Maximizing Loop Parallelism and
Improving Data Locality

via Loop Fusion and Distribution*

Ken Kennedy! and Kathryn S. McKinley?

! Rice University, Houston TX 77251-1892
2 University of Massachusetts, Amherst MA 01003-4610

Abstract. Loop fusion is a program transformation that merges multi-
ple loops into one. It is effective for reducing the synchronization over-
head of parallel loops and for improving data locality. This paper presents
three results for fusion: (1) a new algorithm for fusing a collection of par-
allel and sequential loops, minimizing parallel loop synchronization while
maximizing parallelism; (2) a proof that performing fusion to maximize
data locality is NP-hard; and (3) two polynomial-time algorithms for im-
proving data locality. These techniques also apply to loop distribution,
which is shown to be essentially equivalent to loop fusion. Our approach
is general enough to support other fusion heuristics. Preliminary ex-
perimental results validate our approach for improving performance by
exploiting data locality and increasing the granularity of parallelism.

1 Introduction

Loop fusion transforms multiple distinct loops into a single loop. It increases the
granule size of parallel loops and exposes opportunities to reuse variables from
local storage. Its dual, loop distribution, separates independent statements in a
loop nest into multiple loops with the same headers.

PARALLELDOI=1,N

A(I) = 0.0 PARALLELDOI=1,N
END B A(I) = 0.0
fusion B(I) = A(I)
PARALLELDOI=1,N END
B(I) = A(T) <=
END distribution

In the example above, the fused version on the right experiences half the loop
overhead and synchronization cost as the original version on the left. If all A(1:N)
references do not fit in cache at once, the fused version at least provides reuse in
cache. Because the accesses to A(I) now occur on the same loop iteration rather
than N iterations apart, they could also be reused in a register. For sequential ex-
ecution of this example, performance improvements of up to 34% were measured
on an RS/6000 Model 540.

* This research was supported by the Center for Research on Parallel Computation, a NSF Science
and Technology Center. Use of the Sequent Symmetry S81 was provided under NSF Cooperative
Agreement No. CDA-8619393.

This paper examines two fusion problems. The first is to fuse a collection
of parallel and sequential loops, minimizing synchronization between parallel
loops without reducing the amount of parallelism. We refer to this criterion
as mazimizing parallelism. The fusion problem arises when generating efficient
code for parallel architectures. We present an optimal algorithm for this problem
based on a greedy algorithm.

The second problem is to maximize data locality by minimizing the number
of data dependences between fused nests. We show this problem is NP-hard
and present two heuristics for solving it. The first is also based on the greedy
algorithm and is linear in time and space. It produces solutions of unknown
precision when compared to an optimal solution. The second solution is based
on the mazimum-flow/minimum-cut algorithm and is therefore not as quick, but
allows us to prove a tight worse-case bound on the precision of its solution.

All of the algorithms are flexible in that they will completely reorder loop
nests to improve fusion. The two algorithms for improving reuse may also be
used independently or integrated into the parallelization algorithm. Preliminary
experimental results demonstrate the efficacy of our approach.

We begin with a brief technical background. We then review the technical
criteria for safe fusion, for fusions which do not reduce parallelism, and for mod-
eling fusion as a graph problem. The same review of loop distribution follows as
well as the map of a distribution problem to one of fusion. Section 4 formally de-
scribes the graph framework for fusion we use in the remaining sections. Section 5
presents an optimal greedy algorithm which fuses to maximize parallelism. The
next three sections explore fusion to improve reuse of array and scalar references,
adding an explicit representation of reuse, proving it NP-hard, and presenting
the heuristics. Our experimental results, a careful comparison to related work,
and conclusions complete the paper.

2 Technical Background

2.1 Dependence

We assume the reader is familiar with data dependence [5] and the terms frue,
anti, output and input dependence, as well as the distinction between loop-
independent and loop-carried dependences [4]. Parallel loops have no loop-carried
dependences and sequential loops have at least one.

Intuitively, a control dependence, 516,53, indicates that the execution of Sy
directly determines whether Sy will be executed [10, 12]. In addition to using
control dependence to describe program dependence, we will use the control
dependence and postdominance relations for an arbitrary graph G. These defi-
nitions are taken from the literature [12].

Definition 1 y postdominates z in G if every path from z to the ezit node

contains y.

Definition 2 Given two statements z, y € G, y is control dependent on z

iff (1) 3 a non-nullpath p, ¢ — y, such thaty postdominates every node between

z and y on p, and (2) y does not postdominate z.

3 Transformations

Loop fusion and distribution are loop-reordering transformations; they change
the order in which loop iterations are executed. A safe reordering transformation
preserves any true, anti and output dependences in the original program. (Input
dependences need not be preserved for correctness.)

3.1 Loop Fusion

Safety. Consider safe loop fusion between two loops or loop nests with com-
patible loop headers. Compatible loop headers have exactly the same number
of iterations, but not necessarily the same loop index expressions. It is possible
to make loop headers with differing numbers of iterations compatible by using
conditionals, but the additional complexity may make reuse harder to exploit in
registers.

Between two candidate nests the following dependences may occur: (1) no
dependence, (2) a loop-independent dependence, and (3) a dependence carried
by an outer loop which encloses the candidates. Clearly, fusion is always safe for
case (1). Fusion is safe in case (3) as well; any loop-carried dependence between
two loops must be on an outer loop which encloses them and fusing them does
not change the carrier. The dependence will therefore always be preserved.

In the case of a loop-independent dependence, fusion is safe if the sense of
the dependence is preserved, i.e., if the dependence direction is not reversed. A
simple test for this case performs dependence testing on the loop bodies as if they
were in a single loop. After fusion, a loop-independent dependence between the
original nests can (a) remain loop-independent, (b) become forward loop-carried
or (c) become backward loop-carried. Since the direction of the dependence is
preserved in the first two cases, fusion is legal. Fusion is illegal when a loop-
independent dependence becomes a backward carried dependence after fusion.
These dependences are called fusion-preventing dependences [1, 25].

