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1. INTRODUCTION33

As computer systems support more aspects of modern life, from finance to health34
care to energy, the security of these systems becomes increasingly important. Current35
security policies and enforcement mechanisms are typically sprinkled throughout an36
application, making security policies difficult to express, change, and audit. Operating37
system security abstractions, such as file permissions and user IDs, are too coarse38
to express many desirable policies, such as protecting a user’s financial data from a39
program downloaded from the Internet.40

Furthermore, poor integration of Programming Language (PL) constructs and Oper-41
ating System (OS) security mechanisms complicates the expression and enforcement42
of security policies. For example, a policy against sending a user’s credit card number43
on the network should be enforced whether the number originates from a file or an44
application data structure. In current systems, the OS governs the security of files,45
and application-specific logic governs the security of data structures; because these46
mechanisms are completely distinct, developers must understand both mechanisms47
and ensure that they interoperate correctly. This article describes Laminar, which48
integrates PL and OS security mechanisms under a common set of programmer ab-49
stractions and uniformly enforces programmer-specified security policies at all levels50
of the software stack.51

Laminar builds on the Decentralized Label Model (DLM) [Myers and Liskov 1997],52
which expresses more powerful, sophisticated, and intuitive security policies than tra-53
ditional security models. The enforcement of DLM restrictions is called Decentralized54
Information Flow Control (DIFC). DIFC is more expressive than traditional access55
control. For instance, traditional access control models are all-or-nothing; once an ap-56
plication has the right to read a file, it can do anything with that file’s data. In contrast,57
a DIFC policy may give an application the right to read a file and simultaneously for-58
bid it to broadcast the contents of the file over an unsecured network channel. A DIFC59
implementation dynamically or statically enforces user-specified security policies by60
tracking information flow throughout the system.61

In the decentralized label model, users create tags, which represent secrecy or in-62
tegrity concerns. A set of tags is called a label, and all data and application threads63
have an associated secrecy label and an integrity label. The system restricts the flow64
of information according to these labels. Secrecy guarantees prevent sensitive infor-65
mation from escaping the system (no illegal reads),1 and integrity guarantees prevent66
external information from corrupting the system (no illegal writes).67

As an example, suppose Alice and Bob want to schedule a meeting without disclosing68
other appointments on their calendars. In the DLM model, Alice and Bob each place69
a tag in the secrecy label on their calendar files. Alice and Bob can give the calendar70
application permission to read these files but only if the application taints its own71
secrecy label with the secrecy tags of each file. A tainted application thread may no72
longer write to less-secret outputs, such as the terminal or the network. In our example,73
the tainted thread may read each calendar file and select an agreeable meeting time,74
but the thread can only write output to a file or data structure labeled with both Alice’s75
and Bob’s secrecy tags. In order for the calendar application to output a nonsecret76
meeting time, Alice and Bob must provide a declassifier with the capability of removing77
their tags from a datum’s secrecy label. The declassifier is a piece of code responsible78
for checking that its output conforms to a secrecy policy associated with a tag; the79
declassifier may write acceptable data to a less-secret output. In the calendar example,80
Alice and Bob might both provide declassifiers; each declassifier can generate output81

1The literature uses both confidentiality and secrecy for this guarantee. We use S for secrecy, I for integrity,
and C for capabilities to avoid ambiguity.
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without that user’s tag in the secrecy label. For instance, Bob’s declassifier might read 82
the labeled meeting time and check that the output is simply a date and does not include 83
mention of his upcoming vacation to Las Vegas. Note that DIFC exists in addition to 84
traditional access control; for example, a web server would not be allowed to open either 85
calendar file due to standard OS-level permission checks. 86

Similarly, Alice may use an integrity label on her calendar file to ensure that any 87
updates to the file respect certain invariants. Suppose Alice’s calendar is stored as a 88
chronologically sorted list of appointments. Untrusted code that adds appointments to 89
Alice’s calendar might serialize her appointments into the on-disk format and store the 90
pending data in a memory buffer. Alice could then run this buffer through an endorser, 91
which ensures that the pending data write meets the specifications of her calendar for- 92
mat, such as checking that all appointments are sorted chronologically. Just as secrecy 93
labels can be removed from the output of a computation by a declassifier, an endorser is 94
trusted with the capability to add a tag to the integrity label of inputs that it validates. 95
Once the endorser has validated that its input is trustworthy, the endorser adds Alice’s 96
integrity tag to its integrity label and writes a new version of her calendar file. 97

DIFC provides two key advantages: precise rules for the legal propagation of data 98
through an application and the ability to localize security policy decisions. In the 99
calendar example, the secrecy labels ensure that any program that can read the data 100
cannot leak the data, whether accidentally or intentionally. The label is tied to the data, 101
and the label modulates how data can flow through threads and data containers (e.g., 102
files and data structures). The decision to declassify data is localized to small pieces of 103
code that programmers may closely audit. The result is a system where security policies 104
are easier to express, maintain, and modify than with traditional security models. 105

Combining the Strengths of Language and Operating System Enforcement. Laminar 106
is a new DIFC system design that features a common security abstraction and labeling 107
scheme for program objects and OS resources such as files and sockets. The Java 108
Virtual Machine (VM) and OS coordinate to comprehensively enforce rules within an 109
application, among applications, and through OS resources. 110

Prior DIFC systems are implemented at the language level [Chandra and Franz 111
2007; Myers and Liskov 1997; Myers et al. 2001; Nair et al. 2008] in the operating 112
system [Krohn et al. 2007; Vandebogart et al. 2007; Zeldovich et al. 2006], or in the 113
architecture [Tiwari et al. 2009a; Vachharajani et al. 2004; Zeldovich et al. 2008]. 114
Each approach has strengths and limitations. Language-based DIFC systems can track 115
information flow through data structures within a program but have little visibility into 116
OS-managed resources, such as files and pipes. In contrast, OS-based DIFC systems 117
track labels at the coarse granularity of pages or a process’s virtual address space 118
rather than on individual data structures. Information flow rules are enforced on OS- 119
level abstractions, such as sockets and files. For many simple applications, these coarse- 120
grained rules simplify DIFC adoption. However, OS protection mechanisms are not a 121
good fit for managing information flow on data structures within an application because 122
the OS’s primary tool is page-level protections. Although an application developer could 123
group objects with similar labels on similarly labeled pages, this undermines developer 124
productivity and application efficiency. Thus, we believe that coordinating language and 125
OS mechanisms will maximize security and programmability. 126

We limit the scope of this article to DIFC implementations on commodity hardware. 127
Architecture-based solutions track data labels on various low-level hardware features, 128
such as CPU registers, memory, cache lines, or even gates, but require similar coordi- 129
nation with trusted software to manage the labels. 130

Language-based DIFC systems can be further categorized by how they enforce DIFC 131
rules: static analysis [Myers and Liskov 1997; Myers et al. 2001], dynamic analysis 132
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[Shroff et al. 2007], or a hybrid [Chandra and Franz 2007; Nair et al. 2008]. Static133
systems generally introduce a type system that is expressive and powerful but difficult134
to program or retrofit onto existing code. Because static systems do most security anal-135
ysis at compile time, they introduce little runtime overhead; static systems may insert136
dynamic checks for properties that cannot be established at compile time. Dynamic sys-137
tems generally enforce information flow rules by mediating every operation at runtime138
but with relatively high performance overheads. Purely dynamic systems also struggle139
to regulate implicit flows (discussed further in Section 6.4) and can ultimately reject140
safe programs or leak sensitive data [Russo and Sabelfeld 2010].141

