithm NecessaryEdges inSection 5.1. It introduces the necessary and su�cient fusion-preventing edges tocomplete a component graph.Partitioning a Component Graph. Given Gc is at most the transitive clo-sure of a dag, it must also be a dag and can be partitioned optimally using thegreedy algorithm into sets of loops that can be fused (see Callahan's disserta-tion for the proof [6]). The greedy algorithm places the roots of all the connectedcomponents into a partition and then recursively tries to add the successors inbreadth-�rst order. A node can be added to the partition of a predecessor if itis not connected to any node in the partition by a fusion preventing edge. If anode cannot be added to an existing partition, a new partition is created for it.We call the partitioned component graph Gc0 . Each node Nc0 2 Gc0 contains oneor more of Nc.Translating a partition onto Go. To translate the partition Nc0 onto Go andform Go0 , we simply combine the nodes in Go corresponding to Gc0 in the sameway. The edges in Go are inherited in the obvious way; if (n;m) 2 Go then acorresponding edge between the possibly singleton partition nodes containing n

NecessaryEdges (Go, Gc)Input: Go the original graphGc the component graphOutput: Gc component graph with necessary transitive fusion-preventing edgesAlgorithm:forall n in Go in preorder(1) if type(n) 6= cPaths(n) = [(m;n)2Go Paths(m)else(2) Paths(n) = n(3) forall (m;n) 2 Go s.t. type(m) 6= cforall ri 2Paths(m)addFusionPreventingEdge (Gc; ri; n)endforallendforallendifendforallAlg. 1. Adding Su�cient Transitive Fusion-Preventing Edges to Gcand m is in Go0 . Edges that become redundant may be removed. Because Go isa dag and Gc0 contains only safe fusions, Go0 is also a dag.Example. For Go in Fig. 2(a), the algorithm begins by extracting Gp and addstwo fusion-preventing edges (P4; P7) and (P4; P8) as depicted in Fig. 2(b). Thegreedy partitioning fuses P3 and P4, and P6 and P7 in Fig. 2(c). This partitionis translated onto Go in Fig. 2(d). Fig. 2(e) through (g) show the formation,partitioning and translation of Gs onto Go0 .5.1 Finding the Necessary Transitive Fusion-Preventing EdgesThis section describes Alg. 1 NecessaryEdges which adds fusion-preventing edgesto a component graph Gc. Without loss of generality, consider Gp. Intuitively,a fusion-preventing edge needs only be added to Gp when there exists a pathwith length greater than one between two parallel nodes and all the nodes onthe path are sequential. These edges are su�cient because a path containing allparallel nodes just inherits its relationships from Go and therefore need not beaugmented. This characterization encompasses all cases since a path betweentwo parallel nodes that contains both sequential and parallel nodes is just asequence of paths between parallel nodes that either contain all sequential nodesor all parallel nodes. De�nition 3 captures this notion formally.De�nition 3 Two nodes nodei and nodej 2 Gc of type c require a transitive fusion-preventing edge between them in Gc i�:8 path j nodei ! node+h ! nodej 2 Go where 8 h; type(nodeh) 6= c:

Based on this de�nition, Alg. 1NecessaryEdges computes transitive fusion-preventingedges to be inserted into a Gc. NecessaryEdges formulates this problem similarlyto a data-
ow problem, except that solutions along an edge di�er depending onnode types.The data structure Paths is used to recognize paths between nodes of thesame type as Gc which only contain nodes h with type(h) 6= c. It stores sets ofinitial nodes for these paths and is initialized to the empty set. The traversal isin breadth-�rst order and begins by creating singleton sets, Paths(n) = n, wheren is a root of Go and is of type c. In step (1), NecessaryEdges visits node n withtype(n) 6= c and unions all the paths of n's predecessors. Thus, Paths(n) wheretype(n) 6= n contains the set of initial nodes of type c for paths that otherwiseconsist of nodes h where type(h) 6= c. In step (3), the visit of n when type(n) = cinserts a fusion-preventing edge from each of the initial nodes in Paths(m) where(m;n) 2 Go, and type(m) 6= c. At step (2), it sets Paths(n) = n to begin anyset of paths originating at n.5.2 DiscussionCorrectness and Optimality. The correctness and optimality of this algo-rithm are shown as follows. With the above construction, parallel nodes