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Abstract

To improve performance and meet power constraints, vendors are introducing
heterogeneous multicores that combine high performance and low power cores.
However, choosing which cores and scheduling applications on them remain open
problems. This paper presents a scheduling algorithm that provably minimizes
energy on heterogeneous multicores and meets latency constraints for interactive
applications, such as search, recommendations, advertisements, and games. Be-
cause interactive applications must respond quickly to satisfy users, they impose
multiple constraints, including average, tail, and maximum latency. We intro-
duce SEM (Slow-to-fast, Energy optimization for Multiple constraints), which
minimizes energy by choosing core speeds and how long to execute jobs on each
core. We prove SEM minimizes energy without a priori knowledge of job service
demand, satisfies multiple latency constraints simultaneously, and only migrates
jobs from slower to faster cores. We address practical concerns of migration over-
head and congestion. We prove optimizing energy for average latency requires
homogeneous cores, whereas optimizing energy for tail and deadline constraints
requires heterogeneous cores. For interactive applications, we create a formal
foundation for scheduling and selecting cores in heterogeneous systems.

1 Introduction

Power constraints are forcing computer architects to turn to heterogeneous mul-
ticore hardware to improve performance. For instance, smartphones are shipping
with Qualcomm’s Snapdragon and ARM’s Cortex-A15 [15], which include high
performance and low power cores with the same instruction set, called big/little
and Asymmetric Multicore Processors (AMP). Design principles for selecting
cores in heterogeneous system and scheduling algorithms that optimize their
energy consumption, however, remain open problems. This paper presents a
scheduling algorithm that provably minimizes energy on heterogeneous proces-
sors serving interactive applications. We prove and establish scheduling insights
and design principles with practical implications for heterogeneous core selection.

Interactive applications are latency-sensitive. Examples include serving web
pages, games, search, advertising, recommendations, and mobile applications.
Since interactive applications must be responsive to attract and please users, they



must meet latency requirements. Furthermore, they must be energy efficient. In
the data center, power is an increasingly higher fraction of total costs [19,24,38].
A 1% energy saving may translate to millions of dollars. On mobile, energy
efficiency translates directly into longer battery life and happier users.

Prior schedulers that optimize for energy efficiency and heterogeneity have
major limitations. (1) They must predict demand for each request, scheduling
high demand jobs to high performance fast cores and other jobs to low power slow
cores [1,9,11,37,40,42]. Unfortunately, the service demand of individual requests
in interactive applications is usually unknown and difficult to predict [23]. (2)
For unknown service demand, prior work only optimizes for a single simple
latency constraint [23,36,39], such as average latency or maximum latency, and
is inadequate for two reasons. First, many applications strive for consistency by
reducing tail latency (e.g., 95th- and 99th-percentile) or variance [13,17], which
average and maximum latency do not model. Second, some applications require
a combination of low average, tail, and worst-case latencies [12,16]. For example,
search, finance applications, ads, and commerce have customer requirements and
expectations for average and tail latency [12,13,17,24,38].

This paper shows how to optimize energy efficiency of interactive workloads
subject to multiple latency constraints by exploiting heterogeneous multicores,
addressing the aforementioned challenges as follows.

Unknown service demand. Instead of predicting individual job demand, we
exploit the service demand distribution measured online or offline, which changes
slowly over time [23,27]. We schedule incoming jobs to appropriate cores without
knowing their individual service demands.

Multiple latency constraints. The scheduling literature typically optimizes for
average or maximum latency only. To generalize and combine latency constraints,
we use Lp norms [2–5,18,26,32,41]. The Lp norms encapsulate maximum latency
(p→∞) and average latency (p = 1) as special cases. Optimizing for larger values
of p places more emphasis on the latency of longer jobs. Appropriate values of p
effectively mitigate unfairness and extreme outliers for long jobs [2,5]. Optimizing
the L1 and L2 norms together reduce latency variance, which makes latency more
predictable and improves user experience [33].

This paper presents an optimal algorithm that minimizes energy on het-
erogeneous processors given a demand distribution and latency constraints. We
quantitatively characterize the optimal schedule and the ratio of fast to slow core
speeds in a heterogeneous system. We present an optimal scheduling algorithm,
called SEM (Slow-to-fast, Energy optimization for Multiple constraints). Given
a service demand distribution, SEM schedules interactive jobs on heterogeneous
multicore processors to minimize energy consumption while simultaneously sat-
isfying multiple Lp norm latency constraints.

