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Abstract—JavaScript is the most widely used web program-
ming language and it increasingly implements sophisticated and
demanding applications such as graphics, games, video, and
cryptography. The performance and energy usage of these ap-
plications benefit from hardware parallelism, including SIMD
(Single Instruction, Multiple Data) vector parallel instructions.
JavaScript’s current support for parallelism is limited and does
not directly exploit SIMD capabilities. This paper presents
the design and implementation of SIMD language extensions
and compiler support that together add fine-grain vector
parallelism to JavaScript. The specification for this language
extension is in final stages of adoption by the JavaScript
standardization committee and our compiler support is avail-
able in two open-source production browsers. The design
principles seek portability, SIMD performance portability on
various SIMD architectures, and compiler simplicity to ease
adoption. The design does not require automatic vectorization
compiler technology, but does not preclude it either. The SIMD
extensions define immutable fixed-length SIMD data types and
operations that are common to both ARM and x86 ISAs.
The contributions of this work include type speculation and
optimizations that generate minimal numbers of SIMD native
instructions from high-level JavaScript SIMD instructions. We
implement type speculation, optimizations, and code generation
in two open-source JavaScript VMs and measure performance
improvements between a factor of 1.7× to 8.9× with an
average of 3.3× and average energy improvements of 2.9×
on micro benchmarks and key graphics kernels on various
hardware, browsers, and operating systems. These portable
SIMD language extensions significantly improve compute-
intensive interactive applications in the browser, such as games
and media processing, by exploiting vector parallelism without
relying on automatic vectorizing compiler technology, non-
portable native code, or plugins.

I. INTRODUCTION

Increasingly more computing is performed in web
browsers. Since JavaScript is the dominant web language,
sophisticated and demanding applications, such as games,
multimedia, finance, and cryptography, are increasingly im-
plemented in JavaScript. Many of these applications benefit
from hardware parallelism, both at a coarse and fine grain.
Because of the complexities and potential for concurrency

errors in coarse grain (task level) parallel programing,
JavaScript has limited its parallelism to asynchronous activ-
ities that do not communicate through shared memory [21].
However, fine-grain vector parallel instructions — Single-
Instruction, Multiple-Data (SIMD) — do not manifest these
correctness issues and yet they still offer significant per-
formance advantages by exploiting parallelism. This paper
describes motivation, design goals, language specification,
compiler support, and two open-source VM implementations
for the SIMD language extensions to JavaScript that are
in the final stages of adoption by the JavaScript Standards
committee [20].

SIMD instructions are now standard on modern ARM and
x86 hardware from mobile to servers because they are both
high performance and energy efficient. SIMD extensions in-
clude SSE4 for x86 and NEON for ARM. These extensions
are already widely implemented in x86 processors since
2007 and in ARM processors since 2009. Both extensions
implement 128 bits and x86 processors now include larger
widths in the AVX instruction set. For example, this year
Intel has released the first CPUs with AVX 512 bit vector
support. However, ARMs largest width is currently 128 bits.
These instruction set architectures include vector parallelism
because it is very effective at improving performance and
energy efficiency in many application domains, for example,
image, audio, and video processing, perceptual computing,
physics engines, fluid dynamics, rendering, finance, and
cryptography. Such applications also increasingly domi-
nate client-side and server-side web applications. Exploiting
vector parallelism in JavaScript should therefore improve
performance and energy efficiency on mobile, desktop, and
server, as well as hybrid HTML5 mobile JavaScript appli-
cations.

Design: This paper presents the design, implemen-
tation, and evaluation of SIMD language extensions for
JavaScript. We have two design goals for these extensions.
(1) Portable vector performance on vector hardware. (2) A
compiler implementation that does not require automatic
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vectorization technology to attain vector performance. The
first goal helps developers improve the performance of their
applications without unpleasant and unexplainable perfor-
mance surprises on different vector hardware. The second
goal simplifies the job of realizing vector performance in
existing and new JavaScript Virtual Machines (VMs) and
compilers. Adding dependence testing and loop transfor-
mation vectorizing technology is possible, but our design
and implementation do not require it to deliver vector
performance.

This paper defines SIMD language extensions and new
compiler support for JavaScript. The language extensions
consist of fixed-size immutable vectors and vector operators,
which correspond to hardware instructions and vector sizes
common to ARM and x86. The largest size common to
both is 128 bits. Although an API with variable or larger
sizes (e.g., Intel’s AVX 512-bit vectors) may seem appealing,
correctly generating code that targets shorter vector instruc-
tions from longer ones violates our vector performance
portability design goal. For example, correctly shortening
non-streaming vector instructions, such as shuffle/swizzle,
requires generating scalar code that reads all values out
and then stores them back, resulting in scalar performance
instead of vector performance on vector hardware.

We define new SIMD JavaScript data types (e.g. Int32x4,
Float32x4), constructors, lane accessors, operators (arith-
metic, bitwise operations, comparisons, and swizzle/shuffle),
and typed array accessors and mutators for these types. To
ease the compiler implementation, most of these SIMD op-
erations correspond directly to SIMD instructions common
to the SSE4 and NEON extensions. We choose a subset
that improve a wide selection of sophisticated JavaScript
applications, but this set could be expanded in the future.
This JavaScript language specification was developed in
collaboration with Google for the Dart programming lan-
guage, reported in a workshop paper [14]. The Dart and
JavaScript SIMD language specifications are similar in spirit.
The language extensions we present are in the final stages
of approval by the ECMAScript standardization committee
(Ecma TC39) [20].