Since a loop is parallel if it contains no loop-carried dependences and is se-
quential otherwise, fusion in case (b) is safe but prevents parallelization of the
resultant loop. If either one or both of the loops were parallel, fusion would
reduce loop parallelism. Therefore, mazrimizing loop parallelism requires these
dependences to be classified as fusion-preventing.

Model. We represent the fusion problem with a graph in which each candidate
loop nest is represented by a node and each dependence from a statement in
one loop to a statement in another is represented as a directed edge between the
nodes. If there are fusion-preventing dependences or incompatible loop headers
between two nodes, the edge between them is marked fusion-preventing. If other
program fragments are interspersed between the loops and these statements are
not connected by dependences to any loop, these statements can be ignored
during fusion. If there are dependences, the formulation captures the program
fragments by placing them in a node(s) and using fusion-preventing edges. For
example, a group of statements between two loops is represented as a node in
the fusion graph, and the dependence edges between the statements and a loop

are marked fusion-preventing. For loops on which the statements do not depend,
fusion-preventing edges are added and if possible are oriented such that the node
containing the statements may move either before or after pairs of fusable loops.
Given the definition of dependence on the original loop ordering, the fusion
graph is a DAG. A safe fusion partitions nodes in the graph such that:
1. a partition contains a set of loops that can be legally fused, and
2. the ordering of nodes in the partitioned graph respects all the dependences.

Achieving mazimum granularity of loop parallelism is thus equivalent to parti-
tioning this graph into the fewest number of partitions.

3.2 Loop Distribution

Loop distribution is the dual of loop fusion. Rather than merge loops together, it
separates independent statements inside a single loop (or loop nest) into multiple
loops (or loop nests) with identical headers. Loop distribution exposes partial
parallelism by separating statements which may be parallelized from those that
must be executed sequentially and is a cornerstone of vectorization and paral-
lelization. Loop distribution preserves dependences if all statements involved in
a recurrence (%.e., dependence cycle) in the original loop are placed in the same
loop [18]. Loops containing recurrences must be executed sequentially.

Loop distribution first places each set of statements involved in a recurrence
in a separate sequential node. Statements without recurrences are parallel and
are placed in nodes by themselves. Dependences are edges between nodes and
some may be fusion-preventing. Fusion-preventing edges connect pairs of nodes
that must be sequential if fused. Since the statements execute correctly, but
sequentially in the same loop, the edges are not required for correctness. This
graph is a DAG and therefore can always be ordered using topological sort. The
construction partitions the graph to its finest possible granularity. Maximizing
the granularity of loop parallelism however requires a partition of the graph
with the fewest number of parallel loops, an application of fusion to the finest
partition graph. Distribution may therefore be viewed as fusion with a preceding
step that divides the original nest into the finest partitions. Consequently, we
only discuss fusion since our results apply to distribution as well.

4 The Partition Problem

The following description formally maps fusion to a graph partitioning problem.

Partitioning problem: Given a DAG where
nodes = loops and are marked parallel or sequential
edges = dependence edges, some of which are fusion-preventing
Rules: 1. Separation constraint: cannot fuse sequential and parallel nodes.
2. Fusion-preventing constraint: two nodes connected by a fusion-
preventing edge cannot fuse.
3. Ordering constraint: the relative ordering of two nodes connected by
an edge cannot change.
Goal: group parallel loops together such that parallelism is maximized while
minimizing the number of partitions.

) @
©
(a)

-
|
|
|
|
I

A
[¢]
K
o |
(13
w
ct+

original (b) greedy

Fig. 1. Partition Example, s = sequential, p = parallel

The separation constraint contributes to mazimizing parallelism by requiring
that a particular partition contains only sequential or parallel loops. The ordering
constraint is required for correctness. As discussed in Section 3, some fusion-
preventing edges are necessary for correctness and others are needed to achieve
an optimal solution.

Allen, Callahan and Kennedy refer to mazimal parallelism with minimum
barrier synchronization [3, 6]. By omitting the separation constraint, they arrive
at an optimal greedy algorithm. Their work also tries to partition the graph into
minimal sets, but uses a model of parallelism with both loop-level and fork-join
task parallelism. These criteria are not equivalent to minimizing synchronization
overhead when considering loop-level parallelism. Consider Fig. 1 where the edge
(51, P2) is an ordering constraint, S; is a sequential node, and P; and P, are
parallel nodes.

The greedy algorithm places as many nodes as possible into a single partition
without sequentializing a parallel node, but not all nodes in a partition are fused.
Only nodes of the same type in the same partition are fused. For the program
in Fig. 1(a), the greedy algorithm forms two partitions, {P1, S1} and {P:}, as
illustrated in Fig. 1(b). S; and Py are not fused, but by using a parallel task
construct, they may execute concurrently with each other. The iterations of the
parallel loop P; also execute concurrently. Once they both complete, the parallel
loop P, executes concurrently.

Because it ignores the node type, the greedy algorithm is provably optimal,
minimizing the total number of partitions and maximizing task parallelism [3, 6].
The greedy algorithm however fails for the partition problem defined above, i.e.
restricting it to loop-level parallelism, no task parallelism. For example, the
parallel loop overhead and synchronization in the partitioning {S;} {Pi, P2}
in Fig. 1(c), is half that of the partitioning in 1(b), although the amount of
parallelism is equivalent. The greedy algorithm cannot achieve maximum loop-
level parallelism because it unable to determine which node to select first. For
example, if P; is selected first in Fig. 1(a), then three partitions result.

Our model considers the overhead of parallel loop startup and synchroniza-
tion. The parallelization algorithm presented below maximizes the granularity
and amount of loop parallelism by minimizing the number of parallel loops with-
out sacrificing any parallelism. If task and loop parallelism are both advanta-
geous, first using our loop parallelism algorithm and then Allen, Callahan and
Kennedy may glean the benefits of both.