We show an optimal schedule migrates jobs from slower to faster cores. Ide-
ally, we want to schedule high demand (long) jobs on fast cores to meet latency
requirements and short jobs on slow cores to save energy without a prior knowl-
edge of service demand. SEM exploits this observation by scheduling short jobs



on energy efficient slow cores where they complete with high probability and
then migrating long jobs to fast cores to meet the latency constraints.

We show more heterogeneity is desirable for higher p, where p is the Lp norm
moment and the heterogeneity degree is the ratio of the fastest to slowest core
speed. Given a single average latency constraint (p = 1), the energy optimal
schedule requires a homogeneous processor. For all other latency constraints
(p > 1) and multiple constraints, the optimal schedule requires heterogeneous
processors.

We show bounds on the ratio of the fastest and slowest core speeds for an
optimal heterogeneous processor. The result indicates that the more heteroge-
neous workload is and/or the less power additional core performance consumes,
the more heterogeneous the hardware needs to be. Our result provides a formal
and quantitative guide for selecting core speeds while designing heterogeneous
processors. For practical choices of p and measured service load distributions,
the ratio ranges from two to eight. Systems with this degree of heterogeneity are
thus quite practical to assemble from current server, client, and mobile cores.

Due to space constraints, we state the theorems and intuitions here and refer
readers elsewhere for the proofs [28]. We leave to future work experimental eval-
uation of energy. Our own prior work exploits the slow-to-fast insight to optimize
performance (not energy) of interactive applications [27]. We achieved substan-
tial performance improvements in simulation and on real systems by configuring
Simultaneous Multi-Threading (SMT) hardware as a dynamic heterogeneous
multicore [27]. No prior work presents an optimal algorithm or theory for energy
efficiency under multiple latency constraints, nor provides guidelines for select-
ing core speeds. This work is the first formal analysis to deliver these properties
for scheduling interactive workloads on heterogeneous multicore processors for
energy minimization subject to multiple latency constraints.

2 Job, Processor, and Scheduling Models

This section and Table 1 describe our job, processor, and scheduling model.

Job model We focus on CPU intensive interactive services such as search, ads,
finance option pricing, games, and serving dynamic web page content [6, 19,
24, 42]. Each interactive service request is a job. Each job has work w (service
demand), which represents the number of CPU cycles the job takes to complete.
Since it is often impossible to accurately predict a job’s service demand [23],
we model w as a discrete random variable whose value is unknown until the job
completes. We divide the service demand into N bins and the size of the i-th
bin is denoted by wi, which we obtain by measuring the distribution of work
for the application. The choice of “bin” sizes is determined by the measurement
accuracy, and our model is not restricted to any particular choices. The job
service demand w follows a distribution that only takes values out of the set
W = {w̃1, w̃2, · · · , w̃N}, where we define w̃i =

∑i
j=1 wj , for i = 1, 2, · · · , N . This

assumption is not restrictive. In practice, a job’s service demand cannot be
continuous and is typically grouped into a finite number of bins [36].



Definition Definition

w CPU service demand xi Speed of core i
wi Size of the i-th demand bin z(x) Power consumption

fi Probability of demand w̃i =
∑i
j=1 wj e(x) Energy function

Fi Cumulative distribution Lp Lp norm with moment p

F ci Complementary cumulative distribution D̃(p) Lp norm latency constraint

Table 1: Symbols and definitions

Let {f1, f2, · · · , fN} and {F0, F1, · · · , FN} be the probability distribution and
cumulative distribution of the job’s service demand, respectively: fi = Pr(w = w̃i)

and Fi =
∑i
j=1 fj , for i = 1, 2, · · · , N . While the service demand of any single job

is unknown a priori, we assume the aggregate service demand distribution of
jobs is measured with online or offline profiling as in previous work [23].

Processor model We adopt a standard processor model. With speed x > 0, a core
will consume a power of z(x). Correspondingly, the energy consumption per unit
work is e(x) = z(x)/x. The processing time for a unit work increases linearly with
respect to the inverse of core speed. Given a particular application, the effective
speed x and power z(x) can be obtained by system measurements. Consequently,
the effective speed x may differ from the clock rate of CPU and both clock speed
an power may vary depending on the application [14,20].