Most language-level systems are actually a hybrid of static and dynamic analysis.142
Each design strikes a balance among changes to the programming language to facili-143
tate static analysis, runtime overheads, and security guarantees. The Laminar design144
restricts the programming model slightly, ensuring that all security properties can be145
checked dynamically. Laminar does employ intraprocedural static analysis at Just-in-146
Time (JIT) compilation time to optimize security checks.147

Limiting the Scope of Analysis. A second key contribution of Laminar is the design of148
a language-level feature, called a security method, which strikes a unique balance be-149
tween programmability and efficiency. Developers place all security-sensitive program150
logic in security methods. The Laminar VM requires that all operations on labeled data151
or system resources occur within security methods, according to developer-specified152
policies. In addition, all methods dynamically invoked by a security method, directly or153
transitively, are security methods. Code that attempts to manipulate security-sensitive154
data outside of a security method will fail.155

Laminar enforces stringent requirements on transitions to and from security meth-156
ods, restricting both control and data flow. These restrictions are enforced dynamically157
by VM instrumentation. Security methods reduce the overhead of dynamic security158
checks because only code within security methods requires complex DIFC checks.159

Security methods also minimize the code changes required to adopt DIFC. In our160
case studies, changes to adopt security methods account for 10% or fewer of the total161
lines of code, which suggests that pervasive program modifications are unnecessary to162
use DIFC with Laminar.163

Contributions. The contributions of this article are as follows:164

(1) We present the design and implementation of Laminar, the first system to unify165
PL and OS mechanisms for enforcing DIFC. Laminar features a novel division of166
responsibilities between the VM and OS.167

(2) We introduce security methods, an intuitive security primitive that reduces theQ2168
work required to convert an application to use DIFC, makes code auditing easier,169
and makes the DIFC implementation simpler and more efficient.170

(3) We present the design and implementation of Laminar in the Linux OS and Jikes171
RVM, a Java research VM.172

(4) We evaluate four case studies that retrofit security policies onto existing code.173
These case studies require modification of less than 10% of the total code base and174
incur overheads from Laminar ranging from 5% to 56%.175

(5) Based on our experiences, we substantially modified the conference publication176
that introduced this research [Roy et al. 2009]. We replace security regions with177
security methods to simplify our implementation. We use only dynamic analy-178
sis to simplify the enforcement security policies. We identify and fix a covert179
channel bug arising from the interaction of termination and concurrency. Fur-180
thermore, we improve the programming model for initializing and using security181
labels.182
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(6) We describe strengths and limitations of the Laminar model, its open challenges, 183
and potential solutions. In particular, Laminar is one of the few DIFC systems to 184
attempt multithreading support, which is prone to high-bandwidth timing chan- 185
nels. Laminar cannot prevent all of these timing channels, but we outline how 186
subsequent work by others [Askarov et al. 2010; Askarov and Myers 2012; Zhang 187
et al. 2011] could strengthen the Laminar threading model. 188

Initial results suggest that integrating PL and OS DIFC enforcement is practical and 189
incurs low overheads. Our experience with Laminar shows that it prevents some ter- 190
mination information channels, but it cannot yet make guarantees on some timing 191
channels. We believe restrictions on the programming model within security methods 192
can solve some of these problems, but this research leaves open the definition of such 193
a formalism and accompanying proofs. Laminar provides a first step for application 194
developers to write expressive abstractions with fine-grained, powerful, and useful 195
security policies that span program data structures and system resources. 196

2. DIFC MODEL 197

This section describes how the DIFC model specifies and enforces safe information 198
flows and how Laminar embodies the DIFC model. All DIFC systems denote the sen- 199
sitivity of information and the privileges of the participating users, as well as describe 200
application-specific policies that map between users and sensitive information. The 201
security policy is defined in terms of principals that read and write data in the system. 202
Examples of principals in DIFC systems are users [Myers et al. 2001], processes [Krohn 203
et al. 2007], and kernel threads [Zeldovich et al. 2006]. Principals in Laminar are ker- 204
nel threads, which ultimately work on behalf of human users or other application-level 205
actors. 206

2.1. DIFC Abstractions 207

Standard DIFC security abstractions include tags, labels, and capabilities. Tags are 208
short, arbitrary tokens drawn from a large universe of possible values (T ) [Krohn et al. 209
2007]. Programmers use tags to denote a unique secrecy or integrity property, but 210
a tag has no inherent meaning. Programmers may create tags dynamically and may 211
persist tags beyond execution of an application. A set of tags is called a label. In a DIFC 212
system, any principal can create a new tag for secrecy or integrity. For example, a web 213
application might create one secrecy tag for its user database and a separate secrecy tag 214
for each user’s data. The secrecy tag on the user database will prevent authentication 215
information from leaking to the network. The tags on user data will prevent a malicious 216
user from writing another user’s secret data to an untrusted network connection. 217

Principals assign labels to data objects. Data objects include program data structures 218
(e.g., individual objects, arrays, lists, and hash tables) and system resources (e.g., files 219
and sockets). Previous OS-based systems limit principals to the granularity of a process 220
or support threads by enforcing DIFC rules at the granularity of a page. Laminar is 221
the first to support threads as principals and enforce DIFC at object granularity. 222

Each data object and principal x has two labels, Sx for secrecy and Ix for integrity. 223
A tag t in the secrecy label Sx of a data object denotes that it may contain information 224
private to principals with tag t. Similarly, a tag u in Ix indicates that the owner of in- 225
tegrity tag uendorses the data. Data integrity is a guarantee that data exist in the same 226
state as when they were endorsed by a principal. For example, if Microsoft endorses a 227
data file, then a user can choose to trust the file’s contents if she trusts Microsoft. With 228
integrity enforcement, only Microsoft may modify the integrity-labeled file. However, 229
Microsoft may choose to remove the integrity label, or some other application may write 230
the file, but without the Microsoft integrity label. In either case, the file’s consumer will 231
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no longer trust the contents as coming from Microsoft. In general, a principal’s labels232
restrict the interaction that the principal has with other principals and data objects.233

A partial ordering of labels imposed by the subset relation forms a lattice [Denning234
1976]. Secrecy and integrity may be treated separately, as asymmetric duals. The235
bottom of the secrecy lattice is the least restricted label (public): Any principal can236
read it. The bottom of the integrity lattice is the most secure (trusted): All principals237
can trust it. Adding secrecy tags to a label restricts the use of the data, moving higher in238
the lattice. The most restricted data at the top of the secrecy lattice includes all secrecy239
tags. The bottom of the integrity lattice is the most secure (trusted) and includes all240
integrity tags. Removing integrity tags moves the label higher in the lattice and the241
data are less trusted. The top of the integrity lattice has no integrity tags—no principal242
endorses it.243