5 An Unweighted Fusion Algorithm

The following algorithm for maximizing the granularity of parallel loops is based
on the observation that the problem may be divided based on node type because
parallel and sequential nodes cannot be placed into the same partition. It consists
of the following steps.

¢ Create a parallel component graph Gy from the original fusion graph G, by placing
all parallel nodes and edges between parallel nodes in G, into Gp.

¢ Add fusion-preventing edges to G, that preserve constraints in G, not present
in Gp.

o Partition G using the greedy algorithm into G, and perform the partition spec-
ified by G+ on G, collapsing the original edges and forming G,.

o Create a sequential component graph G, similarly from G, but using sequential
nodes and edges and then adding fusion-preventing edges to G, that preserve
constraints in G, not present in G,.

o Partition G, into G, with the greedy algorithm. Perform the partition specified
by G, on G,, forming the solution DAG.

This algorithm takes advantage of the constraint that sequential and parallel
nodes cannot be fused by first separating the problem into a a parallel graph
G, partitioning it, tanslating it onto G,, and then creating the sequential graph
G,, partitioning it, and translating it. As we show in Section 5.2, partitioning
the parallel graph first is required to minimize the number of parallel loops.
However, because the process is the same for both of the component graphs G,
and G,, we discuss them below simultaneously.

A component graph G, represents an independent fusion problem with nodes
of type c, in this case parallel or sequential. It consists of nodes of type ¢ and the
edges connecting them from G,. These edges are not sufficient however because
G, may represent relationships that prevent nodes of the same type from being
in the same partition, but that do not have an edge between them.

Example. Consider P, and P; in G, in Fig. 2(a) where fusion-preventing de-
pendences are marked with a slash. Although the edge (P4, Pr) is not fusion-
preventing, P, and P7; may not legally fuse together without including Sg. Placing
a parallel node and sequential node in the same partition however forces the par-
tition to be executed sequentially, violating the maximal parallelism constraint.
We prevent it by adding fusion-preventing dependences when we create G,.

Transitive Fusion-Preventing Edges. The simplest way to find and preserve
all the fusion-preventing relationships in G, for G, is to compute a modified tran-
sitive closure Gy, on G, before pulling out G.. In general, a fusion-preventing
edge is needed between any two nodes of type ¢ when a path between them
contains a node not of type c. For example, if there is a path between any two
parallel nodes that contains at least one sequential node, then they cannot be
placed in the same partition and a fusion-preventing edge is added between them
in Gp. Adding all of these edges unfortunately introduces redundant constraints.

e e Ps P4

(a) original) component c) partitioned (d) merged

3T -

(e) component (f) partitioned

Fig. 2. Partitioning for Parallelism

Example. Assume for the moment that S; in Fig. 2(a) is parallel and call it P;.
Applying a full transitive closure algorithm for parallel nodes to this modified
version of G, would results in the following fusion-preventing edges: (Py, Pr),
(Pu, Ps), (P, Pr), (Pa, Ps). However, the edges (Py, P7) and (P1, Pg) are redun-
dant because of the original ordering edge (Pi, P4) and the two other fusion-
preventing edges (P4, P7) and (P4, Pg) which together prevent P; from being
fused with P; or Ps.

To simplify the discussion here, we present the algorithm NecessaryEdges in
Section 5.1. It introduces the necessary and sufficient fusion-preventing edges to
complete a component graph.

Partitioning a Component Graph. Given G, is at most the transitive clo-
sure of a DAG, it must also be a DAG and can be partitioned optimally using the
greedy algorithm into sets of loops that can be fused (see Callahan’s disserta-
tion for the proof [6]). The greedy algorithm places the roots of all the connected
components into a partition and then recursively tries to add the successors in
breadth-first order. A node can be added to the partition of a predecessor if it
is not connected to any node in the partition by a fusion preventing edge. If a
node cannot be added to an existing partition, a new partition is created for it.
We call the partitioned component graph G./. Each node N, € G,/ contains one
or more of N..

Translating a partition onto G,. To translate the partition N, onto G, and
form G, we simply combine the nodes in G, corresponding to G, in the same
way. The edges in G, are inherited in the obvious way; if (n,m) € G, then a
corresponding edge between the possibly singleton partition nodes containing n

NecessaryEdges (G., G.)
InpUT: G, the original graph
G, the component graph
OuTPUT: G, component graph with necessary transitive fusion-preventing edges
ALGORITHM:
forall n in G, in preorder
(1) if type(n) # c
Paths(n) = U Paths(m)
(mn)€eG,
else
(2) Paths(n) = n
(3) forall (m,n) € G, s.t. type(m) # ¢
forall r; € Paths(m)
addFusionPreventingEdge (G.,r;,n)
endforall
endforall
endif
endforall

Alg. 1. Adding Sufficient Transitive Fusion-Preventing Edges to G,

and m is in G, . Edges that become redundant may be removed. Because G, is
a DAG and G contains only safe fusions, G, is also a DAG.

Example. For G, in Fig. 2(a), the algorithm begins by extracting G, and adds
two fusion-preventing edges (P, P7) and (P4, Pg) as depicted in Fig. 2(b). The
greedy partitioning fuses P3 and P4, and Pg and P in Fig. 2(c). This partition
is translated onto G, in Fig. 2(d). Fig. 2(e) through (g) show the formation,
partitioning and translation of G, onto G,.

5.1 Finding the Necessary Transitive Fusion-Preventing Edges

This section describes Alg. 1 NecessaryEdges which adds fusion-preventing edges
to a component graph G.. Without loss of generality, consider Gp. Intuitively,
a fusion-preventing edge needs only be added to G, when there exists a path
with length greater than one between two parallel nodes and all the nodes on
the path are sequential. These edges are sufficient because a path containing all
parallel nodes just inherits its relationships from G, and therefore need not be
augmented. This characterization encompasses all cases since a path between
two parallel nodes that contains both sequential and parallel nodes is just a
sequence of paths between parallel nodes that either contain all sequential nodes
or all parallel nodes. Definition 3 captures this notion formally.