We assume the energy function e(x) is continuously differentiable, increasing,
and strictly convex in x ≥ 0. This assumption is validated extensively by both
analytical models and measurement studies [14, 23, 36]. In practice, if a slower
core consumes more power and thus energy than a fast one, it wont be built.
Because of CMOS circuit characteristics, energy is well approximated as e(x) =

b · xα−1 + c for core speed x, where the power exponent α ≥ 2 and static energy
c ≥ 0 [8, 23]. We concentrate on heterogeneous multicores which consists of
multiple diverse cores, but our approach applies to cores with multiple speeds
realized with DVFS.

We refer to the core executing the i-th bin of a job’s demand as core i, for
i = 1, 2, · · · , N . We denote the core speed and power consumption of core i by xi
and zi = z(xi), respectively. The energy consumption per unit work of core i is
given by ei = e(xi) = z(xi)/xi. Two cores i and j may be equivalent in some cases,
i.e., xi = xj , for i, j = 1, 2, · · · , N . For example, one core will execute multiple
bins when demand for this core differs between two or more jobs.

3 Scheduling objective —Energy

Our scheduling objective is minimize average energy on a heterogeneous proces-
sor when scheduling interactive jobs that are subject to multiple latency con-
straints. The scheduler determines the core speeds xi for each bin i = 1, 2, · · · , N .
We express the average energy consumption of a job as

ē(x) =

N∑
i=1

[
i∑

j=1

zj ·
wj
xj

]
· fi =

N∑
i=1

[1− Fi−1] · e(xi) · wi, (1)



where ei = e(xi) = z(xi)/xi is the energy per unit work consumed by core i and
x = (x1, x2, · · · , xN ) is a vector expression. The term “

∑i
j=1 zj ·

wj
xj

” represents the

energy consumption of a job with a service demand of
∑i
j=1 wj (which occurs

with a probability of fi), and hence we have the average energy consumption

as
∑N
i=1

[∑i
j=1 zj ·

wj
xj

]
· fi. Equivalently, we can rewrite the average energy con-

sumption as
∑N
i=1 [1− Fi−1] · e(xi) · wi, where (1 − Fi−1) is the probability that

the i-th bin of the service demand is processed (i.e., the probability that a job
has at least a service demand of

∑i
j=1 wj).

4 Scheduling constraints —Latency

Many prior studies mainly focused on single and simple latency constraints, such
as maximum latency (deadline) or average latency [23,36]. Motivated by recent
work that addresses latency requirements in contexts such as load balancing [2,
26], we introduce the Lp norm to generalize latency constraints. For concision,
we sometimes abbreviate the Lp norm with Lp. Specifically, given the core speeds
x = (x1, x2, · · · , xN ), we mathematically express the Lp norm for latency as follows

D(p) =

[
N∑
i=1

(ti)
p · fi

] 1
p

=

{
N∑
i=1

[
i∑

j=1

wj
xj

]p
· fi

} 1
p

, (2)

where p ≥ 1 and ti =
∑i
j=1

wj
xj

is the latency of a job with a service demand of

w̃i =
∑i
j=1 wj . The Lp norm for latency generalizes over maximum and average

latency. Given p = ∞, L∞ is maximum latency and given p = 1, L1 is average
latency. Intuitively, larger values of p emphasize optimizing the latency of longer
jobs, effectively mitigating unfairness and extreme outliers for long jobs [2, 5].

Latency variance determines the predictability of a scheduling algorithm [33]
and depends on the L2 and L1 through the simple expression L2−L1. For average
latency and latency variance, we can apply various techniques, such as Chebyshev
inequality, to bound tail distributions and estimate high-percentile latency. Thus,
simultaneously considering multiple Lp latency constraints, such as the L1 and
L2 norms, well characterizes requirements on interactive applications [2–4,26].

This paper focuses on interactive applications where the actual demand of
individual jobs is unknown and hence all jobs have the same latency constraints,
e.g., all web pages have similar latency constraints, since users will abandon the
browser if responses are too slow. Differentiated services for different jobs are
beyond the scope of this paper and could be interesting future work.

5 Problem Formulation and Algorithm

This section formalizes the energy minimization problem and presents the SEM
scheduling algorithm, which minimizes energy subject to latency constraints.