Type Speculation: We introduce type speculation, a
modest twist on type inference and specialization for imple-
menting these SIMD language extensions. For every method
containing SIMD operations, the Virtual Machine’s Just-in-
Time (JIT) compiler immediately produces SIMD instruc-
tions for those operations. The JIT compiler speculates that
every high-level SIMD instruction operates on the specified
SIMD type. It translates the code into an intermediate
form, optimizes it, and generates SIMD assembly. In most
cases, it produces optimal code with one or two SIMD
assembly instructions for each high-level SIMD JavaScript
instruction. The code includes guards that check for non-
conforming types that reverts to unoptimized code when
needed. In contrast, modern JIT compilers for dynamic

languages typically perform some mix of type inference,
which uses static analysis to prove type values and eliminate
any dynamic checks, and type feedback, which observes
common types over multiple executions of a method and
then optimizes for these cases, generating guards for non-
conforming types [1, 11]. Our JIT compilers instead will
use the assumed types of the high-level SIMD instructions
as hints and generate code accordingly.

Implementation: We implement and evaluate this com-
piler support in two JavaScript Virtual Machines (V8 and
SpiderMonkey) and generate JIT-optimized SIMD instruc-
tions for x86 and ARM. Initially, V8 uses a simple JIT
compiler (full codegen) to directly emit executable code [7],
whereas SpiderMonkey uses an interpreter [6, 18]. Both will
detect hot sections and later JIT compilation stages will per-
form additional optimizations. We add JIT type speculation
and SIMD optimizations to both Virtual Machines (VMs).
Our JIT compiler implementations include type speculation,
SIMD method inlining, SIMD type unboxing, and SIMD
code generation to directly invoke the SIMD assembly
instructions. When the target architecture does not contain
SIMD instructions or the dynamic type changes from the
SIMD class to some other type, SpiderMonkey currently
falls back on interpretation and V8 generates deoptimized
(boxed) code.

Benchmarks: For any new language features, we must
create benchmarks for evaluation. We create microbench-
marks by extracting ten kernels from common application
domains. These kernels are hot code in these algorithms that
benefit from vector parallelism. In addition, we report results
for one application, skinning, a key graphics algorithm that
associates the skin over the skeleton of characters from a
very popular game engine. We measure the benchmarks
on five different Intel CPUs (ranging from an Atom to an
i7), and four operating systems (Windows, Unix, OS X,
Android). The results show that SIMD instructions improve
performance by a factor of 3.4× on average and improve
energy by 2.9× on average. SIMD achieves super-linear
speed ups in some benchmarks because the vector versions
of the code eliminate intermediate operations, values, and
copies. On the skinning graphics kernel, we obtain a speedup
of 1.8×.

Artifact: The implementations described in this paper
are in Mozilla Firefox Nightly builds and in submission
to Chromium. We plan to generate optimized scalar code
for machines that lack SIMD instructions in future work.
This submission shows that V8 and SpiderMonkey can
support SIMD language extensions without performing so-
phisticated dependence testing or other parallelism analy-
sis or transformations, i.e., they do not require automatic
vectorization compiler technology. However, our choice
does not preclude such sophisticated compiler support, or
preprocessor/developer-side vectorization support in tools
such as Emscripten [17], or higher level software abstrac-
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tions that target larger or variable size vectors, as applicable,
to further improve performance. By adding portable SIMD
language features to JavaScript, developers can exploit vec-
tor parallelism to make demanding applications accessible
from the browser. We expect that these substantial perfor-
mance and energy benefits will inspire a next generation of
JIT compiler technology to further exploit vector parallelism.

Contributions: This paper presents the design and
implementation of SIMD language extensions and compiler
support for JavaScript. No other high level language has pro-
vided direct access to SIMD performance in an architecture-
independent manner. The contributions of this paper are as
follows:

1) a language design justified on the basis of portability
and performance;

2) compiler type speculation without profiling in a dy-
namic language; and

3) the first dynamic language with SIMD instructions that
deliver their performance and energy benefits.

II. BACKGROUND AND RELATED WORK

Westinghouse was the first to investigate vector paral-
lelism in the early 1960s, envisioning a co-processor for
mathematics, but cancelled the effort. The principal inves-
tigator, Daniel Slotnick, then left and joined University of
Illinois, where he lead the design of the ILLIAC IV, the
first supercomputer and vector machine [3]. In 1972, it was
13 times faster than any other machine at 250 MFLOPS
and cost $31 million to build. CRAY Research went on to
build commercial vector machines [4] and researchers at Illi-
nois, CRAY, IBM, and Rice University pioneered compiler
technologies that correctly transformed scalar programs into
vector form to exploit vector parallelism.

Today, Intel, AMD, and ARM processors for servers,
desktop, and mobile offer coarse-grain multicore and fine-
grain vector parallelism with Single Instruction Multiple
Data (SIMD) instructions. For instance, Intel introduced
MMX instructions in 1997, the original SSE (Streaming
SIMD Extensions) instructions in 1999, and its latest ex-
tension, SSE4, in 2007 [9, 10]. All of the latest AMD and
Intel machines implement SSE4.2.ARM implements vector
parallelism with its NEON SIMD instructions, which are
optional in Cortex-A9 processors, but standard in all Cortex-
A8 processors.