and se-quential nodes are never placed in the same partition, satisfying the separationconstraint. Because Gp is a dag, minimizing the number of parallel partitionsis achieved using the greedy algorithm (the proof of minimality from Callahan'sdissertation is directly applicable [6].)We now show that the construction of Gp does not introduce any constraintswhich would cause the component solution Gp0 to be non-optimal.Proof. All the edges which are not fusion-preventing in Gp are in Go by construc-tion. We therefore need only prove there are no unnecessary fusion-preventingdependences between nodes that can be fused. The proof is by contradiction. As-sume there is a fusion-preventing edge in Gp which prevents two parallel loopsfrom being fused that can be fused. If the fusion-preventing edge was in Go, wehave a contradiction. If the fusion-preventing edge was not in Go and the nodescan be fused then either the nodes were not connected by a path in Go or thereis no path between them in Go which contains a sequential node. In either case,NecessaryEdges would not insert a fusion-preventing dependence. 2Although the same proof holds for Gs, the minimality of Gs0 is for the newproblem posed in Go0 . The total solution therefore may not be minimal becausepartitioning Gp constrains fusions in Gs and may increase the number of se-quential partitions. As an example, consider exchanging parallel and sequentialnodes in Fig. 2(a) and then applying the algorithm. Similarly, partitioning Gsand Gp simultaneously may result in inconsistent fusions.Complexity.This algorithm takes O(N �E) time and space, making it practicalfor use in a compiler. In the worst case, NecessaryEdges computes the equivalentof a transitive closure to insert fusion-preventing edges. The greedy algorithm islinear in time and space.

L1 DO I = 1, NA(I) = D(I)ENDDOL2 DO I = 1, NB(I) = C(I) + D(I)ENDDOL3 DO I = 1, N: : : = A(I-1) + C(I) + B(I)ENDDOL1 L2L3L1 L2L3 12�(a) without weights or (b) with weights &input dependences undirectedinput dependencesFig. 3. Modeling Memory ReuseThis approach may be applied to other graph partitioning problems as well.The separation of concerns lends itself to problems that need to sort or par-tition items of di�erent types and priority while maintaining transitive rela-tionships. This feature has been instrumental in designing a multilevel fusionalgorithm [20]. The overall structure of the algorithm also enables di�erent par-titioning and sorting algorithms to be used on the component graphs. Sections 7and 8 present partitioning algorithms based on reuse that can be used indepen-dently or in place of the greedy algorithm.6 Loop Fusion for ReuseFusion can improve reuse by moving references closer together in time, makingthem more likely to still be in cache or registers. For example, reuse provided byfusion can be made explicit by using scalar replacement to place array referencesin a register [7]. However, fusion may also increase working set size, negativelyimpacting cache and register performance.The e�ects of fusion on memory access are not captured in the represen-tation used in the loop parallelization algorithm because only true and inputdependences indicate opportunities for reuse.3 The example in Fig. 3 and itsrepresentation as an unweighted graph in Fig. 3(a) illustrate the problem. In theoriginal formulation for maximizing parallelism, there is no representation for thereuse of D(I) between loops L1 and L2, nor is the reuse of both C(I) and B(I),between loops L2 and L3 given any importance. By adding input dependences,edge weights, and factoring in dependence type, we include these considerations.Input dependence, like true data dependence, captures reuse. It is not required topreserve correctness and therefore should not restrict statement order. These edgesare undirected and result in a graph that is not a dag (see Fig. 3(b)).Edge weights represent the amount of reuse between two loops. For simplicity, trueand input dependence edges have weight of one, output and anti dependences haveweight zero, and fusion-preventing dependences have weight �� 1. If there exists3 Depending on the cache hardware and coherence mechanism, the time to write to cache may notchange appreciably whether the corresponding line is in cache or not, the case for output or antidependences.