Some other DIFC explanations put an empty integrity label at the bottom of the244
lattice so that adding tags moves up the lattice, as opposed to the preceding description245
that places the label with all integrity tags at the bottom, so that moving up the lattice246
adds restrictions. Both representations are functionally equivalent. For clarity, this247
article generally discusses the secrecy and integrity labels separately, but occassionally248
some explanations treat principals and data as having a single label and capability set249
for ease of exposition.250

Because Laminar’s threat model includes code that may be contributed to the appli-251
cation by an adversary, all application data are assigned an empty label (public and252
untrusted) by default. Data from the JVM itself are public and trusted. The program-253
mer need not label every data structure, nor does the OS need to label every file in the254
file system. Code that executes with a nonempty integrity label must sanitize untrusted255
data before a read. Default empty labels make Laminar easier to deploy incrementally,256
but introduce some asymmetry in the treatment of secrecy and integrity tags.257

A principal may change the label of a data object or principal if and only if the258
principal has the appropriate capabilities, which generalize ownership of tags [Myers259
and Liskov 1997]. A principal p has a capability set Cp that defines whether the260
principal has the privilege to add or remove a tag. For each tag t, let t+ and t− denote261
the capabilities to add and remove the tag t.262

If tag t is used for secrecy, a principal with the capability t+ may classify data263
with secrecy tag t. Classification raises data to a higher secrecy level. Given the t−264
capability, a principal may declassify these data. Declassification lowers the secrecy265
level. Principals may add t to their secrecy label if they have the t+ capability. If the266
principal adds t, then we call it tainted with the tag t. A principal taints itself when it267
wants to read secret data. To communicate with unlabeled devices and files, a tainted268
principal must use the t− capability to untaint itself and to declassify the data it wants269
to write. Note that DIFC capabilities are not pointers with access control information,270
which is how they are commonly defined in capability-based operating systems [Levy271
1984; Shapiro et al. 1999].272

DIFC handles integrity similarly to secrecy. A principal with integrity tag t is claim-273
ing to represent a certain level of integrity; the system prevents the principal from274
reading data with a lower integrity label, which could undermine the integrity of the275
computation. Given the t+ capability, a principal may endorse data with integrity tag276
t, generally after validating that the input data meet some requirements. Given the t−277
capability, a principal may drop the endorsement and read untrusted data. For exam-278
ple, code and data signed by a software vendor could run with that vendor’s integrity279
tag. If the program wants to load an unlabeled, third-party extension, the principal280
drops the endorsement of the tag.281

Note that the capability set Cp is defined on tags. A tag can be assigned to a secrecy282
or integrity label. In practice, a tag is rarely used for both purposes. C−

p is the set of283
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tags that principal p may declassify (drop endorsements), and C+
p is the set of tags that 284

p may classify (endorse). Principals and data objects have both a secrecy and integrity 285
label; a data object with secrecy label s and integrity label i is written: 〈S(s), I(i)〉. An 286
empty label set is written: 〈S(), I()〉. The capability set of a principal that can add both 287
s and i but can drop only i is written: 〈C(s+, i+, i−)〉. 288

2.2. Restricting Information Flow 289

Programs implement policies to control access and propagation of data by using labels 290
to limit the interaction among principals and data objects. Information flow is defined 291
in terms of data moving from a source x to a destination y, at least one of which is 292
a principal. For example, principal x writing to file y, principal x sending a message 293
to principal y, and principal y reading a file x are all information flows from x to y. If 294
principal x writes to a file y, then we say information flows from source x to destination 295
y. Laminar enforces the following information flow rules for x to y: 296

Secrecy rule. Bell and LaPadula introduced the simple security property and the 297
*-property for secrecy [Bell and LaPadula 1973]. The simple security property states 298
that no principal may read data at a higher level (no read up), and the *-property 299
states that a principal may not write data to a lower level (no write down). Expressed 300
formally, information flow from x to y preserves secrecy if: 301

Sx ⊆ Sy

Note that x or y may make a flow feasible by using their capabilities to explicitly drop 302
or add a label. For example, x may make a flow feasible by removing a tag t from its 303
label Sx if it has the declassification capability for t (i.e., t− ∈ C−

x ). Similarly, y may use 304
its capabilities in C+

y to extend its secrecy label and receive information. 305

Integrity rule. The integrity rule constrains who can alter information and restricts 306
reads from lower integrity (no read down) and writes to higher integrity (no write up) 307
[Biba 1977]. Laminar enforces the following rule: 308

Iy ⊆ Ix

Intuitively, the integrity label of x should be at least as strong as destination y. Just 309
like the secrecy rule, x may make a flow feasible by endorsing information sent to a 310
higher integrity destination, which is allowed if x has the appropriate capability in C+

x . 311
Similarly, y may need to reduce its integrity level, using C−

y , to receive information 312

from a lower integrity source. 313

Label changes. According to the previous two rules, a principal can enable informa- 314
tion flow by using its current capabilities to drop or add tags from its label. Laminar 315
requires that the principal must explicitly change its current labels. Zeldovich et al. 316
show that automatic, or implicit, label changes can form a covert storage channel 317
[Zeldovich et al. 2006]. 318

In Laminar, a principal p may change its label from L1 to L2 if it has the capability 319
to add tags present in L2 but not in L1, and can drop the tags that are in L1 but not in 320
L2. This is formally stated as: 321

(L2 − L1) ⊆ C+
p and (L1 − L2) ⊆ C−

p .

2.3. Calendar Example 322

Again, consider scheduling a meeting between Bob and Alice using a calendar server 323
that is not administered by either Alice or Bob. Alice’s calendar file has a secrecy tag, 324
a, and integrity tag i; Bob’s calendar file has a secrecy tag, b. 325
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Ensuring secrecy. Focusing on Alice, she gives a+ to the scheduling server to let it326
read her secret calendar file, which has label 〈S(a)〉. A thread in the server uses the327
a+ capability to start a security method with secrecy tag a that reads Alice’s calendar328
file. Once the server’s thread has the label 〈S(a)〉, it can no longer return to the empty329
label because it lacks the declassification capability, a−. As a result, the server thread330
can read Alice’s secret file, but it can never write to an unlabeled device like the disk,331
network, or display. If the server thread creates a new file, it must have label 〈S(a)〉,332
which is unreadable to its other threads. Before the server thread can communicate333
information derived from Alice’s secret file to another thread, the other thread must334
add the a tag, and it also becomes unable to write to unlabeled channels.335

Ensuring integrity. Alice also places an integrity label on her calendar file, which336
is propagated to the heap data structures representing her calendar. In order for any337
thread to update Alice’s calendar, the thread must add the i integrity tag to its label.338
In general, the capability to add this tag would be restricted to code that is trusted to339
check that inputs or updates uphold application invariants. In this example, much of340
the calendar code may run with an empty integrity label, but once a meeting request341
is ready to be added to Alice’s calendar, the meeting request is checked by Alice’s342
endorser. If the checks pass, Alice’s endorser adds the i tag to the meeting request data343
structure. The code that writes the updated calendar to disk must also run with the i344
tag, preventing data from untrusted heap objects from inadvertently being written to345
the calendar file.346