The biggest difference between vector instruction sets in
x86 and ARM is vector length. The AVX-512 instruction
set in Intel processors defines vector lengths up to 512 bits.
However, NEON defines vector lengths from 64-bit up to
128-bit. To be compatible with both x86 and ARM vector
architectures and thus attain vector-performance portability,
we choose one fixed-size 128-bit vector length, since it is the
largest size that both platforms support. Choosing a larger
or variable size than all platforms support is problematic
when executing on machines that only implement a shorter

vector size because some long SIMD instructions can only
be correctly implemented with scalar instructions on shorter
vector machines. See our discussion below for additional
details. By choosing the largest size all platforms support,
we avoid exposing developers to unpleasant and hard to
debug performance degradations on vector hardware. We
choose a fixed size that all architectures support to deliver
performance portability on all vector hardware.

Future compiler analysis could generate code for wider
vector instructions to further improve performance, although
the dynamically typed JavaScript setting makes this task
more challenging than, for example, in Fortran compilers.
We avoided a design choice that would require significant
compiler support because of the diversity in JavaScript
compiler targets, from embedded devices to servers. Our
choice of a fixed-size vector simplifies the programming
interface, compiler implementation, and guarantees vector
performance on vector hardware. Supporting larger vector
sizes could be done in a library with machine-specific hooks
to attain machine-specific benefits on streaming SIMD oper-
ations, but applications would suffer machine-specific per-
formance degradations for non-streaming operations, such
as shuffle, because the compiler must generate scalar code
when an architecture supports only the smaller vector sizes.

Both SSE4 and NEON define a plethora of SIMD instruc-
tions, many more than we currently propose to include in
JavaScript. We choose a subset for simplicity, selecting oper-
ations based on an examination of demanding JavaScript ap-
plications, such as games. Most of our proposed JavaScript
SIMD operations map directly to a hardware SIMD in-
struction. We include a few operations, such as shuffleMix
(also known as swizzle), that are not directly implemented
in either architecture, but are important for the JavaScript
applications we studied. For these operations, the compiler
generates two or three SIMD instructions, rather than just
one. The current set is easily extended.

Intel and ARM provide header files which define SIMD
intrinsics for use in C/C++ programs (xmmintrin.h and
arm_neon.h, respectively). These intrinsics directly map
to each SIMD instruction in the hardware, thus there are
currently over 400 intrinsic functions [10]. Similarly, ARM
implements NEON intrinsics for C and C++ [2]. These
platform-specific intrinsics result in architecture-dependent
code, thus using either one directly in JavaScript is not
desirable nor an option for portable JavaScript code.

Managed languages, such as Java and C#, historically only
provide access to SIMD instructions through their native
interfaces, JNI (Java Native Interface) and C library in the
case of Java and C# respectively, which use the SIMD intrin-
sics. However, recently Microsoft and the C# Mono project
announced a preliminary API for SIMD programming for
.NET [15, 16]. This API is directly correlated to the set
of SSE intrinsics, which limits portability across different
SIMD instruction sets. In C#, the application can query the
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hardware to learn the maximum vector length and version
of the SSE standard on the architecture. This API results
in architecture-specific code embedded in the application, is
not portable, and is thus not appropriate for JavaScript.

Until now, dynamic scripting languages, such as PHP,
Python, Ruby, Dart, and JavaScript, have not included SIMD
support in their language specification. We analyzed the
application space and chose the operations based on their
popularity in the applications and their portability across the
SSE3, SSE4.2, AVX, and NEON SIMD instruction sets. We
observed a few additional SIMD patterns that we standardize
as methods, which the JIT compiler translates into multiple
SIMD instructions.

III. DESIGN RATIONALE

Our design is based on fixed-width 128-bit vectors. A
number of considerations influenced this decision, including
the programmer and the compiler writer.

A fixed vector width offers simplicity in the form of con-
sistent performance and consistent semantics across vector
architectures. For example, the number of times a loop iter-
ates is not affected by a change in the underlying hardware.
A variable-width vector or a vector width larger than the
hardware supports places significant requirements on the JIT
compiler. Given the variety of JavaScript JIT VMs and the
diverse platforms they target, requiring support for variable-
width vectors was considered unviable. Additionally, vari-
able width vectors cannot efficiently implement some impor-
tant algorithms (e.g. matrix multiplication, matrix inversion,
vector transform). On the other hand, developers are free to
add more aggressive JIT compiler functionality that exploits
wider vectors if the hardware provides them. Another con-
sideration is that JavaScript is heavily used as a compiler
target. For example, Emscripten compiles from C/C++ [? ],
and compatibility with mmintrin.h offered by our fixed
width vectors is a bonus.

Finally, given the decision to support fixed width vectors,
we selected 128 bits because it is the widest vector supported
by all major architectures today. Not all instructions can
be decomposed to run on a narrower vector instruction.
For example, non-streaming operations, such as the shuffle
instruction, in general cannot utilize the SIMD hardware
at all when the hardware is narrower than the software.
For this reason, we chose the largest common denominator.
Furthermore, 128 bits is a good match to many important
algorithms, such as single-precision transformations over
homogeneous coordinates in computer graphics (XYZW)
and algorithms that manipulate the RGBA color space.

IV. LANGUAGE SPECIFICATION

This section presents the SIMD data types, operations,
and JavaScript code samples. The SIMD language exten-
sions give direct control to the programmer and require
very simple compiler support, but still guarantees vector

performance when the hardware supports SIMD instruc-
tions. Consequently, most of the JavaScript SIMD operations
have a one-to-one mapping to common hardware SIMD
instructions. This section includes code samples for the most
common data types. The full specification is available on
line [20].

A. Data Types

We add the following three new fixed-width 128-bit
numeric value types to JavaScript.