more than one edge between two nodes, the edges are collapsed and the weights areadded. The cumulative edge is directed if any of the collapsed edges are, otherwiseif all edges are undirected, it is undirected. Any measure of reuse which results ina single numeric value could replace this measure.We now show that the problem of �nding a fusion that maximizes reuse isNP-hard. Consider the Multiway Cut problem proven NP-hard for k � 3 byDahlhaus et al.[11]. Given a graph G = (V;E), a set S = fs1; s2; : : : ; skg of kspeci�ed vertices called terminals4 and undirected edges with weight w(e) = 1,�nd a minimum weight set of edges E0 � E for each edge e 2 E such thatthe removal of E0 from E disconnects each terminal from all other terminals.To prove fusion for reuse NP-hard, we transform Multiway Cut to the Fusionproblem. In so doing we establish that the subproblem with no input dependencesis NP-hard.Theorem 1: Fusion for reuse is NP-hard.Proof. To establish the result we present a polynomial-time algorithm for reduc-ing Multiway Cut to Fusion.1. Select an arbitrary terminal s 2 V as a start node and number the nodes of Vas follows. Initially, let the set ready contain all the successors of the start node.Number the start node 1. Select a vertex from ready, always picking a non-terminalvertex if one exists (i.e., pick a terminal if only terminals are in the set). Give theselected vertex the next number and add to ready all its successors that are neithernumbered nor in ready.2. Construct a Fusion dag G0 in G by making each vertex in V be a loop node andorienting each edge from E such that the source of the edge has lower number thanthe sink in E0. None of these edges are fusion-preventing.3. Let fs1; s2; : : : ; skg be the terminals in the Multiway Cut problem, listed in orderof their numbering. Add the following fusion-preventing edges oriented from lowerto higher number to the dag:(s1; s2); : : : (s1; sk); (s2; s3) : : : ; (s2; sk); : : : (sj; sj+1); : : : ; (sj; sk); : : : ; (sk�1; sk)The constructed Fusion problem has a minimal solution with weight m i� thecorresponding Multiway Cut problem has the same solution.Only If. Consider a weight m solution to the Fusion problem G0 (m non-fusion-preventing dependence edges are cut). This solution corresponds to the removalof m undirected edges from the Multiway Cut problem G and is a weight msolution that disconnects terminals. Suppose the solution is not correct, i.e.,let v1; v2; : : : ; vp be a path in G from terminal s1 = v1 and terminal s2 = vpsuch that no edge in the path is mapped to an edge broken in the solution to theFusion problem. But an uncut edge in the Fusion solution, regardless of its orien-tation, means that the source and sink are in the same fusion group in G0. Thusall of v1; v2; : : : ; and vp may be fused, but this is precluded by the existenceof a fusion-preventing edge between v1 and vp. This contradiction establishesthat every undirected path between terminals in G must be cut as a part of theFusion solution in G0.4 All other vertices are called non-terminals.

If. We show that the weight m solution to the Multiway Cut problem G corre-sponds to a correct weight m solution to the Fusion problem G0. Suppose thereis a path between a terminal and a non-terminal s1; v1 2 G after the cut but s1and v2 cannot be fused in G0 because there exists path from s1 to v2 in G0 thatpasses through terminal s2. In other words, the Multiway Cut solution places s1and s2 in di�erent partitions after the cut and s1 and v1 in the same partition,but since there is directed a path in G0 from s1 to s2 to v1, v1 cannot fuse with s1.However, this situation can never arise because of the numbering scheme.Under the numbering scheme, if there is a path of non-terminals vj connect-ing two terminals s1 and s2, where s1 has the lower number, then all vj have asmaller number than s2 (because the numbering algorithm always numbers anavailable non-terminal vertex �rst). There can thus be no directed path from s2to any vj . In particular, there can be no directed path from s1 to vj that passesthrough s2, because each vj has a lower number than s2. Thus any solution ofthe Multiway Cut corresponds to a solution to the Fusion problem.Minimality. Because solutions have the same weight and are correct in both, aminimal solution in one corresponds to a minimal solution in the other. 2The Fusion problem with input dependences must be NP-hard as well, becausethe subproblem without undirected input dependences is NP-hard; any algorithmthat optimally solves the problem with input dependences must be able to solvethe case without input dependences.7 Improving Reuse with Loop Fusion:The Simple AlgorithmThe simple algorithm is a straightforward modi�cation of the greedy algorithmthat moves loops to di�erent partitions to improve reuse when legal. Like thegreedy algorithm it is linear. Given a greedy solution that speci�es loops inpartitions, we increase the amount of reuse based on the following observation.In the greedy partition graph, if there exists two partitions g1 and g2 witha directed edge (g1; g2), then no node in g2 may be legally placed in g1 orthe greedy algorithm would have put it there. However, it may be safe andpro�table to move nodes in g1 down into g2.We determine if it is safe and pro�table to move n 2 gl down into anotherpartition gh as follows.Safety. A node n 2 gl may move to gh i� it has no successors in gl and there is nofusion-preventing edge (n; r) such that r 2 gh or r 2 gk where gk must precede gh.Pro�tability. Compute a sum of edges (m;n),m 2 gl, and a sum for each gh of edges(n; p), such that p 2 gh and n may be safely moved into gh. Pick the partition gwith the biggest sum. If g 6= gl move n down into g.