The inputs to SEM are the probability distribution of service demand fi, the
size of each service demand bin wi, and energy consumption per unit work e(x) in
terms of the processing speed x. SEM outputs the optimal job schedule, which



prescribes a sequence of core speeds x1, x2, · · · , xN , where xi is the core speed
to process the i-th service demand bin. An incoming job with unknown service
demand will execute on the prescribed sequence of core speeds until completion.
For example, given an application that has jobs with service demands of 1, 2, 5,

or 10 (units of work) and some probability distribution, then there are 4 service
demand bins with the following sizes: w1 = 1, w2 = 2− 1 = 1, w3 = 5− 2 = 3, w4 =

10 − 5 = 5. Given a set of Lp latency constraints, SEM determines the optimal
core speed xi for executing each service demand bin wi. For example, x1 = 1 GHz,
x2 = x3 = 1.5 Ghz, and x4 = 3 GHz. This scheduling plan is determined offline
and then used in deployment. In deployment, when a job arrives, it’s service
demand is unknown. SEM first processes the job on a 1 GHz core. If the job
does not completed after 1 unit of work, SEM migrates the job to a 1.5 GHz
core. If the job does not completed after processing another w2 +w3 = 4 units of
work, SEM migrate it to a 3GHz core, and continue processing the job until it
completes. Formally, this problem is stated as follows.

P1 : min
x

N∑
i=1

{[1− Fi−1] · e(xi) · wi} (3)

s.t.,

{
N∑
i=1

[
i∑

j=1

wj
xj

]pk
fi

} 1
pk

≤ D̃(pk), (4)

for k = 1, 2, · · · ,K,
x � 0, (5)

where � is an element-wise operator, constraining all the core speeds to be non-
negative. This formulation assumes that the core speeds x1, x2, · · · , xN can be
continuously chosen from any non-negative values. In other words, here core
speeds are unconstrained. (Section 8 shows how to handle the limited numbers
of core speeds available in practice.) The objective function in (3) minimizes the
average energy of all jobs. The latency constraints in (4) are imposed with K

different norms where 1 ≤ p1 < p2 < · · · < pK ≤ ∞. Note that imposing a tail
latency constraint of L∞ excludes outlier jobs, e.g., for 95-percentile latency, the
5% longest jobs are excluded by the L∞ norm.

This P1 formulation is a convex optimization problem. The latency con-
straints in Inequality (4) are convex because Lp norms are convex when p ≥ 1.
The speed constraints in Inequality (5) are linear. A linear combination of the
energy consumption per unit work e(x) is strictly convex in terms of the pro-
cessing speed x due to CMOS characteristics [23]. The objective function in (3)
is also convex. Since P1 is convex, there exist efficient algorithms that find the
globally optimal solution, which we denote as x∗.

We derive the solution to P1 using a primal-dual iterative approach. A com-
panion technical report presents the algorithm and its proof [28]. We set a thresh-
old ε as a stopping criterion such that the iteration stops once the difference of
the L2 norm between two consecutively iterated values is below the threshold.
The iterative approach has a iteration-complexity bounded by O(1\ε2) [22].



Note that we analytically derive the solution to P1 instead of using a convex
solver. The analytical form exposes important properties of the optimal solution
and has implications for hardware core choices that we discuss in Section 6 and
Section 7. These properties cannot be derived using a convex solver.

Further note that we only compute an optimal schedule once offline for any
given job service demand distribution and heterogeneous system. Our online
scheduler simply applies the precomputed optimal schedule, executing a job
on each core speed for the precomputed specified optimal time, until the job
completes. Therefore, the computational overhead in deployment is negligible.

6 An Optimal Schedule Migrates from Slow to Fast Cores

Under the optimal schedule, core speeds monotonically increase as hardware
processes more of the job’s work. In other words, an optimal scheduler need only
migrate a job from slower to faster cores. Theorem 1 formalizes this property.
While prior studies [23,27,36,39] show to use the “slow to fast” property under
the maximum latency constraint in different contexts such as DVFS, in contrast,
Theorem 1 is the first formal result that applies it to the more general case of
any latency norm constraint and with multiple latency norm constraints.