Sharing secrets with trusted partners. Alice and Bob collaborate to schedule a meeting347
while both retain fine-grained control over what information is exposed. After the348
scheduler has read Alice’s and Bob’s calendar files, the output data are labeled with the349
a and b secrecy tags. Alice’s module has access to her a− capability, so the server calls350
her code, which validates that the output does not disclose unintended information351
to Bob. Alice’s module then removes the a tag from the output data, publishing the352
meeting time to Bob. Alice controls which of her data flow out of the scheduler. Bob353
does the same, and the scheduler can communicate with both of them and coordinate354
their possible meeting times.355

Discussion. In this example, Alice specifies a declassifier as a small code module356
that can be loaded into a larger server application, which can be completely ignorant357
of DIFC and requires no modifications to work with Alice’s DIFC-aware module. For358
previous DIFC systems, this example is more cumbersome. OS-based DIFC systems359
require the declassifier to run as a separate process. Language-based DIFC systems re-360
quire programmers to annotate the entire application. By integrating OS and language361
techniques, Laminar simplifies incremental DIFC adoption.362

2.4. Goals and Threat Model363

This subsection describes our threat model and its rationale at a high level. We revisit364
these security properties in Section 6, after describing our system design and imple-365
mentation. Section 10 surveys related work in more detail, but here we summarize key366
categories of DIFC systems and challenges in DIFC adoption. DIFC systems can be367
roughly categorized by how they enforce flows: static analysis, dynamic language-level368
analysis, or OS-level enforcement.369

Incremental Adoption. A key design goal of Laminar is facilitating incremental adop-370
tion of DIFC on a large body of code. The ease with which a programmer can adopt371
DIFC is an issue for most DIFC designs. DIFC based on static analysis often re-372
quires substantial annotations of the program with a new type system. OS-based DIFC373
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requires substantial reorganization of the application code in order to segregate data 374
pages and code by label. It is unclear whether a language-level dynamic analysis is 375
any easier to adopt. Although there has been some work in this area, it has generally 376
enforced only simple policies on outputs [Chandra and Franz 2007] or had problems 377
with “label creep,” which requires error-prone, manual analysis by the programmer 378
[Nair et al. 2008]. 379

The insight underlying Laminar’s security-method-based design is that many appli- 380
cations already handle sensitive data only in relatively small portions of their code. 381
For instance, web server authentication code is generally small relative to all of the 382
code that generates and transmits web content. Thus, Laminar is designed so that the 383
programmer audits only these relatively small portions of preexisting code for correct 384
handling of sensitive data. Sensitive code is placed in security methods, and the system 385
dynamically checks that all information flows according to the restrictions imposed by 386
the developer and end users. 387

Laminar enforces DIFC rules using a combination of dynamic analysis and pro- 388
grammer annotations (i.e., security methods). Compared to other dynamic or hybrid 389
language-level systems, Laminar is generally more efficient than previous systems be- 390
cause of careful implementation choices and limited scope of analysis. As discussed 391
earlier, all DIFC systems require some measure of work to adopt, and our experience 392
is that security methods minimize the effort without sacrificing functionality. 393

Integration of OS and PL Abstractions. Laminar integrates OS and PL DIFC abstrac- 394
tions to implement uniform policies and label management across resources. Existing 395
systems cannot easily integrate these abstractions. For instance, a PL system might 396
enforce all-or-nothing policies about output or might make educated guesses about 397
information flow through OS abstractions, but it cannot ensure that these rules are 398
followed once data leaves the application. 399

Threading. A key aspect of incremental deployability is tracking information flow 400
through a program, including with multiple, concurrent threads. OS systems medi- 401
ate multiprocess concurrency through explicit channels and at page granularity. In 402
practice, these systems cannot track fine-grained information flow through traditional 403
thread packages without major modifications to the application. PL systems have gen- 404
erally avoided multithreading because it increases the risks of covert channels. Lami- 405
nar does permit multithreading, but cannot prevent all timing channels attacks. This 406
article identifies some threats and points to solutions developed after the initial publi- 407
cation of this work [Roy et al. 2009] that could be integrated into security methods to 408
mitigate these channels. 409

Threat Model. In a DIFC system, the primary concern is limiting the ability of 410
one principal to access another principal’s data. So, in our threat model, the attacker 411
may have contributed code to the application and is executing as principal (thread) 412
A. Laminar does not allow principal A to explicitly read or write another principal B’s 413
data (e.g., by explicit assignment in the program) without acquiring appropriate secrecy 414
and integrity labels. Any other user controls access to her data by controlling which 415
principals she gives the capabilities to add and remove tags associated with her data. 416

Limitations. Like most DIFC systems, the Laminar VM and OS mediate all explicit 417
assignments of labeled data, as described in Sections 4 and 5. Laminar prevents im- 418
plicit information flows by restricting the visibility that untrusted code has into the 419
control flow of a security method, including restrictions on input and output variables 420
(discussed further in Section 6.4). 421

Eliminating all timing, termination, and other covert channels are open problems 422
[Denning and Denning 1977; Lampson 1973] and beyond the scope of this article. 423
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In particular, it is well established that preventing all these channels on a general-424
purpose programming model is tantamount to solving the halting problem [Denning425
and Denning 1977]. In order to eliminate information leaks due to unbounded execu-426
tion, more recent work has investigated highly restricted programming models (e.g.,427
without unbounded loops [Tiwari et al. 2009b]) or bounding the execution time of code428
that manipulates sensitive data [Tiwari et al. 2009a].429

To facilitate incremental adoption, Laminar places capabilities in threads, rather430
than statically mapping them to functions. The underlying tradeoff is that the program-431
mer can more easily invoke standard libraries from a security method. For example,432
programmers may therefore manipulate secure objects using standard implementa-433
tions of arrays, lists, and sets. Code invoked from a security method executes as if it were434
in the security method. This choice introduces some risk for a confused deputy prob-435
lem and requires trusting the caller of a security method to manage capabilities. The436
Laminar design mitigates the risk of capability management errors by requiring that437
all endorsers and declassifiers be declared final and that non-endorser/declassifier438
security methods do not accept capabilities as arguments. These issues are discussed439
further in Section 6.6.440

Two key innovations of Laminar are support for multiple threads and the ability of441
a single thread to transition between different trust levels—facilitating incremental442
adoption but also introducing new opportunities for covert channels based on the timing443
of these transitions. Section 6 describes the new classes of timing and termination444
channels that these features could introduce and how Laminar mitigates them. To445
summarize, Laminar restricts the ability to create a channel based on control flow446
within a security method by requiring a single exit point from a security method447
and carefully mediating any OS- or VM-level storage channel, such as the thread’s448
capabilities. The article also discusses how more recent work, such as predictive timing449
models [Askarov et al. 2010], could be applied to the Laminar prototype to further450
reduce covert channels, especially through thread synchronization. These issues are451
discussed further in Section 6.452

3. DESIGN453

This section describes the Laminar programming model and how Laminar enforces454
DIFC in an enhanced VM and OS.455

3.1. Overview456

Figure 1 illustrates the Laminar architecture. The OS kernel reference monitor medi-457
ates accesses to system resources. The VM enforces DIFC rules within the application’s458
address space. Only the OS kernel and VM are in the Laminar trusted computing base.459
The OS kernel and VM trust each other as well.460