Simple (Gg)Input: Gg a greedy partition graphOutput: Gg0 a partitioning with improved reuseAlgorithm:forall partitions gl 2 Gg in reverse topological orderforall nodes n 2 gl in reverse topological orderconsider gh where (n; p) 2 Gg and p 2 ghif it is safe and pro�table to move n to ghmove n to ghreturn Gg0Alg. 2. Simple Algorithm for Improving ReuseAlg. 2 Simple applies these criteria to improve reuse. It begins by performinga bottom-up pass on the partition graph Gg formed by the greedy algorithm.For all nodes n within a partition, it performs a bottom-up pass testing if it issafe and pro�table to move n down into another partition gh. For Fig. 3, thisalgorithm produces a partition of fL1g, fL2; L3g correcting the initial greedypartition fL1; L2g, fL3g.Further adjusting the results of the greedy algorithm for reuse on sequentialloops, we only fuse loops in a given partition if they o�er reuse. Given no reuseand negligible sequential loop overhead, it is more important to keep registerpressure at a minimum than to decrease loop overhead. Since all the loops ina partition may be safely fused, we fuse only those connected by true or inputdependences to improve reuse. Assuming fork and join of parallel tasks is rela-tively expensive, we still fuse all nodes in parallel partitions.5 This decision maydi�er depending on the parallel architecture.8 Improving Reuse with Maximum-Flow/Minimum-Cut:The Weighted AlgorithmIn this section, we describe a more general and powerful algorithm which is amodi�cation of the maximum-
ow/minimum-cut algorithm that seeks to maxi-mize reuse via loop fusion.If there is only one fusion preventing dependence (k = 1), the graph canbe divided in two using the maximum-
ow/minimum-cut algorithm [13, 16].Maximum-
ow/minimum-cut is polynomial time and makes a single minimumcut that maximizes
ow in the two resultant graphs. The maximum-
ow algo-rithm works by introducing
ow at the source such that no capacity is exceededand the capacity of the
ow network to the sink is maximized. To divide thegraph in two parts, a cut is taken. The minimum cut consists of the edges thatare �lled to capacity and can be determined with a breadth-�rst search origi-nating at the source of
ow. If k = 2, the problem is polynomial time solvableby using two applications of the 2-way cut algorithm [26].5 Simple replaces the greedy algorithm on the component graphs in loop parallelization.