Theorem 1. The optimal core speeds that solve P1 satisfy 0 < x∗1 ≤ x∗2 ≤ · · · ≤
x∗N . If only the L1 latency constraint is imposed, then x∗1 = x∗2 = · · · = x∗N .

Proof. The technical report contains the proof [28]. �

Theorem 1 tells us, without a priori knowledge of each job’s service demand, an
optimal schedule first processes a job on a slow core. If the job does not complete
within some time interval (because it is long), SEM migrates it to faster cores.
Thus, a short job completes on slower cores to save energy while a long job uses
faster cores to meet the latency constraints. Consequently, the average energy
consumption is minimized while satisfying latency constraints.

The intuition behind Theorem 1 is that long jobs have a greater impact
on latency constraints. In particular, the latency norm constraint specified by
Equation (2) is mostly dominated by long jobs (the larger pk, the more dominated
by long jobs, which can be seen by taking the partial derivative of (2) with
respect to the latency experienced by jobs with various demands). In the extreme
case, when pk → ∞, only the maximum latency incurred by the longest jobs is
important. Thus, we want to process the long jobs fast enough to meet the
latency constraints. On the other hand, processing short jobs using slower cores
saves energy without penalizing the latency constraints.

If only the average latency constraint (p = 1) is considered, Theorem 1 re-
duces to a special case where x∗1 = x∗2 = · · · = x∗N , i.e., the optimal schedule uses a
homogeneous processor. Intuitively, this reduction holds because delaying short
and long jobs have the same impact on the L1 norm. More formally, the techni-
cal report [28] derives that e(xi)x2i is the same for all i = 1, 2, · · · , N and hence,
homogeneous speeds are optimal when only satisfying the L1 norm latency con-
straint. For all other latency constraints (p > 1) and multiple constraints, the
optimal energy-efficient schedule requires heterogeneous processors.



7 Implications for Cores in a Heterogeneous System

This section analyzes how latency constraints, workload characteristics, and core
power/performance characteristics effect core choices in a heterogeneous system.

7.1 Effect of latency constraints on heterogeneity

Given Theorem 1, a key question is what core speeds to include in a hetero-
geneous system. In practice, the fastest cores are limited by physics and the
software will be tuned such that the fastest core speed can satisfy the most de-
manding jobs. We therefore exploit this theorem to select the remaining lower
power cores by investigating the ratio of the fastest x∗N to the slowest x∗1 speed.
We define this ratio as the degree of heterogeneity, giving a formal quantitative
guideline for selecting core speeds in a heterogeneous processor. Our analysis
shows that more heterogeneity is desired for larger p in the Lp norm constraint.

We derive this result using a widely-used class of energy functions [23] ex-
pressed in the form e(x) = b · xα−1, where b > 0 and α ≥ 2 (corresponding to a
power function of z(x) = b · xα [23]). The lack of a closed-form expression of the
optimal core speeds x∗ makes it prohibitive to derive the exact value of the de-
gree of heterogeneity. We instead exploit monotonicity to derive upper and lower
bounds, using Theorem 2 to show that degree of heterogeneity is monotonically
increasing in p ≥ 1.

Theorem 2. Given e(x) = b·xα−1 and one Lp latency constraint, then the degree
of heterogeneity x∗N

x∗1
increases with increasing p for p ≥ 1.

Proof. The technical report contains the proof [28]. �

Theorem 2 proves that as p ≥ 1 increases, the optimal degree of heterogeneity also
increases; the latency constraint thus imposes the optimal choice of core speeds.
More precisely, given two different values of p, we can select two different latency
constraints, under which the corresponding minimum core speeds are the same
using the optimal job schedule. Under a latency constraint with a larger p value,
long jobs require faster cores, because larger values of p place a more stringent
requirement on the latency of longer jobs. Thus, if p increases, so does x∗N/x

∗
1.

Furthermore, we prove a lemma in the technical report [28] that the degree of
heterogeneity is a constant for a given p regardless of latency constraints, which
establishes hardware requires more heterogeneity for larger p.

7.2 How much heterogeneity is desirable?

This section explores how much heterogeneity is desirable. We use Theorem 2 to
derive both upper and lower bounds on degree of heterogeneity in Theorem 3.
This result delivers quantitative guidance for selecting the cores in heterogeneous
multicore processors for interactive applications.
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Fig. 1: (a) (b) Service demand distributions of Bing and Financial derivative work-
loads. Most jobs are short, but long jobs are not negligible. (c) (d) Degree of hetero-
geneity as a function of p given one Lp constraint and power model: z(x) = 21 · xα.