Definition 3 Two nodes node; and node; € G. of type ¢ require a transitive fusion-
preventing edge between them in G. iff:

Y path | node; — node} — node; € G, where V¥ h, type(noder) # c.

Based on this definition, Alg. 1 NecessaryEdges computes transitive fusion-preventing
edges to be inserted into a G.. NecessaryEdges formulates this problem similarly

to a data-flow problem, except that solutions along an edge differ depending on
node types.

The data structure Paths is used to recognize paths between nodes of the
same type as G, which only contain nodes h with type(h) # c. It stores sets of
initial nodes for these paths and is initialized to the empty set. The traversal is
in breadth-first order and begins by creating singleton sets, Paths(n) = n, where
nis a root of G, and is of type c. In step (1), NecessaryEdges visits node n with
type(n) # ¢ and unions all the paths of n’s predecessors. Thus, Paths(n) where
type(n) # n contains the set of initial nodes of type ¢ for paths that otherwise
consist of nodes k where type(h) # c. In step (3), the visit of n when type(n) = ¢
inserts a fusion-preventing edge from each of the initial nodes in Paths(m) where
(m,n) € G,, and type(m) # c. At step (2), it sets Paths(n) = n to begin any
set of paths originating at n.

5.2 Discussion

Correctness and Optimality. The correctness and optimality of this algo-
rithm are shown as follows. With the above construction, parallel nodes and se-
quential nodes are never placed in the same partition, satisfying the separation
constraint. Because G, is a DAG, minimizing the number of parallel partitions
is achieved using the greedy algorithm (the proof of minimality from Callahan’s
dissertation is directly applicable [6].)

We now show that the construction of G, does not introduce any constraints
which would cause the component solution G, to be non-optimal.

Proof. All the edges which are not fusion-preventing in G, are in G, by construc-
tion. We therefore need only prove there are no unnecessary fusion-preventing
dependences between nodes that can be fused. The proof is by contradiction. As-
sume there is a fusion-preventing edge in G, which prevents two parallel loops
from being fused that can be fused. If the fusion-preventing edge was in G, we
have a contradiction. If the fusion-preventing edge was not in G, and the nodes
can be fused then either the nodes were not connected by a path in G, or there
is no path between them in G, which contains a sequential node. In either case,
NecessaryEdges would not insert a fusion-preventing dependence. O

Although the same proof holds for G, the minimality of G,/ is for the new
problem posed in G,. The total solution therefore may not be minimal because
partitioning G, constrains fusions in G, and may increase the number of se-
quential partitions. As an example, consider exchanging parallel and sequential
nodes in Fig. 2(a) and then applying the algorithm. Similarly, partitioning G,
and G, simultaneously may result in inconsistent fusions.

Complexity. This algorithm takes O(N % F) time and space, making it practical
for use in a compiler. In the worst case, NecessaryEdges computes the equivalent
of a transitive closure to insert fusion-preventing edges. The greedy algorithm is
linear in time and space.

L; DOI=1,N
A(I) = D(I) e

ENDDO
L, DOI=1,N
B(I) = C(I) + D(I) e
ENDDO
Ly DOI=1,N
... = A(I-1) + c() + B(I) Q
ENDDO
(a) without weights or (b) with weights &
input dependences undirected

. . input dependences
Fig. 3. Modeling Memory Reuse

This approach may be applied to other graph partitioning problems as well.
The separation of concerns lends itself to problems that need to sort or par-
tition items of different types and priority while maintaining transitive rela-
tionships. This feature has been instrumental in designing a multilevel fusion
algorithm [20]. The overall structure of the algorithm also enables different par-
titioning and sorting algorithms to be used on the component graphs. Sections 7
and 8 present partitioning algorithms based on reuse that can be used indepen-
dently or in place of the greedy algorithm.

6 Loop Fusion for Reuse

Fusion can improve reuse by moving references closer together in time, making
them more likely to still be in cache or registers. For example, reuse provided by
fusion can be made explicit by using scalar replacement to place array references
in a register [7]. However, fusion may also increase working set size, negatively
impacting cache and register performance.

The effects of fusion on memory access are not captured in the represen-
tation used in the loop parallelization algorithm because only true and input
dependences indicate opportunities for reuse.> The example in Fig. 3 and its
representation as an unweighted graph in Fig. 3(a) illustrate the problem. In the
original formulation for maximizing parallelism, there is no representation for the
reuse of D(I) between loops L; and Lz, nor is the reuse of both C(I) and B(I),
between loops Ly and L3 given any importance. By adding input dependences,
edge weights, and factoring in dependence type, we include these considerations.

Input dependence, like true data dependence, captures reuse. It is not required to
preserve correctness and therefore should not restrict statement order. These edges
are undirected and result in a graph that is not a DAG (see Fig. 3(b)).

Edge weights represent the amount of reuse between two loops. For simplicity, true
and input dependence edges have weight of one, output and anti dependences have
weight zero, and fusion-preventing dependences have weight € < 1. If there exists

3 Depending on the cache hardware and coherence mechanism, the time to write to cache may not
change appreciably whether the corresponding line is in cache or not, the case for output or anti
dependences.

more than one edge between two nodes, the edges are collapsed and the weights are
added. The cumulative edge is directed if any of the collapsed edges are, otherwise
if all edges are undirected, it is undirected. Any measure of reuse which results in
a single numeric value could replace this measure.

We now show that the problem of finding a fusion that maximizes reuse is
NP-hard. Consider the Multiway Cut problem proven NP-hard for & > 3 by
Dahlhaus et al.[11]. Given a graph G = (V, E), a set S = {s1,82,...,5¢} of k
specified vertices called terminals* and undirected edges with weight w(e) = 1,
find a minimum weight set of edges E' C F for each edge e € E such that
the removal of E' from E disconnects each terminal from all other terminals.
To prove fusion for reuse NP-hard, we transform Multiway Cut to the Fusion
problem. In so doing we establish that the subproblem with no input dependences
is NP-hard.