..� 2� + 1 ���� � �� � �...........U1U2 U3 U4U5 U6 U7U8� 2� + 1 ��+�� ���...........U2 U3 U1U4U5 U6 U7U8..� 2�+ 1��� � ��........... U1U2 U3 U4U5 U6 U7U8(a) original (b) collapsed (c) cut & un-collapsedFig. 4. Using Minimum-Cut for Fusion (� > �)Dahlhaus et al. develop an isolation heuristic [11] and combine it with Gold-berg and Tarjan's maximum
ow algorithm [16] to design a polynomial algorithmthat produces a multicut that is at most (2k - 1)/k times the optimal. Goldbergand Tarjan's maximum
ow algorithm is to date the most e�cient with timecomplexity O(nmlog(n2=m)) [16]. The running time of Dahlhaus et al.'s algo-rithm is O(22kknmlog(n2=m)), which is polynomial for �xed k [11]. They leaveopen whether a more e�cient algorithm with a similar optimality guaranteeexists.In the Fortran programs in our studies, k, n, and m have always been verysmall. The following section is devoted to the design of an O(knmlog(n2=m))algorithm for reuse problem. The algorithm is based on Goldberg and Tarjan'smaximum-
ow algorithm; it is guaranteed to be within k times the optimal. Insome cases, it is optimal.8.1 Structuring the Maximum-Flow/Minimum-Cut ProblemFirst, we perform a topological sort on the fusion-preventing edges and select the�rst fusion-preventing edge (src, sink) to cut. In maximum-
ow/minimum-cut,src provides in�nite
ow and sink in�nite consumption. In the minimum-cutalgorithm, these additions force the fusion-preventing edge to be cut and insome cases, are su�cient to characterize the problem. For instance, in�nite
owinto L1 and out of L3 in Fig. 3(b) would cause (L1; L2) and (L1; L3) to be cut,therefore optimally fusing L2 and L3.Consider breaking the fusion preventing dependence (U4; U7) in Fig. 4(a).Providing
ow to U4 and consumption to U7 only cuts the fusion-preventingedge, but other edges must be cut as well to separate them. The insight is thatto use minimum cut, the nodes that must precede src are temporarily collapsedinto src and nodes that must follow sink are temporarily collapsed into sink, sothat they truly represent the source and the sink of
ow. However, collapsing allpredecessors of src and all successors of sink can impose unnecessary orderingconstraints on the resulting graph. We therefore use the control dependence

relation to determine the nodes to temporarily collapse. After each applicationof minimum-cut, the nodes are \un-collapsed".In the reuse graph Gr, we compute all control dependence ancestors of srcand collapse them into src and src inherits their edges (self edges are ignored).For sink, we compute control dependence on the reverse graph of Gr, RGr.The reverse graph simply reverses the direction of each edge in Gr. All controldependence ancestors of sink in RGr are collapsed into sink in Gr and theiredges inherited. The cut of this graph is applied to Gr the original, un-collapsedgraph. The cut always includes the fusion-preventing edge and breaks the originalgraph into two subgraphs.The algorithm collapses each subgraph with an uncut fusion-preventing edge,applies minimum-cut and un-collapsing as above. It repeats this process until allfusion-preventing edges are broken. For instance, one application of this processto Fig. 4(a) where � > � results �rst in the collapsed graph 4(b) and then in thecut graph 4(c). The next application cuts edges (U2; U5), (U1; U3) and (U1; U4).Optimality. Given a graph with a single fusion-preventing edge, this algorithmperforms optimally. For the general problem, given there will be at most k cutsand each cut is minimal, the total of the multicut will be at most k times greaterthan the optimal. This bound is a tight worst case, as illustrated by Fig. 4 wherethe total cost of the cuts made by our algorithm is 4� when � > �. However,the optimal cut is (U2; U5), (U3; U6) and (U4; U7) with cost 2�+ 1.One solution to this inaccuracy would be to collapse all the sources of fusion-preventing dependences that have control dependence ancestors in common andcut all the corresponding sinks at once. Instead of multicuts, this constructionwould always make a single cut of the middle edge in Fig. 4(a). However, if theedge (U3; U6) has a weight greater than 4� then the multicut is better and thisconstruction cannot �nd it. Di�erentiating between multicuts of degree 1, l andl + 1 makes these tradeo�s very di�cult.Complexity. This algorithm applies the O(nmlog(n2=m)) maximum-
ow algo-rithm k times splitting the graph at each application. For these types of graphs,computing control dependence is linear [10]. The complexity of our algorithm istherefore O(knmlog(n2=m)) time.9 ResultsAs our experimental vehicle we used the ParaScope Editor [21], an interactiveparallelization tool which provides source-to-source program transformations us-ing dependence analysis. We implemented the tests for correctness and the up-date of the source program and dependence information for fusion between twoadjacent loops. We also implemented the correctness tests and updates for dis-tribution to the �nest granularity. We selected only programs which containedcandidates for fusion or distribution to explore the impact on performance. Ineach program, performance improves.