Theorem 3. Given e(x) = b · xα−1 and K Lp latency constraints specified by
1 ≤ p1 ≤ p2 ≤ · · · ≤ pK ≤ ∞, then the degree of heterogeneity x∗N

x∗1
satisfies:

1 ≤ x∗N
x∗1
≤
(

1

fN

) 1
α

(6)

where fN is the probability that a job has the maximum service demand of w̃N .
We call a latency constraint dominant if and only if satisfying it ensures

that all the other latency constraints, if any, are also satisfied under the optimal
schedule. Thus, the dominant latency constraint is the most stringent require-
ment. When average latency is dominant, the first inequality above becomes an
equality: x∗N/x

∗
1 = 1. When maximum latency is dominant, the second inequality

becomes equality: x∗N
x∗1

=
(

1
fN

) 1
α

.

Proof. The technical report contains the proof [28]. �

Theorem 3 has two interesting implications.
1. Workload heterogeneity prefers hardware heterogeneity. The upper bound

on the degree of heterogeneity increases as fN decreases (i.e., with fewer long
jobs). When the workload is homogeneous, all jobs have the same service demand
and fN = 1. In this case, Theorem 3 indicates that x∗N/x

∗
1 = 1 and homogeneous

hardware is optimal. For a heterogeneous workload where fN is small, the value
of x∗N/x

∗
1 may become very large. When slow cores complete short jobs, they

save energy, whereas with the optimal schedule, the fastest processors process
long jobs to satisfy the maximum latency constraint without incurring too much
average energy, since fN is small.

2. Core power and performance influences on hardware heterogeneity. When
the speed of a core increases, so does its power consumption. We observe from (6)
that the upper bound on the degree of heterogeneity decreases with α. A larger
α indicates power consumption grows faster than core speed and hence using
fast cores will significantly increases average energy consumption and degree of
heterogeneity will be smaller.

Example We consider two example interactive workloads, Bing web search and
Monte Carlo financial pricing (see elsewhere for details [27]). They illustrate how
latency constraints, workload, and core performance and power characteristics



affect the desired heterogeneity. Figure 1(a) and Figure 1(b) show the distribu-
tions of service demand for the two applications, measured in terms of the job
processing time on an Intel i7-2600 Sandy Bridge core. The demand spike in Fig-
ure 1(a) occurs because the search engine caps job processing time at 120 ms and
returns the top results found so far. Search engines often cap query processing
time and return partial results to tradeoff quality and response time [17].

Figure 1(c) and 1(d) show how the degree of heterogeneity (Y -axis x∗n/x
∗
1)

changes as a function of p in Lp with Bing and financial applications, respectively,
when we can choose any core speed. We normalize speed to an i7-2600 Sandy
Bridge core and use the power model: z(x) = 21 · xα, because z(1) = 21W is
the power consumption of the i7-2600 Sandy Bridge core. Blue and red lines
represent the cases of α = 2.08 (a lower energy cost for performance) and α = 2.5

(a higher energy cost for performance) respectively.
Figure 1(c) and 1(d) confirm Theorems 2 and 3. (1) When p increases, the

degree of heterogeneity increases and has an upper bound, as predicted. In par-
ticular, a homogeneous processor is optimal in terms of energy consumption
when p = 1 (average latency), whereas the maximum degree of heterogeneity is
desirable when p = ∞ (a deadline). (2) The degree of heterogeneity decreases
with larger α because faster cores consume proportionally more energy. (3) Com-
paring Figure 1(c) and 1(d) shows financial derivative pricing requires a higher
degree of heterogeneity than Bing web search given the same p because the
longest jobs are rarer in derivatives (fN is smaller). The rarer the long jobs,
the faster the fastest core we can choose without compromising average energy
because the prolific short jobs execute on the slowest low power cores.

8 Discrete Core Speeds, Migration, and Congestion

This section extends SEM to address the following practical considerations: (1)
a limited selection of core speeds, (2) job migration overhead, and (3) congestion
due to multiple jobs competing for the same core(s).