Theorem 1: Fusion for reuse is NP-hard.

Proof. To establish the result we present a polynomial-time algorithm for reduc-
ing Multiway Cut to Fusion.

1. Select an arbitrary terminal s € V as a start node and number the nodes of V
as follows. Initially, let the set ready contain all the successors of the start node.
Number the start node 1. Select a vertex from ready, always picking a non-terminal
vertex if one exists (i.e., pick a terminal if only terminals are in the set). Give the
selected vertex the next number and add to ready all its successors that are neither
numbered nor in ready.

2. Construct a Fusion DAG G’ in G by making each vertex in V be a loop node and
orienting each edge from E such that the source of the edge has lower number than
the sink in E'. None of these edges are fusion-preventing.

3. Let {s1,52,...,5%} be the terminals in the Multiway Cut problem, listed in order
of their numbering. Add the following fusion-preventing edges oriented from lower
to higher number to the DAG:

(51,82),...(51,8%),(52,83) ..., (52, 88),- - - (55:8541)s -, (85, 88), .-, (Sk—1, 8k)

The constructed Fusion problem has a minimal solution with weight m iff the
corresponding Multiway Cut problem has the same solution.

Only If. Consider a weight m solution to the Fusion problem G’ (m non-fusion-
preventing dependence edges are cut). This solution corresponds to the removal
of m undirected edges from the Multiway Cut problem G and is a weight m
solution that disconnects terminals. Suppose the solution is not correct, i.e.,
let v1,v,...,v, be a path in G from terminal s; = v; and terminal s; =
such that no edge in the path is mapped to an edge broken in the solution to the
Fusion problem. But an uncut edge in the Fusion solution, regardless of its orien-
tation, means that the source and sink are in the same fusion group in G’'. Thus
all of v1,vy,..., and v, may be fused, but this is precluded by the existence
of a fusion-preventing edge between v; and v,. This contradiction establishes
that every undirected path between terminals in G must be cut as a part of the
Fusion solution in G'.

4 All other vertices are called non-terminals.

If. We show that the weight m solution to the Multiway Cut problem G corre-
sponds to a correct weight m solution to the Fusion problem G’. Suppose there
is a path between a terminal and a non-terminal s;,v; € G after the cut but s;
and vy cannot be fused in G’ because there exists path from s; to v; in G’ that
passes through terminal s;. In other words, the Multiway Cut solution places s;
and s in different partitions after the cut and s; and v; in the same partition,
but since there is directed a path in G' from s; to s3 to v, v cannot fuse with s;.
However, this situation can never arise because of the numbering scheme.

Under the numbering scheme, if there is a path of non-terminals v; connect-
ing two terminals s; and s;, where s; has the lower number, then all v; have a
smaller number than s; (because the numbering algorithm always numbers an
available non-terminal vertex first). There can thus be no directed path from s,
to any v;. In particular, there can be no directed path from s; to v; that passes
through s;, because each v; has a lower number than s;. Thus any solution of
the Multiway Cut corresponds to a solution to the Fusion problem.

Minimality. Because solutions have the same weight and are correct in both, a
minimal solution in one corresponds to a minimal solution in the other. O

The Fusion problem with input dependences must be NP-hard as well, because
the subproblem without undirected input dependences is NP-hard; any algorithm
that optimally solves the problem with input dependences must be able to solve
the case without input dependences.

7 Improving Reuse with Loop Fusion:
The Simple Algorithm

The simple algorithm is a straightforward modification of the greedy algorithm
that moves loops to different partitions to improve reuse when legal. Like the
greedy algorithm it is linear. Given a greedy solution that specifies loops in
partitions, we increase the amount of reuse based on the following observation.

In the greedy partition graph, if there exists two partitions g1 and g» with
a directed edge (gi1,92), then no node in g; may be legally placed in g; or
the greedy algorithm would have put it there. However, it may be safe and
profitable to move nodes in g; down into g-.

We determine if it is safe and profitable to move n € g; down into another
partition gp as follows.

Safety. A node n € g; may move to gn iff it has no successors in g; and there is no
fusion-preventing edge (n,r) such that r € g or r € g where gx must precede gp.

Profitability. Compute a sum of edges (m,n), m € gi, and a sum for each gn of edges
(n,p), such that p € gr and n may be safely moved into gn. Pick the partition g
with the biggest sum. If g # g; move n down into g.

Simple (G,)

InpUT: G4 a greedy partition graph
OuTPUT: Gy a partitioning with improved reuse
ALGORITHM:

forall partitions gi € G, in reverse topological order
forall nodes n € g; in reverse topological order
consider gn where (n,p) € G, and p € gn
if it is safe and profitable to move n to gn
move n to gp
return Gy
Alg. 2. Simple Algorithm for Improving Reuse

Alg. 2 Simple applies these criteria to improve reuse. It begins by performing
a bottom-up pass on the partition graph G, formed by the greedy algorithm.
For all nodes n within a partition, it performs a bottom-up pass testing if it is
safe and profitable to move n down into another partition gj. For Fig. 3, this
algorithm produces a partition of {L1}, {L2, L3} correcting the initial greedy
partition {Lq, Ly}, {Ls}.

Further adjusting the results of the greedy algorithm for reuse on sequential
loops, we only fuse loops in a given partition if they offer reuse. Given no reuse
and negligible sequential loop overhead, it is more important to keep register
pressure at a minimum than to decrease loop overhead. Since all the loops in
a partition may be safely fused, we fuse only those connected by true or input
dependences to improve reuse. Assuming fork and join of parallel tasks is rela-
tively expensive, we still fuse all nodes in parallel partitions.® This decision may
differ depending on the parallel architecture.

8 Improving Reuse with Maximum-Flow/Minimum-Cut:
The Weighted Algorithm

In this section, we describe a more general and powerful algorithm which is a
modification of the maximum-flow /minimum-cut algorithm that seeks to maxi-
mize reuse via loop fusion.