The Laminar OS kernel extends a standard OS kernel with a Laminar security mod-461
ule for information flow control. Users and programmers invoke the Laminar kernel462
security APIs to create tags, store capabilities for their tags, and label their data in463
files. Users launch processes with a subset of their tags and capabilities. The Laminar464
OS kernel governs information flows through all standard kernel interfaces, including465
through devices, files, pipes, and sockets. DIFC rules are enforced by the kernel on466
all threads, whether the threads are of the same or different processes. Resources and467
principals without an explicit label have empty secrecy and integrity labels, facilitating468
incremental adoption. Our prototype uses the Linux Security Modules [Wright et al.469
2002] framework, although the design could be extended to any OS that provides simi-470
lar hooks to an in-kernel reference monitor to label kernel objects and mediate system471
calls that could create an information flow.472
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Fig. 1. Design of Laminar. An OS kernel reference monitor and VM reference monitor enforce information
flow control. All data is labeled, including objects in the VM, as well as OS abstractions, such as files and
sockets. Objects without explicit labels default to empty secrecy (public) and integrity (untrusted) labels.
Threads have capabilities and an empty label. A thread enters a Security Method (SM) to acquire a nonempty
label. A security method may optionally receive capabilities from the calling thread.

To regulate information flows within an application, Laminar extends the runtime 473
system of a standard Java VM. By default, the Laminar OS kernel requires all threads 474
within a process to have the same secrecy and integrity labels. The OS relaxes this 475
restriction for threads running on the trusted Laminar VM. The Laminar VM binary is 476
labeled with a special TCB integrity tag, which indicates to the OS that this application 477
is trusted to control information flows within its address space. Although the kernel 478
trusts the Laminar VM to regulate flows within the address space, the kernel still 479
checks all accesses to system resources. 480

The Laminar VM regulates information flow between heap objects within a thread 481
and between threads of the same process via these objects. The Laminar VM inserts 482
dynamic DIFC checks to regulate DIFC flows. 483

The key abstraction for manipulating labeled data is the security method. Program- 484
mers explicitly declare security methods. In addition, any method invoked directly or 485
transitively from a declared security method is implicitly defined as a security method. 486
Outside of a security method, a thread has empty secrecy and integrity labels and may 487
only read or write data with empty secrecy and integrity labels. The VM terminates the 488
program if it attempts to read or write any labeled data outside a security method. If a 489
thread has the capability to add a tag to its secrecy or integrity labels, the thread may 490
change its labels by entering a security method. Within a security method, a thread 491
may read or write data with nonempty labels as long as the reads and writes constitute 492
a legal information flow according to the capabilities specified by the parameters. A 493
thread typically runs with a subset of the user’s capabilities, and a security method 494
specifies a subset of the thread’s capabilities. Security methods may nest. Each security 495
method may only have a subset of the parent security method’s capabilities and may 496
only change its labels as permitted by the parent’s capabilities. 497

For example, Alice writes a program in Java with the Laminar programming model 498
and uses the Laminar API (see next paragraphs and Table I). Alice compiles the code 499
using a standard, untrusted bytecode generator such as javac. The Laminar JIT com- 500
piler and VM execute the bytecode, and the Laminar OS kernel executes the Laminar 501
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Table I. Laminar API
These functions manipulate labels and capabilities. LabelType denotes whether a request is for a secrecy label
or integrity label. CapType denotes plus, minus, or both capabilities for a tag. The getCurrentLabel and copyAnd-
Label functions may be invoked inside of a security method, but tags and capabilities may only be created and
destroyed outside of a security method, using createAndAddCapability and removeCapability, respectively.
The API has wrapper functions (not shown) for the new Laminar system calls. Label stores a set of secrecy or
integrity tags (Section 5.1).

Function Description
Label getCurrentLabel(LabelType t) Return the current secrecy or integrity label of the

security method as an opaque object. Label objects
cannot be enumerated.

Object copyAndLabel(Object o, Label S,
Label I)

Return a copy of the object o with new secrecy label S
and integrity label I.

CapSet getCurrentCapabilities() Return the current capability set of the thread as an
opaque object.

Label createAndAddCapability() Create a new tag and add capabilities to the current
thread. Must be used outside of a security method.

void removeCapability(CapType c, Label l) Drop the capabilities listed in c (plus and/or minus)
associated with the tags in l from the current thread.
Must be used outside of a security method.

VM. During execution, the program labels data with security and integrity tags that it502
obtains from the kernel API. The OS kernel and VM thus use the same tag namespace503
for the system resources and objects. For example, the application reads data from a504
labeled file into a data structure with the same labels. The Laminar VM ensures that505
any accesses or modifications to labeled data follow the DIFC rules and occur in a506
security method, a labeled method specified by the programmer.507

Restricting security policies to security methods makes it easier to add security508
policies to existing programs. Furthermore, auditing security methods will generally be509
easier than auditing the entire program. These features should facilitate incremental510
deployment of Laminar in existing systems. Security methods also decrease the cost of511
performing dynamic security checks in the Laminar runtime.512

Laminar does not track information flows through local variables. Because labeled513
data are manipulated in security methods, locals in an untrusted parent are out of514
scope inside the security method and vice versa. With additional static analysis on515
information flow through locals, one might be able to safely implement security methods516
as arbitrary, lexically scoped regions, as originally proposed [Roy et al. 2009]. We517
expect that the additional static analysis required to support lexically scoped regions518
would be easiest to implement in the Java compiler (javac), but these properties might519
also be checked by the JVM during bytecode verification. We found mediating flows520
through locals at method boundaries to strike a good balance between implementation521
complexity for the application programmer and JVM developer.522

3.2. Programming Model, VM, and OS Interaction523

Laminar provides language extensions, a security library, and security system calls.524
Table I depicts the Java APIs, which include methods that perform tag creation, de-525
classification, label queries, and capability queries. The Laminar OS kernel exports526
security system calls to the trusted VM for capability and label management, as shown527
in Table II. These system calls are used by the Laminar VM internally to implement528
security methods and are not directly exposed to Laminar applications. An application529
not running on the Laminar VM may directly use these system calls to manage its530
capabilities and labels, excluding drop_label_tcb, which can only be issued by the531
trusted Laminar VM. The Laminar OS securely stores all of the persistent capabilities532
of a user so that these capabilities can be used across user sessions. On login, the OS533
kernel gives the capabilities of the user to the login shell. Laminar does not innovate in534
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Table II. Laminar System Calls
The tag_t and capability_t types represent a single tag or capability, respectively. The struct label type
represents a set of tags that compose a label, and the capList_t type is a list of capabilities.