Discrete core speeds Given a set of core speeds, 0 < s1 ≤ s2 ≤ · · · ≤ sM , we
formulate our problem as follows:

P2 : min
x

N∑
i=1

{[1− Fi−1] · e(xi) · wi} (7)

s.t., Constraint (4) (8)

xi ∈ {s1, s2, · · · , sM}, i = 1, 2, · · · , N. (9)

P2 is a combinatorial optimization problem, which is notoriously difficult to
solve [39]. We use an efficient branch-and-bound algorithm to produce solutions
arbitrarily close-to-optimal. A greedy solution finds a schedule that will consume
more energy than the optimal schedule (i.e., the upper bound), whereas the job
schedule obtained by replacing “xi ∈ {s1, s2, · · · , sM}” with xi ∈ [s1, sM ] and then
using convex optimization will produce an average energy consumption that is
less than the optimal schedule (i.e., the lower bound). By iteratively finding and



refining the upper and lower bounds until the gap becomes sufficiently small, we
identify a schedule arbitrarily close to the optimal schedule [7]. The technical
report contains the details of the solution and the derivation [28].

P2 is an NP-hard problem, even if only the maximum latency constraint
is considered [39]. Without specifying the maximum number of iterations, the
proposed algorithm may iterate up to MN times, enumerating all the possible
solutions in the worst case. Nevertheless, the beauty of branch-and-bound algo-
rithm is that it typically converges much faster, which we also observe. In fact,
with an appropriately-set stopping criterion, the number of iterations required
for convergence is upper bounded, and in practice, the actual number of itera-
tions is typically even much smaller than the upper bound. The complete analysis
of convergence rate is beyond our scope, and interested readers are referred to
the literature [7].

Moreover, as we discussed in Section 5, we only compute an optimal schedule
once offline for any given job service demand distribution and heterogeneous pro-
cessor. Our online scheduler simply applies the precomputed optimal schedule.
Therefore, the computational overhead in deployment is negligible.

Migration overhead Migrating a job from one core to another incurs overhead
from copying job state and warming up caches. Our experiments show that job
migration overheads are fairly small on both web search [17] and interactive
finance applications. One migration is less than 50 microseconds, less than 0.1%
of the maximum latency requirement in the order of 100 milliseconds. Moreover,
a job can only migrate up to Q − 1 times, where Q is the number of different
core speeds. Because Q is very small (2 ∼ 4) in practice and many short jobs
completed on slow cores, SEM often does not incur much migration overhead.

To extend our solution when migration costs are high, e.g., migrating a job
between two servers, we describe a heuristic approach to incorporate migration
overhead in the analytical model. This approach is conservative and assumes
worst-case migration overhead. More specifically, let τo represent the migration
overhead, quantified by the time during which a core cannot process any work.
In the worst case, a job with a demand of w̃i =

∑i
j=1 wj may migrate up to (i−1)

times, for i = 1, 2, · · · , N . Thus, the new worst-case latency constraint becomes{
N∑
i=1

[
i∑

j=1

wj
xj

+ (i− 1) · τo
]pk

fi

} 1
pk

≤ D̃(pk). (10)

By neglecting the constant energy consumption incurred by the migration pro-
cess in the worst case, we reformulate the energy minimization problem P2
by replacing the latency constraint (8) with (10) to account for the migration
overhead. The solution can be found in a similar way following our preceding
analysis.

Congestion We briefly discuss how to apply SEM as a building block when con-
gestion or queuing delay results in multiple jobs demanding the same core at
the same time. A key observation is that the presence of congestion may cause
a violation in the latency constraints if we directly apply SEM. To satisfy the



desired latency that includes both processing delay and queueing delay, we can
impose a more stringent constraints for the processing delay which, if appropri-
ately chosen and after adding the queueing delay, will satisfy the total latency
constraints. To choose the appropriate Lp norm constraint to handle this delay,
we propose integral control to dynamically adjust the processing delay constraint
based on the difference between the observed latency and the target latency (la-
tency constraint). The control function is expressed as

D̃i(pk) = D̃i−1(pk) + V · di(pk), for k = 1, 2, · · · ,K,

where i = 1, 2, · · · represents time steps, D̃i(pk) is the output of the integral
controller at time i representing the augmented Lp norm constraint on the pro-
cessing delay. V > 0 defines the ratio of the control adjustment to the control
error and di(pk) is the difference between the target and observed latency. Thus,
if the observed latency is greater than the constraint, di(pk) < 0, a more stringent
processing delay constraint, D̃i(pk), will be imposed for the next time step, and
vice versa.