If there is only one fusion preventing dependence (k = 1), the graph can
be divided in two using the maximum-flow/minimum-cut algorithm [13, 16].
Maximum-flow /minimum-cut is polynomial time and makes a single minimum
cut that maximizes flow in the two resultant graphs. The maximum-flow algo-
rithm works by introducing flow at the source such that no capacity is exceeded
and the capacity of the flow network to the sink is maximized. To divide the
graph in two parts, a cut is taken. The minimum cut consists of the edges that
are filled to capacity and can be determined with a breadth-first search origi-
nating at the source of flow. If & = 2, the problem is polynomial time solvable
by using two applications of the 2-way cut algorithm [26].

5 Simple replaces the greedy algorithm on the component graphs in loop parallelization.

(a) original (b) collapsed (c) cut & un-collapsed

Fig. 4. Using Minimum-Cut for Fusion (8 > «)

Dahlhaus ef al. develop an isolation heuristic [11] and combine it with Gold-
berg and Tarjan’s maximum flow algorithm [16] to design a polynomial algorithm
that produces a multicut that is at most (2k - 1)/k times the optimal. Goldberg
and Tarjan’s maximum flow algorithm is to date the most efficient with time
complexity O(nmlog(n?/m)) [16]. The running time of Dahlhaus et al.’s algo-
rithm is O(2%*knmlog(n?/m)), which is polynomial for fixed k [11]. They leave
open whether a more efficient algorithm with a similar optimality guarantee
exists.

In the Fortran programs in our studies, k, n, and m have always been very
small. The following section is devoted to the design of an O(knmlog(n?/m))
algorithm for reuse problem. The algorithm is based on Goldberg and Tarjan’s
maximum-flow algorithm; it is guaranteed to be within %k times the optimal. In
some cases, it is optimal.

8.1 Structuring the Maximum-Flow/Minimum-Cut Problem

First, we perform a topological sort on the fusion-preventing edges and select the
first fusion-preventing edge (sre, sink) to cut. In maximum-flow/minimum-cut,
src provides infinite flow and sink infinite consumption. In the minimum-cut
algorithm, these additions force the fusion-preventing edge to be cut and in
some cases, are sufficient to characterize the problem. For instance, infinite flow
into L; and out of L in Fig. 3(b) would cause (L1, Lz) and (Ly, L) to be cut,
therefore optimally fusing L, and Lgs.

Consider breaking the fusion preventing dependence (U,,Ur) in Fig. 4(a).
Providing flow to U; and consumption to Uz only cuts the fusion-preventing
edge, but other edges must be cut as well to separate them. The insight is that
to use minimum cut, the nodes that must precede src are temporarily collapsed
into src and nodes that must follow sink are temporarily collapsed into sink, so
that they truly represent the source and the sink of flow. However, collapsing all
predecessors of src and all successors of sink can impose unnecessary ordering
constraints on the resulting graph. We therefore use the control dependence

relation to determine the nodes to temporarily collapse. After each application
of minimum-cut, the nodes are “un-collapsed”.

In the reuse graph G,, we compute all control dependence ancestors of src
and collapse them into src and src inherits their edges (self edges are ignored).
For sink, we compute control dependence on the reverse graph of G,, RG,.
The reverse graph simply reverses the direction of each edge in G,. All control
dependence ancestors of sink in RG, are collapsed into sink in G, and their
edges inherited. The cut of this graph is applied to G, the original, un-collapsed
graph. The cut always includes the fusion-preventing edge and breaks the original
graph into two subgraphs.

The algorithm collapses each subgraph with an uncut fusion-preventing edge,
applies minimum-cut and un-collapsing as above. It repeats this process until all
fusion-preventing edges are broken. For instance, one application of this process
to Fig. 4(a) where 3 > o results first in the collapsed graph 4(b) and then in the
cut graph 4(c). The next application cuts edges (Uz, Us), (U1, Us) and (U, Us).

Optimality. Given a graph with a single fusion-preventing edge, this algorithm
performs optimally. For the general problem, given there will be at most &k cuts
and each cut is minimal, the total of the multicut will be at most k times greater
than the optimal. This bound is a tight worst case, as illustrated by Fig. 4 where
the total cost of the cuts made by our algorithm is 4o when 3 > a. However,
the optimal cut is (Us, Us), (Us, Us) and (Uy, U7) with cost 2 + 1.

One solution to this inaccuracy would be to collapse all the sources of fusion-
preventing dependences that have control dependence ancestors in common and
cut all the corresponding sinks at once. Instead of multicuts, this construction
would always make a single cut of the middle edge in Fig. 4(a). However, if the
edge (Us, Us) has a weight greater than 4a then the multicut is better and this
construction cannot find it. Differentiating between multicuts of degree 1, [and
I + 1 makes these tradeoffs very difficult.

Complexity. This algorithm applies the O(nmlog(n? /m)) maximum-flow algo-
rithm & times splitting the graph at each application. For these types of graphs,
computing control dependence is linear [10]. The complexity of our algorithm is
therefore O(knmlog(n?/m)) time.

9 Results

As our experimental vehicle we used the ParaScope Editor [21], an interactive
parallelization tool which provides source-to-source program transformations us-
ing dependence analysis. We implemented the tests for correctness and the up-
date of the source program and dependence information for fusion between two
adjacent loops. We also implemented the correctness tests and updates for dis-
tribution to the finest granularity. We selected only programs which contained
candidates for fusion or distribution to explore the impact on performance. In
each program, performance improves.