9.1 Maximizing ParallelismWe performed the fusion algorithm for maximizing parallelism using ParaS-cope on 3 programs, Erlebacher, Seismic and Ocean. Both the fused and originalhand-coded versions were compiled with the standard Fortran compiler and thenexecuted in parallel on 19 processors of a Sequent Symmetry S81. The improve-ments due to fusion appear in Fig. 5.parallel execution time in secondsprogram without fusion with fusion % improvementErlebacher 6.67 6.20 7%Seismic 17.05 12.59 26%Ocean 116.6 79.3 32%Fig. 5. Improving Parallel Performance with FusionErlebacher is an ADI benchmark program with 835 non-comment lines writtenby Thomas Eidson of ICASE. It performs tridiagonal solves on all dimensionsof a three dimensional array (50�50�50). In the original version, many of theloops consisted of a single statement. Twenty-six loop nests bene�t from fusion,improving parallel performance by 7% as illustrated in Fig. 5. Multiple fusionswere performed which reduced the twenty-six nests to eight with fusion groupsof size 2, 3, 4 and 5 loops. In the fusion problems posed, three consisted of sevenloop nodes with two fusion-preventing dependences. In six of the eight, fusionimproved reuse as well increased granularity.Seismic is 1312 non-comment lines and performs 1-D seismic inversion for oilexploration. It was written by Michael Lewis at Rice University. In this program,there was one opportunity to fuse four loops into a single nest which improvedparallel performance by 26%. The original nests were connected by data depen-dence (i.e., contained reuse) and accounted for a signi�cant portion of the totalexecution time. These nests were fused across procedure boundaries using loopextraction to place the nests in the same procedure [17, 22]. Loop extraction pullsa loop out of the called routine and into the caller, actually increasing procedurecall overhead. The increased reuse and decreased parallel loop synchronizationresulting from fusion more than overcame the additional call overhead.Ocean is 3664 non-comment line program from the Perfect benchmark suite [9].Fusion improved parallel performance by 32 % on Ocean. Thirty-one nests bene�tfrom fusion across procedure boundaries [17, 22]. Some of the candidates wereexposed after constant propagation and dead code elimination. Loop extractionenabled fusion. (Again, extraction's only e�ect is to increase total execution timebecause of increased call overhead.) The fused nests consisted of between twoand four parallel loops from the original program and increased both reuse andgranularity. As Seismic and Ocean indicate, fusion is especially e�ective acrossprocedure boundaries.

secondsErlebacher original fused % improvementIBM RS6000 .813 .672 4.25 %Intel i860 .548 .518 5.47 %Sun Sparc2 .400 .383 17.34 %Fig. 6. E�ect of Fusion on Erlebacher for Uniprocessors9.2 Improving Reuse on UniprocessorsIn this section, we illustrate the bene�ts of fusion and of loop distribution toimprove uniprocessor performance.Erlebacher. In this experiment, we applied loop fusion only to loop nests withreuse using the simple algorithm. For two fusion graphs, the greedy algorithmwas optimal for reuse. One required the simple fusion algorithm to obtain max-imum reuse and in three, the algorithms reordered the loops to achieve betterreuse. In Fig. 6, we compare the fused and original versions of the same nests onthree modern microprocessors. Improvements due to fusion ranged from 4 to 17percent.Gaussian Elimination. This kernel illustrates that distrubition and fusionshould not be considered only in isolation; the improvements due to fusion anddistribution will be enhanced by using them in concert with other transforma-tions. In Gaussian Elimiation, the bene�t of loop distribution comes from itsability to enable loop permutation. In the original KIJ form in Fig. 7, the J loophas poor data locality for Fortran 77 where arrays are stored in column-majororder. Placing the I loop innermost for statement S2 would instead provide stride-one access on the columns. Using loop distribution enables the interchange andthe combination signi�cantly improves the execution time. The algorithm thatevaluates and applies loop permutation with distribution appears elsewhere [8].Loop Distribution & Interchangef KIJ form g) f KJI form gDO K = 1,N DO K = 1,Nf select pivot, exchange rows g f select pivot, exchange rows gDO I = K+1,N DO I = K+1,NS1 A(I,K) = A(I,K) / A(K,K) - 1.1 A(I,K) = A(I,K) / A(K,K) - 1.1DO J = K+1,N DO J = K+1,NS2 A(I,J) = A(I,J) - A(I,K)*A(K,J) DO I = K+1,NA(I,J) = A(I,J) - A(I,K)*A(K,J)256� 256distributionProcessor original & interchange % improvementSun Sparc2 12.23 5.22 57 %Intel i860 8.35 2.63 69 %IBM RS6000 27.29 4.84 82 %Performance Results in SecondsFig. 7. Gaussian Elimination

9.3 DiscussionThe fusion problems we encountered were fairly simple indicating that the com-plexity of the weighted algorithm is perhaps unnecessary. This preliminary ev-idence also indicates that the