Float32x4 Vector with four 32-bit single-precision floats
Int32x4 Vector with four 32-bit signed integers
Int16x8 Vector with 8 16-bit signed integers
Int8x16 Vector with 16 8-bit signed integers
Uint32x4 Vector with 4 32-bit unsigned integers
Uint16x8 Vector with 8 16-bit unsigned integers
Uint8x16 Vector with 16 8-bit unsigned integers
Bool32x4 Vector with 4 boolean values
Bool16x8 Vector with 8 boolean values
Bool8x16 Vector with 16 boolean values

Figure 1 shows the simple SIMD type hierarchy. Each SIMD
types has four to sixteen lanes, which correspond to degrees
of SIMD parallelism. Each element of a SIMD vector is a
lane. Indices are required to access the lanes of vectors. For
instance, the following code declares and initializes a SIMD
single-precision float and assigns 3.0 to a.

var V1 = SIMD.Float32x4 (1.0, 2.0, 3.0, 4.0);
var a = SIMD.Float32x4.extractLan(V1,3);

Figure 1: SIMD Type Hierarchy

B. Operations

Constructors: The type defines the following construc-
tors for all of the SIMD types. The default constructor
initializes each of the two or four lanes to the specified
values, the splat constructor creates a constant-initialized
SIMD vector, as follows.

var c = SIMD.Float32x4(1.1, 2.2, 3.3, 4.4);
// Float32x4(1.1, 2.2, 3.3, 4.4)
var b = SIMD.Float32x4.splat(5.0);
// Float32x4(5.0, 5.0, 5.0, 5.0)
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Accesssors and Mutators: The proposed SIMD stan-
dard provides operations for accessing and mutating SIMD
values, and for creating new SIMD values from variations
on existing values.

extractLane Access one of the lanes of a SIMD value.
replaceLane Create a new instance with the value change

for the specified lane.
select Create a new instance with selected lanes

from two SIMD values.
swizzle Create a new instance from another SIMD

value, shuffling lanes.
shuffle Create a new instance by shuffling from the

first SIMD value into the XY lanes and from
the second SIMD value into the ZW lanes.

These operations are straightforward and below we show a
few examples.

var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
var b = a.x; // 1.0
var c = SIMD.Float32x4.replaceLane(1, 5.0);
// Float32x4(5.0, 2.0, 3.0, 4.0)
var d = SIMD.Float32x4.swizzle(a, 3, 2, 1, 0);
// Float32x4(4.0, 3.0, 2.0, 1.0)
var f = SIMD.Float32x4(5.0, 6.0, 7.0, 8.0);
var g = SIMD.Float32x4.shuffle(a, f, 1, 0, 6, 7);
// Float32x4(2.0, 1.0, 7.0, 8.0)

Arithmetic: The language extension supports the fol-
lowing thirteen arithmetic operations over SIMD values:
add, sub, mul, div, abs, max, min, sqrt, reciprocalAp-
proximation, reciprocalSqrtApproximation, neg, clamp,
scale, minNum, maxNum
We show a few examples below.

var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
var b = SIMD.Float32x4(4.0, 8.0, 12.0, 16.0);
var c = SIMD.Float32x4.add(a,b);
// Float32x4(5.0, 10.0, 15.0, 20.0)
var e = SIMD.reciprocalSqrtApproximation(d);
// Float32x4(0.5, 0.5, 0.5, 0.5);
var f = SIMD.scale(a, 2);
// Float32x4(2.0, 4.0, 6.0, 8.0);
var lower = SIMD.Float32x4(-2.0, 5.0, 1.0, -4.0);
var upper = SIMD.Float32x4(-1.0, 10.0, 8.0, 4.0);
var g = SIMD.Float32x4.clamp(a, lower, upper);
// Float32x4(-1.0, 5.0, 3.0, 4.0)

Bitwise Operators: The language supports the follow-
ing four SIMD bitwise operators: and, or, xor, not

Bit Shifts: We define the following logical and
arithmetic shift operations and then show some ex-
amples: shiftLeftByScalar, shiftRightLogicalByScalar,
shiftRightArithmeticByScalar

var a = SIMD.Int32x4(6, 8, 16, 1);
var b = SIMD.Int32x4.shiftLeftByScalar(a,1);
// Int32x4(12, 16, 32, 2)
var c = SIMD.Int32x4.shiftRightLogicalByScalar(a, 1);
// Int32x4(3, 4, 8, 0)

Comparison: We define three SIMD comparison
operators that yield SIMD boolean values where 0xF
and 0x0 represent true and false respectively: equal,
notEqual, greaterThan, lessThan, lessThanOrEqual,
greaterThanOrEqual

var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
var b = SIMD.Float32x4(0.0, 3.0, 5.0, 2.0);
var gT = SIMD.Float32x4.greaterThan(a, b);
// Float32x4(0xF, 0x0, 0x0, 0xF);

Type Conversion: We define type conversion from
floating point to integer and bit-wise conversion (i.e., pro-
ducing an integer value from the floating point bit repre-
sentation): fromInt32x4, fromFloat32x4, fromFloat64x2,
fromInt32x4Bits, fromFloat32x4Bits, fromFloat64x2Bits

var a = SIMD.Float32x4(1.1, 2.2, 3.3, 4.4)
var b = SIMD.Int32x4.fromFloat32x4(a)
// Int32x4(1, 2, 3, 4)
var c = SIMD.Int32x4.fromFloat32x4Bits(a)
// Int32x4(1066192077, 1074580685, 1079194419,

1082969293)

Arrays: We introduce load and store operations for
JavaScript typed arrays for each base SIMD data type that
operates with the expected semantics. An example is to pass
in a Uint8Array regardless of SIMD type, which is useful
because it allows the compiler to eliminate the shift in going
from the index to the pointer offset. The extracted SIMD
type is determined by the type of the load operation.