System Call Description
tag_t alloc_tag(capList_t &caps) Return a new tag, add plus and minus capabilities to the

calling principal, and write new capabilities into caps.
int add_task_tag(tag_t t, int type) Add a tag to the current principal’s secrecy or integrity

label (secrecy or integrity selected by type), as allowed
by the principal’s capabilities.

int remove_task_tag(tag_t t, int type) Remove a tag from the current principal’s secrecy or
integrity label (secrecy or integrity selected by type).

int drop_label_tcb(pid_t tid) Drop the current temporary labels of the thread without
capability checks, invoked only by threads with the
special integrity tag.

int drop_capabilities(capList_t *caps,
int tmp)

Drop the given capabilities from the current principal.
tmp is a flag used by the VM to suspend a capability only
for a security method or during a fork().

int write_capability(capability_t cap,
int fd)

Send a capability to another thread via a pipe.

int create_file_labeled(char* name,
mode_t m, struct label *S, struct label
*I)

Create a labeled file with labels S and I.

int mkdir_labeled(char* name, mode_t m,
struct label *S, struct label *I)

Create a labeled directory with labels S and I.

capability persistence but rather adopts a simple and stylized model. Asbestos develops 535
a more robust model for persistent storage of tags [Vandebogart et al. 2007]. 536

The secure keyword applies to methods used as security methods. The VM and kernel 537
enforce the rule that the program may only access labeled data objects (e.g., files, heap- 538
allocated objects, arrays) inside security methods, which includes all methods directly 539
or transitively invoked from a declared security method. Outside security methods, 540
threads always have empty labels but may hold capabilities that determine whether 541
the thread may enter a security method. Threads are the only principals in Laminar, 542
and the VM modifies the thread’s labels and capabilities when it enters and exits a 543
security method. When a thread enters a security method, it dynamically passes the 544
desired secrecy label and integrity label as arguments to the method, using the opaque 545
Label object. If the security method endorses or declassifies data, it may also accept 546
the necessary capabilities as an argument, as a CapSet object. During the execution 547
of a security method, the VM internally uses these labels and capabilities for DIFC 548
enforcement, and the kernel mediates thread accesses to system resources according 549
to the security method’s labels. Because security methods are not visible to the kernel, 550
the VM proxies the security method by tainting the thread with the correct labels and 551
capabilities. At the end of the security method, the VM restores the thread’s original 552
capabilities and labels. 553

3.3. Security Methods 554

A security method is a special method type that has parameters for a secrecy and 555
integrity label. A security method that can endorse or declassify data also has a pa- 556
rameter for a capability set. The labels dictate which data the program may touch 557
inside the security method. Labels on secure method parameters must satisfy the data 558
flow constraints of the labels on the security method, and the label on the returned 559
data must satisfy the data flow equations for the labels of the calling context. In the 560
Laminar implementation, these labels and capabilities are represented as sets that 561
can be variably sized and assigned at runtime. Label and capability sets are stored as 562
opaque objects, which cannot be enumerated (see Section 5.1). 563
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Only code within a security method can access data with nonempty labels. Security564
methods demarcate the methods that are security sensitive, thus easing the program-565
mer’s burden when adding security policies to existing programs. The programmer566
must place all code that references labeled data in a security method, such as a routine567
that reads a sensitive file into a data structure. In our experience, only a small portion568
of code and data in a program is security sensitive and will belong in a security method,569
which simplifies the task of auditing security-sensitive code. This design also limits the570
amount of work the VM must do to enforce DIFC.571

Dynamic DIFC Enforcement with Barriers. The VM inserts barriers that ensure no572
reference outside a security method reads or writes labeled data, and all references573
inside a security method follow the DIFC rules. A barrier is a snippet of code the VM574
executes before every read and write to an object and is a standard implementation575
feature in VMs for garbage-collected languages [Blackburn and Hosking 2004]. The576
Laminar VM inserts barriers at every object read and write. Outside the security577
method, the barrier throws an exception if the program tries to read or write data with578
a nonempty secrecy or integrity label. Inside a security method, every time the program579
reads or writes objects or kernel resources, the barrier checks that the information flow580
follows the policies specified by the current labels of the security method.581

For example, an assignment w=r inside a security method M is safe if and only if the582
information flow from r to w is legal for the thread inside M. Note that the Laminar583
library API (Table I) does not include a routine for adding labels to a thread. In order584
to add labels, threads must start a security method.585

Security methods have the added benefit that they make the DIFC implementation586
more efficient because the barrier checks outside a security method are simpler than587
checks inside a security method. Outside a security method, the barrier simply checks588
if data have nonempty labels and throws an exception if they do, since any access to589
secure data is forbidden. Inside a security method, the DIFC barriers must compare590
DIFC labels of references to ascertain if the information flow is legal.591

In summary, security methods make it easier for programmers to add security policies592
to existing programs. They make it easier for programmers to audit security code.593
They limit the effects of implicit information flows (Section 6.4), and they make the594
implementation more efficient.595

Inputs, Return Values, and Container Objects. Security methods have two default596
parameters: a secrecy label and an integrity label. A declassifier or endorser includes597
a third parameter: the capability set. Security methods may take other parameters598
as inputs and/or return an output value so long as the input or return is a valid599
information flow. These input and output values may be primitives (int, boolean, etc.)600
or object references. Generally speaking, security methods with a nonempty secrecy601
label cannot return a value, and security methods with a nonempty integrity label602
cannot read inputs without being wrapped in an endorser. Section 5.2 details the603
specific rules.604

A key abstraction in Laminar that improves programmability is the stylized use605
of container objects. The programmer allocates objects with secret labels outside of a606
secret security method by invoking new and passing the appropriate labels. Labeled607
object creation is explained further in Section 5.2. The program then passes this object608
to security methods. Each security method may update the contents of the object, but609
outside of the security method, the object’s contents and any modifications are opaque.610
Code outside of a security method may not dereference references to objects with non-611
empty labels.612

Example. Figure 2 presents the calendar example from the introduction. A calendar613
server calls code provided by Bob that reads the Calendar object belonging to Alice,614
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Fig. 2. Example security methods that read and write a secure calendar. Bob provides the first two security
methods. BobFindMeetingTime executes with both Alice and Bob’s secrecy tags (a and b, respectively). This
method selects a meeting time such that Alice and Bob are both available and places it in a MeetingTime
object with label 〈S(a, b), I()〉. BobDeclassify then removes Bob’s secrecy tag (b). The calendar application
then executes Alice’s endorser (AliceCheckMeeting), which checks that the MeetingTime object is well-formed,
and then adds the i integrity tag and writes the meeting time to a file with label 〈S(a), I(i)〉. The label on
Alice’s calendar ensures both secrecy of her calendar data, as well as that all updates have been checked by
trusted code. Execution order is indicated with LX, where X is the line number if the code were inlined into
ScheduleMeeting.
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creates a Meeting object, exports the meeting time to Bob, and writes the meeting615
into Alice’s calendar file. The code begins at L1 by allocating a container object, Mtg,616
which is passed to subsequent security methods to store the secret meeting time.617
When the thread enters the security method BobFindMeetingTime to read the calendars618
(line L2), the VM sets the thread’s secrecy label to S(a, b) and therefore the thread619
can read secret Calendar data guarded by tags a and b. The code that reads each620
calendar (line L3) is a valid information flow because the thread’s labels are more621
restrictive than either Calendar’s labels (e.g., 〈S(a, b), I()〉 ⊇ 〈S(a), I()〉). The thread622
has the capability C(b−) to declassify tag b, which is used to enter the security method623
BobDeclassify, at line L5. Entering the nested declassifier at line L5may be conditioned624
on additional checks to prevent information leaks. Before writing the meeting time into625
Alice’s calendar file, the thread must acquire integrity label I(i) by calling an endorser626
function, AliceCheckMeeting, which checks that the data to be written meet Alice’s627
invariants, such as prohibiting conflicting meeting times.628