exibility of the simple algorithm is required,i.e. the greedy algorithm is not su�cient. For example, reordering the loops inErlebacher and improving on the greedy solution were both necessary to fullyexploit reuse. Our results for these programs show a performance improvementevery time fusion was applied to improve reuse or increase the granularity ofparallelism.Fusion is especially important for Fortran 90 programs because of the ar-ray language constructs. To compile Fortran 90 programs, the array notation isexpanded into loop nests containing a single statement, providing many oppor-tunities for fusion. Fusion and distribution also enable loop interchange, makingthem an important component for many optimization strategies.10 Related WorkIn the literature, fusion has been recommended for decreasing loop overhead,improving data locality and increasing the granularity of parallelism [2, 23].Abu-Sufah and Warren have addressed in depth the safety, bene�ts and sim-ple application of loop fusion [1, 25]. Neither presents a general algorithm forloop fusion that supports loop reordering or any di�erentiation between fusionchoices. Goldberg and Paige [15] address a related fusion problem for stream pro-cessing, but their problem has constraints on fusions and ordering that are notpresent in the general fusion problem we address. Allen, Callahan, and Kennedyconsider a broad fusion problem that introduces both task and loop parallelism,but does not address improving data locality or granularity of loop parallelism[3, 6]. Our algorithm for maximizing loop parallelism and its granularity is anew result.Sarkar and Gao present an algorithm to perform loop fusion and array con-traction to improve data locality on uniprocessors for single assignment lan-guages [24]. This work is limited because it does not account for constraintsimposed by data dependence [14, 24]. Their more recent work on loop fusion foruniprocessors and pipelining [14] takes into consideration data dependence con-straints and also is based on the maximum-
ow/minimum-cut algorithm. (Ourwork was developed independently.) Our algorithm is distinguished because ofits tight worst-case bound. Both of our reuse algorithms reorder loop nests whichis not possible in their formulation. The results indicate this
exibility is nec-essary. In practice, our preliminary experimental results also indicate that theadditional complexity of the maximum-
ow/minimum-cut algorithms is proba-bly not necessary. Our overall approach is more
exible because it optimizes forboth multiprocessors and uniprocessors.For parallel code generation for shared-memory multiprocessors, this workextends our previous work by providing comprehensive fusion and distributionalgorithms [19, 22]. In Carr, Kennedy, McKinley and Tseng, they combine loop

permutation with fusion and distribution to improve data locality on uniproces-sors [8]. The algorithms presented here are complementary to this work.11 SummaryThis paper presents an optimal algorithm for performing loop fusion and its dual,loop distribution, to maximize the granularity of loop parallelism, therefore min-imizing sychronization. We prove that �nding a fusion that results in maximumreuse is NP-hard and describe two heuristics to perform fusion and distributionbased on reuse. The reuse algorithms work independently or as elements in theparallelization algorithm. The �rst algorithm for improving data locality uses avariant of the greedy algorithm and is linear in time. In practice, it may be thatthis algorithm is su�cient. However, the more ambitious algorithm may be ben-e�cial for languages such as Fortran 90 that can pose di�cult fusion problems.These algorithms are
exible and allow loop reordering to achieve a desired andsafe partition. This paper also provides a general framework for solving loopfusion and loop distribution problems.AcknowledgmentsWhile pursuing the research on the weighted partition problem, we thank Ale-jandro Scha�er and Mark Krentel for their advice and expertise during sev-eral fruitful discussions. We also acknowledge Chau-Wen Tseng, Preston Briggs,Amer Diwan, Mary Hall and Nathaniel McIntosh for their valuable commentson numerous drafts of this paper.References1. W. Abu-Sufah. Improving the Performance of Virtual Memory Computers. PhDthesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign,1979.2. F. Allen and J. Cocke. A catalogue of optimizing transformations. In J. Rustin,editor, Design and Optimization of Compilers. Prentice-Hall, 1972.3. J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scienti�cprograms for parallel execution. In Proceedings of the Fourteenth Annual ACMSymposium on the Principles of Programming Languages, Munich, Germany, Jan.1987.4. J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vectorform. ACM Transactions on Programming Languages and Systems, 9(4):491{542,Oct. 1987.5. A. J. Bernstein. Analysis of programs for parallel processing. IEEE Transactionson Electronic Computers, 15(5):757{763, Oct. 1966.6. D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Dept. ofComputer Science, Rice University, Mar. 1987.7. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for sub-scripted variables. In Proceedings of the SIGPLAN '90 Conference on ProgramLanguage Design and Implementation, White Plains, NY, June 1990.8. S. Carr, K. Kennedy, K. S. McKinley, and C. Tseng. Compiler optimizations forimproving data locality. Technical Report TR92-195, Dept. of Computer Science,Rice University, Nov. 1992.