9.1 Maximizing Parallelism

We performed the fusion algorithm for maximizing parallelism using ParaS-
cope on 3 programs, Erlebacher, Seismic and Ocean. Both the fused and original
hand-coded versions were compiled with the standard Fortran compiler and then
executed in parallel on 19 processors of a Sequent Symmetry S81. The improve-
ments due to fusion appear in Fig. 5.

parallel execution time in seconds
program without fusion with fusion| % improvement
Erlebacher 6.67 6.20 7%
Seismic 17.05 12.59 26%
Ocean 116.6 79.3 32%

Fig. 5. Improving Parallel Performance with Fusion

Erlebacher is an ADI benchmark program with 835 non-comment lines written
by Thomas Eidson of ICASE. It performs tridiagonal solves on all dimensions
of a three dimensional array (50x50x50). In the original version, many of the
loops consisted of a single statement. Twenty-six loop nests benefit from fusion,
improving parallel performance by 7% as illustrated in Fig. 5. Multiple fusions
were performed which reduced the twenty-six nests to eight with fusion groups
of size 2, 3, 4 and 5 loops. In the fusion problems posed, three consisted of seven
loop nodes with two fusion-preventing dependences. In six of the eight, fusion
improved reuse as well increased granularity.

Seismic is 1312 non-comment lines and performs 1-D seismic inversion for oil
exploration. It was written by Michael Lewis at Rice University. In this program,
there was one opportunity to fuse four loops into a single nest which improved
parallel performance by 26%. The original nests were connected by data depen-
dence (i.e., contained reuse) and accounted for a significant portion of the total
execution time. These nests were fused across procedure boundaries using loop
eztraction to place the nests in the same procedure [17, 22]. Loop extraction pulls
a loop out of the called routine and into the caller, actually increasing procedure
call overhead. The increased reuse and decreased parallel loop synchronization
resulting from fusion more than overcame the additional call overhead.

Ocean is 3664 non-comment line program from the Perfect benchmark suite [9].
Fusion improved parallel performance by 32 % on Ocean. Thirty-one nests benefit
from fusion across procedure boundaries [17, 22]. Some of the candidates were
exposed after constant propagation and dead code elimination. Loop extraction
enabled fusion. (Again, extraction’s only effect is to increase total execution time
because of increased call overhead.) The fused nests consisted of between two
and four parallel loops from the original program and increased both reuse and
granularity. As Seismic and Ocean indicate, fusion is especially effective across
procedure boundaries.

seconds
Erlebacher | original fused| % improvement
IBM RS6000 813 672 4.25 %
Intel 1860 .548 .518 5.47 %
Sun Sparc2 .400 .383 17.34 %

Fig. 6. Effect of Fusion on Erlebacher for Uniprocessors

9.2 Improving Reuse on Uniprocessors

In this section, we illustrate the benefits of fusion and of loop distribution to
improve uniprocessor performance.

Erlebacher. In this experiment, we applied loop fusion only to loop nests with
reuse using the simple algorithm. For two fusion graphs, the greedy algorithm
was optimal for reuse. One required the simple fusion algorithm to obtain max-
imum reuse and in three, the algorithms reordered the loops to achieve better
reuse. In Fig. 6, we compare the fused and original versions of the same nests on
three modern microprocessors. Improvements due to fusion ranged from 4 to 17
percent.

Gaussian Elimination. This kernel illustrates that distrubition and fusion
should not be considered only in isolation; the improvements due to fusion and
distribution will be enhanced by using them in concert with other transforma-
tions. In Gaussian Elimiation, the benefit of loop distribution comes from its
ability to enable loop permutation. In the original KI1J form in Fig. 7, the J loop
has poor data locality for Fortran 77 where arrays are stored in column-major
order. Placing the I loop innermost for statement S; would instead provide stride-
one access on the columns. Using loop distribution enables the interchange and
the combination significantly improves the execution time. The algorithm that
evaluates and applies loop permutation with distribution appears elsewhere [8].

Loop Distribution & Interchange

{ KI1J form } => { KJI form }
DOK = 1,N DOK = 1,N
{ select pivot, exchange rows } { select pivot, exchange rows }
DOI = K+1,N DOI = K+1,N
51 A(LK) = A(LK) / A(KK) - 1.1 A(LK) = A(LK) / A(KK) - 1.1
DO J = K+1,N DO J = K+1,N
Sa A(LT) = A(LT) - A(LK)*A(K,J) DO 1= K+1,N
A(LI) = A(LT) - A(LK)*A(K,J)
256 x 256
| distribution
Processor original| & interchange| % improvement
Sun Sparc2 12.23 5.22 57 %
Intel 1860 8.35 2.63 69 %
IBM RS6000 27.29 4.84 82 %

Performance Results in Seconds

Fig. 7. Gaussian Elimination

9.3 Discussion

The fusion problems we encountered were fairly simple indicating that the com-
plexity of the weighted algorithm is perhaps unnecessary. This preliminary ev-
idence also indicates that the flexibility of the simple algorithm is required,
i.e. the greedy algorithm is not sufficient. For example, reordering the loops in
Erlebacher and improving on the greedy solution were both necessary to fully
exploit reuse. Our results for these programs show a performance improvement
every time fusion was applied to improve reuse or increase the granularity of
parallelism.

Fusion is especially important for Fortran 90 programs because of the ar-
ray language constructs. To compile Fortran 90 programs, the array notation is
expanded into loop nests containing a single statement, providing many oppor-
tunities for fusion. Fusion and distribution also enable loop interchange, making
them an important component for many optimization strategies.

10 Related Work

In the literature, fusion has been recommended for decreasing loop overhead,
improving data locality and increasing the granularity of parallelism [2, 23].
Abu-Sufah and Warren have addressed in depth the safety, benefits and sim-
ple application of loop fusion [1, 25]. Neither presents a general algorithm for
loop fusion that supports loop reordering or any differentiation between fusion
choices. Goldberg and Paige [15] address a related fusion problem for stream pro-
cessing, but their problem has constraints on fusions and ordering that are not
present in the general fusion problem we address. Allen, Callahan, and Kennedy
consider a broad fusion problem that introduces both task and loop parallelism,
but does not address improving data locality or granularity of loop parallelism
[3, 6]. Our algorithm for maximizing loop parallelism and its granularity is a
new result.