The VM inserts barriers that check the information flow safety at every object read629
and write. Locals are limited to method scope and implicitly have the same label as the630
security method. The code at Line L3 computes the common meeting time and stores631
it in the container object referred to by Mtg. For instance, the read barrier code tests632
if reading fields of objects Other and Bob are valid information flows and whether the633
writes into the newly created Meeting object are legal. The writes into the Meeting object634
are legal because the object has the same secrecy label as the thread in the security635
method at that point. A nested security method declassifies the meeting to Alice (L5/L6),636
updating the meeting time in this.val. By replacing the object referenced by this.val637
with a copy with a lower secrecy level (Line L6), this code effectively removes the tag b638
from the output. Copying and relabeling tmp at L6 is legal because the method has the639
b− capability and can declassify data protected by the secrecy tag b. Notice that if line640
L6 performed copyAndLabel(tmp, S(), I()) to remove all tags from the secrecy label,641
the VM would throw an exception because when the thread is in the security method,642
it does not have the a− capability and cannot remove the a tag from the data. In this643
example, the kernel checks the file operations in line L12 and L13 that write to Alice’s644
calendar file, and the VM checks the other operations on application data structures.645

Security Method Initialization. Laminar enforces the following rules when a thread646
enters a security method. Let SR, IR, and CR be the secrecy label, integrity label,647
and capability sets of a security method, R. Similarly, let SP , IP , and CP be the sets648
associated with a kernel thread P that enters and then leaves R. Laminar supports649
arbitrary nesting of security methods. P could, therefore, already be inside a security650
method when it enters R. When the thread P enters the security method R, the VM651
ensures that the following rules hold:652

(SR − SP) ⊆ C+
p and (SP − SR) ⊆ C−

p (1)

653
(IR − IP) ⊆ C+

p and (IP − IR) ⊆ C−
p (2)

654
CR ⊆ CP (3)

The first two rules state that, in order for principal P to enter method R, P must have655
the required capabilities to change its labels to R’s labels. The third rule states that the656
principal P can only retain a subset of its current capabilities when it enters a security657
method. While the security method executes, the sets associated with P change to SR,658
IR, and CR.659

These rules encapsulate the common-sense understanding that a parent principal,660
P, has control over the labels and capabilities it passes to a security method and661
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that the VM will prevent the principal from creating a security method with security 662
properties that the principal itself lacks. The rules also state that security methods 663
nest in the natural way based on the labels and capabilities of the thread entering the 664
nested method. 665

3.4. VM and OS Interface 666

Our design trusts the Laminar VM and OS kernel for DIFC enforcement. The VM 667
is trusted to enforce DIFC policies on application data structures and implements 668
security methods without kernel involvement. The kernel is responsible for enforcing 669
DIFC rules on OS kernel abstractions, such as files and pipes. If a security method 670
does not perform a system call, the VM does all the enforcement and does not involve 671
the kernel. For example, if code inside a security method with secrecy tags tries to 672
write to a public object, the VM will throw an exception that will end the security 673
method. As an optimization, the VM does not notify the kernel of changes to the 674
thread’s labels until the VM needs to issue a system call on behalf of the application. 675
The kernel enforces DIFC rules on each system call according to the thread’s labels 676
and the labels of any other objects involved (e.g., writing data to a file or the network). 677
For standard system calls, such as read, the labels of the thread and file handle are 678
implicit system call arguments. The VM communicates security metadata to the kernel 679
via the Laminar system calls (Table II). For instance, the VM changes the labels on the 680
current application thread (embodied as a kernel thread) executing within a security 681
method using the add_task_tag system call. The kernel ensures that the labels are 682
legal given the thread’s capabilities. 683

Acquiring Tags and Capabilities. Principals (threads) in Laminar acquire capabil- 684
ities in three ways. They allocate a new tag, they inherit them through fork(), or 685
they perform interprocess communication. A thread working on behalf of one user 686
may call security methods provided by another user; for instance, Alice’s thread may 687
call Bob’s declassifier with the capability to read Alice’s calendar. Another thread 688
running on Bob’s behalf can only acquire Alice’s capability if Alice shares it over 689
an IPC channel. The system carefully mediates capability acquisition lest a princi- 690
pal incorrectly declassify or endorse data. Laminar assumes a one-to-one correspon- 691
dence between application and kernel threads. Application threads use the Lami- 692
nar language API, which in turn invokes the system calls for managing tags and 693
capabilities. 694

A principal allocates a new tag in the kernel via the alloc_tag system call, which is 695
used to implement the language API function createAndAddCapability. As a result of 696
the system call, the kernel security module will create and return a new, unique tag. 697
The principal that allocates a tag becomes the owner of the new tag. The owner can 698
give the plus and minus capabilities for the new tag to any other principal with whom 699
it can legally communicate. A thread explicitly selects which capabilities it will pass 700
to a security method, and the trusted VM can temporarily remove the capability from 701
the thread using the drop_capabilities system call. 702

Threads and security methods form a natural hierarchy of principals. When a kernel 703
thread forks off a new thread, it can initialize the new thread with a subset of its 704
capabilities. Similarly, when a thread enters a security method, the thread retains 705
only the subset of its capabilities specified by the method. In general, when a new 706
principal is created, its capabilities are a subset of its immediate parent, which the VM 707
and kernel enforce. 708

The passing of all interthread and interprocess capabilities is mediated by the kernel, 709
specifically with the write_capability kernel call. This system call checks that the 710
labels of the sender and receiver allow communication. 711

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 4, Publication date: October 2014.



TOPLAS3701-04 ACM-TRANSACTION October 8, 2014 21:58

4:18 D. E. Porter et al.

Removing Tags and Capabilities. The Laminar VM is responsible for correctly setting712
thread labels and capabilities inside security methods. When a thread enters a security713
method, the VM first makes sure that the thread has sufficient capabilities to enter714
the method. If the thread may enter the security method, the VM sets the labels and715
capabilities of the thread to equal those specified by the security method. The VM sets716
the thread’s capabilities to the empty set when it enters a security method that is not717
passed capabilities (i.e., not a declassifier or endorser). Similarly, when the thread exits718
the security method, the VM restores the labels and capabilities the thread had just719
before it entered the method. On exiting a nested security method, the VM restores the720
labels and capabilities of the thread to those of the parent security method.721

The Laminar language API provides a method, removeCapability, that removes722
a thread’s capability in the VM, preventing use as an argument to a later security723
method. To prevent threads from using the capability set as a covert channel, capa-724
bilities must be created and removed outside of a security method (Section 6.6). The725
removeCapability VM call uses the drop_capability system call to drop the capability726
from the OS kernel thread.727

Similarly, if a security method issues a system call, the VM first invokes728
the add_task_tag or remove_task_tag system calls to change the thread’s labels in729
the OS kernel. As an optimization, the VM postpones setting the thread’s labels in the730
kernel until just before the first system call and at the end of the security method. This731
system call has no user API; it is used solely by the VM.732