var a = new Float32Array(100);
for (var i = 0, l = a.length; ++i) {
a[i] = i;

}
for (var j = 0; j < a.length; j += 4) {
sum4 = SIMD.Float32x4.add(sum4,

SIMD.Float32x4.load(a, j));
}
var result = SIMD.Float32x4.extractLane(sum4, 0) +

SIMD.Float32x4.extractLane(sum4, 1) +
SIMD.Float32x4.extractLane(sum4, 2) +
SIMD.Float32x4.extractLane(sum4, 3);

Figure 2 depicts how summing in parallel reduces the
number of sum instructions by a factor of the width of the
SIMD vector, in this case four, plus the instructions needed
to sum the resulting vector. Given a sufficiently long array
and appropriate JIT compiler technology, the SIMD version
reduces the number of loads and stores by about 75%.
This reduction in instructions has the potential to improve
performance significantly in many applications.

1.0$ 3.0$ 7.0$ 7.0$2.0$ 5.0$ 6.0$ 8.0$3.0$ 7.0$ 11.0$ 15.0$

17.0$ 24.0$16.0$ 18.0$

75.0$

Figure 2: Visualization of averagef32x4 summing in
parallel.

V. COMPILER IMPLEMENTATIONS

We add compiler optimizations for SIMD instructions to
Firefox’s SpiderMonkey VM [6, 18] and Chromium’s V8
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Figure 3: V8 Engine Architecture.

VM [7]. We first briefly describe both VM implementa-
tions and then describe our type speculation, followed by
unboxing, inlining, and code generation that produce SIMD
assembly instructions.

SpiderMonkey: We modified the open-source Spider-
Monkey VM, used by the Mozilla Firefox browser. Spider-
Monkey contains an interpreter that executes unoptimized
JavaScript bytecodes and a Baseline compiler that generates
machine code. The interpreter collects execution profiles and
type information [18]. Frequently executed JS functions,
as determined by the profiles collected by the interpreter,
are compiled into executable instructions by the Baseline
compiler. The Baseline compiler mostly generates calls into
the runtime and relies on inline caches and hidden classes
for operations such as property access, function calls, array
indexing operations, etc. The Baseline compiler also inserts
code to collect execution profiles for function invocations
and to collect type information. If a function is found to be
hot, the second compiler is invoked. This second compiler,
called IonMonkey, is an SSA-based optimizing compiler,
which uses the type information collected from the inline
cache mechanism to inline the expected operations, thereby
avoiding the call overhead into the runtime. IonMonkey
then emits fast native code translations of JavaScript. We
added SIMD support in the runtime. Instead of waiting for
the runtime to determine whether the method is hot, we
perform type speculation and optimizations for all methods
that contain SIMD operations. We modify the interpreter,
the Baseline compiler code generator, and the IonMonkey
JIT compiler. We add inlining of SIMD operations to the
IonMonkey compiler. We modify the register allocator and
bailout mechanism to support 128-bit values.

V8: We also modified the open-source V8 VM,
used by the Google Chromium browser. Figure 3 shows
the V8 Engine Architecture. V8 does not interpret. It
translates the JavaScript AST (abstract syntax tree) into
executable instructions and calls into the runtime when
code is first executed, using the Full Codegen compiler.

Figure 4 shows an example of the non-optimized code
from this compiler. This compiler also inserts profiling
and calls to runtime support routines. When V8 detects
a hot method, the Crankshaft compiler translates into
an SSA form. It uses the frequency and type profile
information to perform global optimizations across basic
blocks such as type specialization, inlining, global value
numbering, code hoisting, and register allocation. We
modify the runtime to perform type speculation when it
detects methods with SIMD instructions, which invokes
the SIMD compiler support. We added SIMD support
to both the Full Codegen compiler and the Crankshaft
compiler. For the Full Codegen compiler, the SIMD support
is provided via calls to runtime functions implemented in
C++, as depicted in Figure 4. We modified the Crankshaft
compiler, adding support for inlining, SIMD register
allocation, and code generation which produces optimal
SIMD code sequence and vector performance in many cases.

Both compilers use frequency and type profiling to inline
and then perform type specialization on other types, other
optimizations, register allocation, and finally generate code.

A. Type Speculation

Optimizing dynamic languages requires type specializa-
tion [8, 13], which emits code for the common type. This
code must include an initial type tests and a branch to
deoptimized generic code or jumps back to the interpreter
or deoptimized code when the types do not match [12].
Both optimizing compilers perform similar forms of type
specialization. In some cases, the compiler can use type
inference to prove that the type will never change and can
eliminate this fallback [1, 5]. For example, unboxing an
object and its fields generates code that operates directly
on floats, integers, or doubles, rather than generating code
that looks up the type of every field on each access, loads
the value from the heap, operates on them, and then stores
them back into the heap. While a value is unboxed, the
compiler assigns them to registers and local variables, rather
than emitting code that operates on them in the heap, to
improve performance.

