
The Yin and Yang of Hardware Heterogeneity:
Can Software Survive?

Kathryn S. McKinley
Microsoft Research

Abstract
Power and energy constraints are now the driving force in
devices from smartphones to servers. Quantitative power,
performance, and energy measurements suggest that hard-
ware heterogeneity to match software diversity has the po-
tential to deliver energy efficiency. However, programming
heterogeneous hardware directly is a nightmare. We discuss
some approaches and results that abstract, choose, and ex-
ploit hardware heterogeneity. New programming and system
abstractions are essential for establishing a parallel heteroge-
neous ecosystem in the post-Dennard era.
Categories and Subject Descriptors C.1.0 [Computer Sys-
tems Organization]: Processor Architectures; D.3.0 [Programming Lan-
guages]:

Categories and Subject Descriptors Performance, Languages,
Measurement

Keywords Power, Energy, Heterogeneous Hardware, Managed Lan-
guages, Virtual Machines

A New Computing Landscape
Over the past fifty years, computer software and hardware
erected layers of abstraction to hide complexity and inno-
vate rapidly. As processor speeds increased, the costs of
abstraction reduced in each hardware generation. Unfortu-
nately, physical limits in hardware are forcing a disruptive
break in this virtuous cycle of innovation, in part by break-
ing a key abstraction: sequential instruction execution.

Hardware Moore’s law predicts that technology advances
will shrink transistors, increasing the number of transistors
in the same silicon area. Shrinking transistors lowers their
gate delay and until recently translated into faster clock fre-
quencies, as predicted by Dennard scaling. The result was
exponential single processor performance gains. Between
2000 and 2010, physical limits of silicon made shrinking
transistors harder, in part due to power leakage, which Den-
nard scaling did not model. The result was the end of clock
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scaling. To continue to improve processor capabilities with
smaller transistors, hardware vendors turned to parallelism
and introduced chip multiprocessors.

Looking forward, physical limits on power, area, and
wires will require even more radical solutions. Already
emerging from research and industry are heterogeneous
processors that improve capabilities using specialized pro-
cessors and multiple types of general-purpose processors
that offer a range of power and performance characteristics.
Power constraints also limit memory scaling. Solutions to
meeting the ever present demand for more and faster memo-
ries are likely to combine non-volatile storage and traditional
DRAM. Parallel heterogeneous hardware requires parallel
and differentiated software components, exposing software
developers to ongoing hardware upheaval.

Software As in many good partnerships, software encour-
ages, drives, and exploits improving hardware capabilities.
Furthermore, hardware capabilities encourage, drive, and ex-
ploit substantial software innovations. This ecosystem her-
alded new ways to sell, deploy, and interact with hardware
over the past two decades. The entire computing ecosystem
changed to meet demands for portability, reliability, security,
correctness, new features, and time-to-market.

These demands drove developers away from native com-
piled ahead-of-time languages. Developers instead increas-
ingly choose high-level managed programming languages
with safe pointer disciplines, garbage collection, extensive
standard libraries, and dynamic just-in-time compilation for
hardware portability. For example, modern web services de-
liver software as a service in the browser by combining man-
aged languages, such as JavaScript on the client side and
PHP on the server side. In markets as diverse as finance and
mobile, Java and C# dominate. This ecosystem produced an
explosion of capabilities and an expanding base of develop-
ers that continue to change how we live and learn. Improv-
ing hardware capabilities hid much of the cost of software
abstractions, whereas software virtual machine technologies
hid hardware dependence and complexity.

The result was a virtuous cycle with ever more capable
and high-level computing systems. However, post-Dennard
era processors break this virtuous cycle by changing abstrac-
tions and changing assumptions built into hardware and soft-
ware abstraction layers, as depicted in Figure 1.



Breaks	
  in	
  the	
  Hardware/So2ware	
  Virtuous	
  Cycle	
  

5	
  

Devices	
  	
  
2x	
  faster,	
  more	
  capable,	
  
cheaper,	
  smaller,	
  …	
  

	
  
	
  
	
  

doubling	
  of	
  
transistors	
  

Hardware	
  Complexity	
  
SequenEal	
  Interface	
  

So2ware	
  InnovaEon	
  
	
  
	
  
	
  So2ware	
  Complexity	
  

SequenEal	
  Interface	
  

end	
  of	
  
Dennard	
  
Scaling	
  

SequenEal	
  Interface	
  

Figure 1. The virtuous cycle of hardware/software innova-
tion is broken by the end of Dennard scaling and the intro-
duction of a new hardware abstraction.

Moving Forward The economics of commodity hardware
and the potential for efficiency through specialization create
a tension for the designers of future systems. The more spe-
cialized the hardware, the higher the potential, but the more
likely only a small set of applications will benefit. The less
specialized the hardware is, the less the potential improve-
ment, but the more applications that may benefit. At the lim-
its, commodity processors execute every appliation, but are
inefficient, whereas an application specific ASIC executes
a single application very efficiently. These practical con-
cerns motivate heterogeneous processors that use the same
instruction set architectures (ISAs) but have different power
and performance characteristics. For example, combining a
few big cores with numerous little cores to meet power con-
straints, where big cores deliver the highest possible perfor-
mance but are power hungry, and multiple little cores deliver
throughput using substantially less power but with less per-
formance. Vendors, such as NVIDIA, TI, and Qualcomm,
already are shipping big/little heterogeneous systems.

To create a new virtuous cycle for modern systems rang-
ing from smartphones to data centers requires new abstrac-
tions. The best abstractions meet current design goals and
capabilities, but ease, encourage, and even create the poten-
tial for future innovations. Whereas in the Dennard era, per-
formance was the primary design goal, the post-Dennard era
adds power and energy to every market segment, not just
mobile and embeded. Optimizing for performance, power,
and energy (energy = power × time) is substantially more
challenging than optimizing solely for performance.

Creating a new energy-efficient ecosystem requires deep
understanding of the power, performance, and energy char-
acteristics of software and optimizing for the hardware trans-
parently. Whereas the programming language, system, and
architecture communities understand how to measure and
optimize performance, systematic power and energy mea-

surements are not yet common. We show how power mea-
surements lead to new insights about energy efficiency on
modern hardware, and the differences between native, man-
aged, parallel, and sequential workloads. With deeper under-
standing of capabilities in hand, we explore potential ways
to optimize, matching software diversity to heterogeneous
hardware using existing and new abstractions.

Heterogeneous hardware requires software with differen-
tiated characteristics, parallelism (yes, still!), and ubiquity.
We identify and exploit these characteristics to improve en-
ergy efficiency in case studies ranging from managed appli-
cations to smartphones to interactive services in data centers.
For managed applications, we hide overheads from virtual
machine services (such as garbage collection and just-in-
time compilation), and optimize mapping threads to cores by
learning properties such as parallelism, criticality, and sensi-
tivity to core choice. For smartphones, we learn and optimize
the tradeoff of responsiveness and battery drain. For interac-
tive cloud services, such as search, we learn and optimize
the quality and latency tradeoff, improving performance and
energy efficiency. These results offer several insights for op-
timizing future systems. (1) Dynamically monitoring and
adapting to the application is critical to energy efficiency.
(2) Although software performance improvements on a par-
ticular hardware platform almost always lead to energy ef-
ficiency improvements, exploiting tradeoffs in latency and
quality of service inherent in many emerging applications,
both at design time and on deployed hardware, has the po-
tential to improve energy efficiency more substantially.

These results offer hope that software may perhaps thrive
as heterogeneous hardware evolves in the post-Denard era.
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