Sarkar and Gao present an algorithm to perform loop fusion and array con-
traction to improve data locality on uniprocessors for single assignment lan-
guages [24]. This work is limited because it does not account for constraints
imposed by data dependence [14, 24]. Their more recent work on loop fusion for
uniprocessors and pipelining [14] takes into consideration data dependence con-
straints and also is based on the maximum-flow/minimum-cut algorithm. (Our
work was developed independently.) Our algorithm is distinguished because of
its tight worst-case bound. Both of our reuse algorithms reorder loop nests which
is not possible in their formulation. The results indicate this flexibility is nec-
essary. In practice, our preliminary experimental results also indicate that the
additional complexity of the maximum-flow/minimum-cut algorithms is proba-
bly not necessary. Our overall approach is more flexible because it optimizes for
both multiprocessors and uniprocessors.

For parallel code generation for shared-memory multiprocessors, this work
extends our previous work by providing comprehensive fusion and distribution
algorithms [19, 22]. In Carr, Kennedy, McKinley and Tseng, they combine loop

permutation with fusion and distribution to improve data locality on uniproces-
sors [8]. The algorithms presented here are complementary to this work.

11 Summary

This paper presents an optimal algorithm for performing loop fusion and its dual,
loop distribution, to maximize the granularity of loop parallelism, therefore min-
imizing sychronization. We prove that finding a fusion that results in maximum
reuse is NP-hard and describe two heuristics to perform fusion and distribution
based on reuse. The reuse algorithms work independently or as elements in the
parallelization algorithm. The first algorithm for improving data locality uses a
variant of the greedy algorithm and is linear in time. In practice, it may be that
this algorithm is sufficient. However, the more ambitious algorithm may be ben-
eficial for languages such as Fortran 90 that can pose difficult fusion problems.
These algorithms are flexible and allow loop reordering to achieve a desired and
safe partition. This paper also provides a general framework for solving loop
fusion and loop distribution problems.

Acknowledgments

While pursuing the research on the weighted partition problem, we thank Ale-
jandro Schaffer and Mark Krentel for their advice and expertise during sev-
eral fruitful discussions. We also acknowledge Chau-Wen Tseng, Preston Briggs,
Amer Diwan, Mary Hall and Nathaniel McIntosh for their valuable comments
on numerous drafts of this paper.

References

1. W. Abu-Sufah. Improving the Performance of Virtual Memory Computers. PhD
thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign,
1979.

2. F. Allen and J. Cocke. A catalogue of optimizing transformations. In J. Rustin,
editor, Design and Optimization of Compilers. Prentice-Hall, 1972.

3. J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific
programs for parallel execution. In Proceedings of the Fourteenth Annual ACM
Symposium on the Principles of Programming Languages, Munich, Germany, Jan.
1987.

4. J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491-542,
Oct. 1987.

5. A.J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions
on Electronic Computers, 15(5):757-763, Oct. 1966.

6. D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Dept. of
Computer Science, Rice University, Mar. 1987.

7. D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for sub-
scripted variables. In Proceedings of the SIGPLAN 90 Conference on Program
Language Design and Implementation, White Plains, NY, June 1990.

8. S. Carr, K. Kennedy, K. S. Mc¢Kinley, and C. Tseng. Compiler optimizations for
improving data locality. Technical Report TR92-195, Dept. of Computer Science,
Rice University, Nov. 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer performance eval-

uation and the Perfect benchmarks. In Proceedings of the 1990 ACM International
Conference on Supercomputing, Amsterdam, The Netherlands, June 1990.

R. Cytron, J. Ferrante, and V. Sarkar. Experiences using control dependence in
PTRAN. In D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Com-
pilers for Parallel Computing. The MIT Press, 1990.

E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and
M. Yannakakis. The complexity of multiway cuts. In Proceedings of the 24th
Annual ACM Symposium on the Theory of Computing, May 1992.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319-349, July 1987.

Ford, Jr., L. R. and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array
contraction. In Proceedings of the Fifth Workshop on Languages and Compilers
for Parallel Computing, New Haven, CT, Aug. 1992.

A. Goldberg and R. Paige. Stream processing. In Conference Record of the 1984
ACM Symposium on Lisp and Functional Programming, pages 228-234, Aug. 1984.
A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of the Association for Computing Machinery, 35(4):921-940, Oct. 1988.

M. W. Hall, K. Kennedy, and K. S. M¢Kinley. Interprocedural transformations for
parallel code generation. In Proceedings of Supercomputing '91, Albuquerque, NM,
Nov. 1991.

K. Kennedy and K. S. MC¢Kinley. Loop distribution with arbitrary control flow.
In Proceedings of Supercomputing '90, New York, NY, Nov. 1990.

K. Kennedy and K. S. M¢Kinley. Optimizing for parallelism and data locality. In
Proceedings of the 1992 ACM International Conference on Supercomputing, Wash-
ington, DC, July 1992.

K. Kennedy and K. S. M¢Kinley. Typed fusion with applications to parallel and
sequential code generation. Technical Report TR93-208, Dept. of Computer Sci-
ence, Rice University, Aug. 1993.

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Analysis and transformation in an
interactive parallel programming tool. Concurrency: Practice €& Ezperience, to
appear 1993.

K. S. McKinley. Automatic and Interactive Parallelization. PhD thesis, Dept. of
Computer Science, Rice University, Apr. 1992.

A. Porterfield. Software Methods for Improvement of Cache Performance. PhD
thesis, Dept. of Computer Science, Rice University, May 1989.

V. Sarkar and G. Gao. Optimization of array accesses by collective loop transfor-
mations. In Proceedings of the 1991 ACM International Conference on Supercom-
puting, Cologne, Germany, June 1991.

J. Warren. A hierachical basis for reordering transformations. In Conference
Record of the Eleventh Annual ACM Symposium on the Principles of Program-
ming Languages, Salt Lake City, UT, Jan. 1984.

M. Yannakakis, P. C. Kanellakis, S. C. Cosmadakis, and C. H. Papadimitriou.
Cutting and partitioning a graph after a fixed pattern. Automata, Languages,
and Programming - Lecture Notes in Computer Science, 154:712-722, 1983.

This article was processed using the INTpX macro package with LLNCS style