The particular context of a SIMD library allows us to be
more agressive than typical type specialization. We speculate
types based on a number of simple assumptions. We consider
it a design bug on the part of the programmer to override
methods of the SIMD API, and thus we produce code
speculatively for the common case of SIMD methods op-
erating on SIMD types specified by our language extension.
If programs override the SIMD methods, type guards that
the compiler inserts in the program correctly detects this
case, but performance suffers significantly. Likewise, we
speculate that SIMD API arguments are of the correct type
and optimize accordingly. If they are not, the compiler
correctly detects this case, but performance will suffer.
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Original JavaScript Code
sum = SIMD.float32x4.add(sum, f32x4list.getAt(i));

V8 Full Codegen code (not optimized)
3DB5BCBE 222 ff3424 push [esp]
3DB5BCC1 225 89442404 mov [esp+0x4],eax
3DB5BCC5 229 ff75e8 push [ebp-0x18]
3DB5BCC8 232 ba02000000 mov edx,00000002
3DB5BCCD 237 8b7c2408 mov edi,[esp+0x8]
;; call .getAt()
3DB5BCD1 241 e84a24fcff call 3DB1E120
3DB5BCD6 246 8b75fc mov esi,[ebp-0x4]
3DB5BCD9 249 890424 mov [esp],eax
3DB5BCDC 252 ba04000000 mov edx,00000004
3DB5BCE1 257 8b7c240c mov edi,[esp+0xc]
;; call .add()
3DB5BCE5 261 e876fdffff call 3DB5BA60
3DB5BCEA 266 8b75fc mov esi,[ebp-0x4]
3DB5BCED 269 83c404 add esp,0x4
3DB5BCF0 272 8945ec mov [ebp-0x14],eax

V8 CrankShaft Code (optimized)
3DB5E306 358 0f101cc6 movups xmm3,[esi+eax*8]
3DB5E30A 362 0f58d3 addps xmm2,xmm3

Figure 4: Example V8 compiler generated code

These assumptions are predicated on the fact that the
SIMD instructions have well established types and seman-
tics, and that developers who use the API are expected to
write their code accordingly. Because we expect developers
to use SIMD instructions in performance-sensitive settings,
we have the opportunity to aggressively optimize methods
that contain them more eagerly, rather than waiting for these
methods to become hot. We expect the net result to be a
performance win in a dynamic optimization setting. Each of
these simple optimizations is a modest twist on conventional
JIT optimization of dynamic code that we tailor for the
performance critical SIMD setting.

Inlining: To achieve high performance with the pro-
posed SIMD language extension, we modified the opti-
mizing compilers to always replace method calls to SIMD
operations on SIMD types with inlined lower level instruc-
tions (IR or machine-level) that operate on unboxed values.
The compilers thus eliminates the need for unboxing by
keeping the values in registers. The compiler identifies all
the SIMD methods and inlines them. These methods are
always invoked on the same SIMD type and with the same
parameters with the appropriate SIMD or other type. Thus,
inlining is performed when the system observes the dynamic
types of each SIMD method call and predicts they are
monomorphic.

Value Boxing and Unboxing: Both baseline compilers
will box SIMD objects, arguments, and return values like any
regular JavaScript object. Both of the JavaScript VM JIT
compilers optimize by converting boxed types to unboxed
values [13]. As discussed above, boxed values are allocated
on the heap, garbage collected, and must be loaded and
stored to the heap on each use and definition, respectively. To
improve performance, the optimizing compilers put unboxed

values in registers, operate on them directly, and then stores
modified values back to the heap as necessary for correctness
and deoptimization paths. We modified this mechanism in
both compilers to operate over SIMD methods.

Example: Consider again the averagef32x4()
method from Section IV. In V8, the Full Codegen compiler
generates the code in Figure 4, which is a straight forward
sequence of calls into the V8 runtime. The parameters reside
in heap objects. Note below that the parameters reside in
heap objects and pointers to those heap objects are passed
on the stack. The two calls invoke the .add() operator and
the .getAt operator, respectively. The runtime has its own
established calling convention using registers. However, all
user visible values are passed on the stack.

The V8 Crankshaft compiler generates an SSA IR, di-
rectly represents SIMD values in registers, and uses SIMD
instructions directly instead of runtime calls. The final code
produced by the V8 Crankshaft optimizing compiler; after
inlining, unboxing, and register allocation is the optimal
sequence of just two instructions, as illustrated at the bottom
of Figure 4. SpiderMonkey generates the same code.

The code has just two instructions; one for fetching the
value out of the array and one for adding the two float32x4
values. The compiler puts sum variable in the xmm2 register
for the entire loop execution!

VI. METHODOLOGY

This section describes our hardware and software, mea-
surements, and workload configurations. All of our code,
workloads, and performance measurement methodologies
are publicly available.

A. Virtual Machines and Measurements

We use the M37, branch 3.27.34.6, version of V8 and
version JavaScript-C34.0a1 of SpiderMonkey for these ex-
periments.

B. Hardware Platforms

We measure the performance and energy of SIMD lan-
guage extension on multiple different architectures and
operating system combinations. Table I lists characteristics
of our experimental platforms. We report results on x86
hardware. Among the hardware systems we measure are an
in-order Atom processor, a recent 22 nm low-power dual-
core Haswell processor (i5-4200U) and a high-performance
quad-core counterpart (i7-4770K).

C. Benchmarks

To evaluate our language extensions, we developed a set
of benchmarks from various popular JavaScript application
domains including 3D graphic code, cryptography, arith-
metic, higher order mathematical operations, and visualiza-
tion. Table II lists their names and the number of lines of
code in the original, the SIMD version, and the number of
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Processor Architecture Frequency Operating System

i5-4200U Haswell 1.60 GHz Ubuntu Linux 12.04.4x64
i7-3720QM Sandy Bridge 2.60 GHz Mac OS X 10.9.4
i5-2520M Sandy Bridge 2.50 GHz Windows 7 64-bit
i7-4770K Haswell 3.50 GHz Ubuntu Linux 12.04.4
Atom Z2580 Cloverview 2.00 GHz Android 4.2.2

Table I: Experimental platforms

SIMD operations. For this initial SIMD benchmark suite, we
select benchmarks that reflect operations typical of SIMD
programming in other languages such as C++, and that are
sufficiently self-contained to allow JavaScript VM imple-
menters to use them as a guide for testing the correctness
and performance of their system.