Finally, note that using the above method to address congestion will not alter
the value of p. Thus, our slow to fast scheduling insight and the quantitative
upper and lower bounds on the ratio of fast to slow core speeds still hold.

9 Related Work

Heterogeneous multicore processors As computer architects face the end of Den-
nard scaling, they are turning to heterogeneous multicore processors, which com-
bine high performance but high power cores with lower power and lower perfor-
mance cores to meet a variety of performance objectives, i.e., throughput, energy,
power, etc. To effectively utilize these systems, a scheduler must match jobs to
an appropriate core. Four types of schedulers have been proposed to allocate
jobs or parts of jobs to different cores. (1) With known or predicted resource
demand, incoming jobs are scheduled to the most appropriate core [9, 11, 40].
(2) With known performance requirements, latency-sensitive applications such
as games or videos are processed by fast cores, whereas latency-tolerant applica-
tions such as background services are processed by slow cores [15,25,29]. (3) With
known job characteristics, complementary job allocation is applied to maximize
the server utilization while avoiding resource bottlenecks (e.g., memory-intensive
jobs and CPU-intensive jobs are allocated to the same server [35]). (4) If a single
job has different phases [21,30,31], such as parallel phases and sequential phases,
schedulers map the sequential phase on a high-performance core and the parallel
phase on a number of energy-efficient cores.

Lp norms and multiple latencies Because the Lp norms are a general class of con-
straints, researchers have applied them in various contexts, such as minimizing
the total latency via online load balancing [5, 32] and multi-user scheduling of
wireless networks [41]. Our study considers multiple Lp norm latency constraints
simultaneously for individual interactive services. Prior work mainly considers
multiple latency constraints to provide differentiated performance guarantees to



different traffic classes [10,34], whereas we exploit the diversity of demand within
the requests, without requiring knowledge about the demand of any individual
request, to meet constraints for a variety of interactive applications.

Latency sensitive and real-time scheduling Related work also considers exploit-
ing heterogeneous processors and DVFS to improve energy-efficiency for latency-
sensitive and real-time jobs [1, 23, 36, 37, 39]. Some of them [1, 37, 40, 42] assume
that the service demand of each job is either known or accurately predicted,
which is not available for many applications. Other studies on DVFS and real-
time systems assume unknown service demand [23, 36, 39], but they consider a
hard deadline as the only latency constraint. Our prior work [27] studies schedul-
ing interactive workloads on a heterogeneous processor for quality/throughput
maximization (not energy minimization) subject to a single deadline constraint.
While it also leverages the “slow to fast” insight, it always uses fast cores first
whenever they are available for performance optimization. In contrast, SEM
starts jobs on slow cores and migrates them to fast cores along the execution
to minimize energy. Moreover, this prior work [27] does not address multiple
latency constraints and it does not deliver quantitative insights for selecting
cores in heterogeneous processors. To the best of our knowledge, we offer the
first formal analysis to characterize the optimal schedule and hardware design
for scheduling latency-sensitive jobs on heterogeneous processors with multiple
latency constraints without requiring a priori knowledge of the service demand
of each individual job.

10 Conclusion

This paper presents an efficient scheduling algorithm for interactive jobs on
heterogeneous processors subject to multiple latency constraints expressed in
the form of Lp norms and optimizes energy. We introduce the SEM scheduling
which advances the existing research in two key ways. (1) The SEM algorithm
does not rely on the service demand of each individual job, which is difficult and
even impossible to obtain in many interactive applications such as web search.
(2) The SEM algorithm explicitly incorporates multiple Lp norm latency con-
straints which, compared to prior work, more accurately characterize the explicit
and implicit multiple service level agreements on the latency of interactive ap-
plications. We prove that an optimal schedule only migrates jobs from slower to
faster cores. Moreover, we quantify how to select cores in heterogeneous hard-
ware for interactive applications. The more the system needs to limit outliers,
the more heterogeneous the hardware needs to be. The more heterogeneous the
workload service demand is, the less power additional performance costs and the
more heterogeneous the hardware needs to be.
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