9. G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer performance eval-uation and the Perfect benchmarks. In Proceedings of the 1990 ACM InternationalConference on Supercomputing, Amsterdam, The Netherlands, June 1990.10. R. Cytron, J. Ferrante, and V. Sarkar. Experiences using control dependence inPTRAN. In D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Com-pilers for Parallel Computing. The MIT Press, 1990.11. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, andM. Yannakakis. The complexity of multiway cuts. In Proceedings of the 24thAnnual ACM Symposium on the Theory of Computing, May 1992.12. J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and itsuse in optimization. ACM Transactions on Programming Languages and Systems,9(3):319{349, July 1987.13. Ford, Jr., L. R. and D. R. Fulkerson. Flows in Networks. Princeton UniversityPress, Princeton, NJ, 1962.14. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for arraycontraction. In Proceedings of the Fifth Workshop on Languages and Compilersfor Parallel Computing, New Haven, CT, Aug. 1992.15. A. Goldberg and R. Paige. Stream processing. In Conference Record of the 1984ACM Symposium on Lisp and Functional Programming, pages 228{234, Aug. 1984.16. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-
ow problem.Journal of the Association for Computing Machinery, 35(4):921{940, Oct. 1988.17. M. W. Hall, K. Kennedy, and K. S. McKinley. Interprocedural transformations forparallel code generation. In Proceedings of Supercomputing '91, Albuquerque, NM,Nov. 1991.18. K. Kennedy and K. S. McKinley. Loop distribution with arbitrary control
ow.In Proceedings of Supercomputing '90, New York, NY, Nov. 1990.19. K. Kennedy and K. S. McKinley. Optimizing for parallelism and data locality. InProceedings of the 1992 ACM International Conference on Supercomputing, Wash-ington, DC, July 1992.20. K. Kennedy and K. S. McKinley. Typed fusion with applications to parallel andsequential code generation. Technical Report TR93-208, Dept. of Computer Sci-ence, Rice University, Aug. 1993.21. K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and transformation in aninteractive parallel programming tool. Concurrency: Practice & Experience, toappear 1993.22. K. S. McKinley. Automatic and Interactive Parallelization. PhD thesis, Dept. ofComputer Science, Rice University, Apr. 1992.23. A. Porter�eld. Software Methods for Improvement of Cache Performance. PhDthesis, Dept. of Computer Science, Rice University, May 1989.24. V. Sarkar and G. Gao. Optimization of array accesses by collective loop transfor-mations. In Proceedings of the 1991 ACM International Conference on Supercom-puting, Cologne, Germany, June 1991.25. J. Warren. A hierachical basis for reordering transformations. In ConferenceRecord of the Eleventh Annual ACM Symposium on the Principles of Program-ming Languages, Salt Lake City, UT, Jan. 1984.26. M. Yannakakis, P. C. Kanellakis, S. C. Cosmadakis, and C. H. Papadimitriou.Cutting and partitioning a graph after a �xed pattern. Automata, Languages,and Programming - Lecture Notes in Computer Science, 154:712{722, 1983.This article was processed using the LaTEX macro package with LLNCS style