Although JavaScript only supports double-precision nu-
meric types, we take advantage of recent optimizations in
JavaScript JIT compilers that optimize the scalar code to
use single-precision instructions when using variables that
are obtained from Float32x4Arrays. All of our scalar bench-
marks, with the exception of Average64x2, perform float32
operations (single precision). The scalar codes thus have the
advantage of single precision data sizes and optimizations,
which makes the comparison to their vector counterparts an
apples-to-apples comparison, where the only change is the
addition of SIMD vector instructions.

3D graphics: As noted in Section III, float32x4 opera-
tions are particularly useful for graphics code. Because most
of the compute intensive work on the CPU side (versus the
GPU) involves computing projection and views of matrices
that feed into WebGL, we collected the most common 4x4
matrix operations and a vertex transformation of a 4 element
vector for four of our benchmarks:

MatrixMultiplication 4x4 Matrix Multiplication
Transpose4x4 4x4 Matrix Transpose
Matrix4x4Inverse 4x4 Matrix Inversion
VertexTransform 4 element vector transform

Cryptography: While cryptography is not a common
domain for SIMD, we find that the hottest function in
Rijnadel cipher should benefit from SIMD instructions. We
extracted this function into the following kernel.

ShiftRows Rotation of row values in 4x4 matrix

Higher Level Math Operations: Mathematical opera-
tions such as trigonometric functions, logarithm, exponen-
tial, and power, typically involve complicated use of SIMD
instructions. We hand-coded a representative implementation
of the sinx4() function. We believe such operations will
become important in emerging JavaScript applications that
implement physics engines and shading. For example, the
AOBench shading (Ambient Occlusion benchmark) benefits
from 4-wide cosine and sine functions.

Sine Four element vector sine function.

LOC SIMD
Benchmark Scalar SIMD calls

Transpose4x4 17 26 8
Matrix4x4Inverse 83 122 86
VertexTransform 26 12 13
MatrixMultiplication 54 41 45
ShiftRows 12 18 3
AverageFloat32x4 9 9 2
AverageFloat64x2 9 9 2
Sinex4† 14 5 1
Mandelbrot 25 36 13
Aobench 120 201 119
Skinning 77 90 66

Table II: Benchmark characteristics. We measure the lines of
code (LOC) for the kernel of each benchmark in both scalar
and SIMD variants. †In the case of Sinex4, the table reports
the LOC for the simple sine kernel, which makes calls
to the sine function in the Math libary and the equivalent
SIMD implementation respectively. The full first-principles
implementation of SIMD sine takes 113 LOC and makes 74
SIMD calls.

Math, Mandelbrot, and more graphics: In addition,
we modified the following JavaScript codes to use SIMD
optimizations.

Average32x4 Basic math arithmetic (addition) on ar-
rays of float32 items.

Mandelbrot Visualization of the calculation of the
Mandelbrot set. It has a static number of
iterations per pixel.

AOBench Ambient Occlusion Renderer. Calculates
how exposed each point in a scene is to
ambient lighting.

Skinning Graphics kernel from a game engine to
attach a renderable skin to an underlying
articulated skeleton.

Developers are porting many other domains to JavaScript
and they are likely to benefit from SIMD operations, for
example, physics engines; 2D graphics, e.g., filters and
rendering; computational fluid dynamics; audio and video
processing; and finance, e.g., Black-Scholes.

D. Measurement Methodology

We first measure each non-SIMD version of each bench-
mark and configure the number of iterations such that it
executes for about 1 second in steady state. This step ensures
the code is hot and the JIT compilers will be invoked
on it. We measure the SIMD and non-SIMD benchmark
configurations executing multiple iterations 10 times. We
invoke each JavaScript VM on the benchmark using their
command line JavaScript shells. Our benchmark harness
wraps each benchmark, measuring the time and energy
using performance counters. This methodology results in
statistically significant results comparing SIMD to non-
SIMD results.
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Time: We measure the execution time using the low
overhead real time clock. We perform twenty measurements,
interleaving SIMD and scalar systems, and report the mean.

Energy: We use the Running Average Limit Power
(RAPL) Machine Specific Registers (MSRs) [19] to obtain
the energy measurements for the JavaScript Virtual Machine
running the benchmark. We perform event-based sampling
through CPU performance counters. We sample PACK-
AGE ENERGY STATUS which is the energy consumed by
the entire package, which for the single-die packages we use,
means the entire die. Two platforms, the Android Atom and
the Windows Sandy Bridge, do not support RAPL and thus
we report energy results only for the other three systems.

The performance measurement overheads are very low
(less than 2% for both time and energy). We execute both
version of the benchmarks using the above iteration counts.

VII. RESULTS

This section reports our evaluation of the impact of SIMD
extensions on time and energy.

A. Time

Figure 5 shows the speedup due to the SIMD extensions.
The graphs show scalar time divided by SIMD time, so any
value higher than one reflects a speedup due to SIMD. All
benchmarks show substantial speedups and unsurprisingly,
the micro benchmarks (left five) see greater improvement
than the more complex kernels (right five).

It may seem surprising that many of the benchmarks im-
prove by more than 4×, yet our SIMD vectors are only four-
wide. Indeed, the matrix shift rows benchmark improves by
as much as 7× over the scalar version. This super-linear
speed up is due to the use of our SIMD operations in an op-
timized manner that changes the algorithm. For example, the
code below shows the SIMD and nonSIMD implementations
of the shift row hot methods. Note how we eliminate the
need to have temporary variables because we do the shifting
of the rows by using SIMD swizzle operations. Eliminating
temporary variables and intermediate operations deliver the
super-linear speed ups. In summary, the kernels improved
by 2× to 9× due to the SIMD extension.

// Typical implementation of the shiftRows function
function shiftRows(state, Nc) {
for (var r = 1; r < 4; ++r) {
var ri = r*Nc; // get the starting index of row ’r’
var c;
for (c = 0; c < Nc; ++c)

temp[c] = state[ri + ((c + r) % Nc)];
for (c = 0; c < Nc; ++c)

state[ri + c] = temp[c];
} }
// The SIMD optimized version of the shiftRows function
// Function special cased for 4 column setting (Nc==4)
// This is the value used for AES blocks
function simdShiftRows(state, Nc) {
if (Nc !== 4) {

shiftRows(state, Nc);
}
for (var r = 1; r < 4; ++r) {
var rx4 = SIMD.Int32x4.load(state, r << 2);

if (r == 1) {
SIMD.Int32x4.store(state, 4,

SIMD.Int32x4.swizzle(rx4, 1, 2, 3, 0));
} else if (r == 2) {
SIMD.Int32x4.store(state, 8,

SIMD.Int32x4.swizzle(rx4, 2, 3, 0, 1));
} else { // r == 3
SIMD.Int32x4.store(state, 12,

SIMD.Int32x4.swizzle(rx4, 3, 0, 1, 2));
} } }

Of course the impact of the SIMD instructions is damp-
ened in the richer workloads for which SIMD instructions
are only one part of the instruction mix. Nonetheless, it
is encouraging to see that the skinning benchmark, which
is based on an important real-world commercial JavaScript
workload, enjoys a 1.8× performance improvement due to
the addition of SIMD instructions.

B. Energy

Figure 6 shows the energy improvement due to the SIMD
extensions. The graph shows scalar energy divided by SIMD
energy using the hardware performance counters. Any value
higher than one reflects an energy improvement due to
SIMD. The results are consistent with those in Figure 5,
with the improvements dampened slightly. The dampening is
a result of measurement methodology. Whereas performance
is measured on one CPU, package energy is measured for
the entire chip. The energy draw is affected both by ‘uncore’
demands such as the last level cache and memory controller,
as well other elements of the core such as L1 and L2 caches,
the branch predictor, etc., each of which are not be directly
affected by the SIMD extensions.

Nonetheless, the energy improvements are substantial.
For the real-world skinning workload the improvements are
between 25% and 55%, which is significant, particularly in
the power-sensitive context of a mobile device.

VIII. FUTURE WORK DISCUSSION

Our design goal of portability is intended to be consistent
with the existing JavaScript language specification. How-
ever, this constraint precludes platform-specific optimiza-
tions which are not currently accessible from JS that would
benefit performance and energy efficiency.

First, the opportunity to use wider vector lengths, such
as the AVX 512 vector instruction set that Intel is already
shipping, will deliver additional performance improvements,
particularly on the server side. Stream processors (in the
form of an API) can and will be built in software on top of
the current SIMD.js specification to utilize this hardware.

Second, a large number of operations are currently not
supported, including platform-specific ones. One approach
is to provide an extended API for SIMD.js that accesses
platform-specific instructions and optimizations. This API
would sit on top of and complement the base API de-
scribed in this paper. The extension API could offer op-
portunities for performance tuning, specialized code se-
quences, and support porting of code from other platforms.
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One can classify the remaining SIMD operations in two
groups: those that are portable but have semantic differences
(SIMD.Relaxed) and those that are only available on some
platforms (SIMD.Universe). Functions in SIMD.Relaxed
would mimic functions in the base API with corresponding
names, and provide weaker portability with greater potential
for performance (e.g., with unspecified results if NaN were
to appear in any part of the computation, treating zero as
interchangeable with negative zero, and unspecified results
if an overflow occurs). Functions in the SIMD.Universe
namespace could adhere to well defined semantics but their
availability would result in various code paths depending on
the architecture. For example, SIMD.isFast would need to
check whether the JIT compiler can generate a fast code
sequence from each operation for the current hardware.

IX. CONCLUSION

This paper describes the design and implementation of a
portable SIMD language extension for JavaScript. This spec-
ification is in the final stages of adoption by the JavaScript
standards committee and our implementations are available
in the V8 and SpiderMonkey open-source JavaScript VMs.
The contributions of this paper include a principled design
philosophy, a fixed-size SIMD vector language specification,
a type speculation optimization, and evaluation on critical
kernels. We describe the language extension, its implementa-
tion in two current JavaScript JIT compilers, and evaluate the
impact in both time and energy. Programability, portability,
ease of implementation, and popular use-cases all influenced
the design decision to choose a fixed-width 128-bit vector.
Our evaluation demonstrates that the SIMD extensions de-
liver substantial improvements in time and energy for vector
workloads. Our design and implementation choices do not
preclude adding more SIMD operations in the future, high-
level JavaScript libraries to implement larger vector sizes, or
adding automatic vectorizing compiler support. Another po-
tential avenue for future work is agressive machine-specific
JIT optimizations to utilize wider vectors when available
in the underling hardware. Our results indicate that these
avenues would likely be fruitful.
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