The Laminar VM prohibits security methods from changing their labels; labels stay733
the same throughout the security method to prevent leaks through local variables734
(Section 5.2). Labels are stored as opaque objects that cannot be enumerated. To change735
labels in the middle of a security method, a thread begins a nested security method.736

Consider an example when a thread only has the a+ capability and starts a security737
method with secrecy label 〈S(a)〉. The Laminar VM sets the secrecy label of the thread738
to 〈S(a)〉 when the security method begins. When the security method ends, the VM739
forces the thread to drop the secrecy label, even if it does not have the a− capability.740
To drop 〈S(a)〉 from a thread, the VM contains a high-integrity thread, running with a741
special integrity tag called tcb that is trusted by the kernel. Using the drop_label_tcb742
system call, this trusted thread may drop all current labels for a thread without having743
the appropriate capabilities.744

A single, high-integrity thread in the VM limits exposure to bugs because the kernel745
enforces that only the thread with the tcb tag may drop labels within a single address746
space. The VM cannot drop the labels on other applications. Only a small, auditable747
portion of the VM is trusted to run with this special label.748

Capability Persistence and Revocation. Capability persistence and revocation are749
always issues for capability-based systems, and Laminar does not innovate any solu-750
tions. However, its use of capabilities is simple and stylized. The OS kernel stores the751
persistent capabilities for each user in a file. On login, the OS gives the login shell all752
of the user’s persistent capabilities, just as it gives the shell access to the controlling753
terminal. If a user wishes to revoke access to a resource for which she has already754
shared a capability, she must allocate a new capability and relabel the data. Because755
tags are drawn from a 64-bit identifier space, tag exhaustion is not a concern.756

3.5. Security Discussion757

The Laminar OS mediates information flow on OS resources, such as files and pipes.758
The Laminar JVM mediates information flows within the application using barriers,759
by restricting the programming model, and constraining how data enter and leave a760
security method. Implicit flows are mediated by masking the control flow within the761
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security method (Section 6.4). Updating the capability set of a thread is treated as a 762
public write, preventing covert channels through this abstraction. We allow security 763
methods to execute concurrently. Our threat model assumes that security methods 764
will terminate and will not leak information through timing channels, including the 765
execution time of a security method; Sections 6.4 and 6.5 discuss techniques that could 766
be adopted in a production Laminar deployment to uphold these assumptions. 767

Although the security method design facilitates incremental adoption because 768
threads manage capabilities, this choice unfortunately places a measure of trust in 769
the code that calls security methods. To limit the risk of capability mismanagement, 770
only security methods that endorse or declassify data are passed capabilities, and these 771
methods must be declared final. Section 6.6 discusses this issue in more detail. 772

3.6. Labeling Data 773

The VM labels data objects at allocation time to avoid races between creation and 774
labeling. The VM labels objects allocated within a security method with the secrecy and 775
integrity labels of that method. The create_file_labeled and mkdir_labeled kernel 776
calls create labeled files and directories. Other system resources use the labels of their 777
creating thread. 778

Similar to most other DIFC systems, Laminar uses immutable labels. To change a 779
label, the user must copy the data object. Section 5.4 discusses implementation details 780
and the interaction of object labels with the Java memory model. Dynamic relabeling 781
in a multithreaded environment requires additional synchronization to ensure that a 782
label check on a data object and its subsequent use by principal A are atomic with 783
respect to relabeling by principal B. Without atomicity, an information flow rule may 784
be violated. For example, A checks the label, B changes the label to be more secret, 785
B writes secret data, and then A uses the data. Atomic relabeling can prevent this 786
unauthorized flow from B to A. Laminar currently supports only immutable labels on 787
files. It may be possible to safely relabel files using additional synchronization. 788

3.7. Compatibility Challenges 789

Although Laminar is designed to be incrementally deployed, some implementation 790
techniques are incompatible with any DIFC system. For instance, a library might 791
memoize results without regard for labels. If a function memoizes its result in a security 792
method with one label, a later call with a different label may attempt to return the 793
memoized value. Because the memoized result is secret, Laminar will prevent the 794
attempt to return it. Programmers or the VM must modify such code to work in any 795
DIFC system. 796

3.8. Trusted Computing Base 797

To implement Laminar, we added approximately 2,000 lines of code to Jikes RVM 798
[Alpern et al. 2000],2 added a 1,000-line Linux security module, and modified 500 lines 799
of the Linux kernel. This relatively small amount of code means that Laminar can be 800
audited. 801

The Laminar design does not trust javac to enforce information flow rules but does 802
trust javac to provide valid bytecode that faithfully represents the Java source. Jikes 803
RVM does not include a bytecode verifier—a feature of a secure, production VM that 804
should reject malformed bytecode. 805

We rely on the standardization of the VM and the OS as the basis of Laminar’s trust. 806
In addition to trusting the base VM, Laminar requires that the VM correctly inserts the 807
appropriate read and write barriers (Section 3.3) for all accesses and optimizes them 808

2http://www.jikesrvm.org.
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correctly. Read and write barrier insertion is standard in many VMs [Blackburn and809
Hosking 2004]. In Linux, Laminar assumes that the kernel has the proper mechanisms810
to call into Linux Security Modules (LSM) [Wright et al. 2002]. Because many projects811
rely on LSMs, the Linux code base is under constant audit to make sure all necessary812
calls are made.813

4. OS SUPPORT TO CONTROL INFORMATION FLOW814

We have implemented support for DIFC in Linux version 2.6.22.6 as an LSM [Wright815
et al. 2002]. LSM provides hooks into the kernel that customize authorization rules.816
We added a set of system calls to manage labels and capabilities, as listed in Table II.817
Some LSM systems, such as SELinux [Loscocco and Smalley 2001], manage access818
control settings through a custom filesystem similar to /proc. A custom filesystem is819
isomorphic to adding new system calls. The Laminar security module contains about820
1,000 lines of new code, and we modified about 500 lines of existing kernel code to821
implement the Laminar OS.822

Tags, Labels, and Capabilities. Tags are represented by 64-bit integers and allocated823
via the alloc_tag() system call. The OS stores labels and capabilities for system re-824
sources in the opaque security field of the appropriate Linux objects (e.g., task_struct,825
inode, and file). The OS persistently stores secrecy and integrity labels for files in the826
files’ extended attributes. Most of the standard local filesystems for Linux support ex-827
tended attributes, including ext2, ext3, xfs, and reiserfs. A mature implementation828
of Laminar could adopt a similar strategy to Flume for filesystems without extended829
attributes, encoding a label identifier in the extra bits of the user and group identifier830
fields of a file’s inode [Krohn et al. 2007].831

Files. Using LSM, Laminar intercepts inode and file accesses, which perform all832
operations on unopened files and file handles, respectively. The inode and file data833
structures are used to implement a variety of abstractions, such as sockets and pipes.834
The Laminar security hooks perform a straightforward check of the rules listed in835
Section 2.2. The secrecy and integrity labels of an inode protect its contents and its836
metadata, except for the name and labels, which are protected by the labels of the837
parent directory.838

For instance, if a process with secrecy label 〈S(a)〉 tries to read directory foo with the839
same secrecy label, the process will be able to see the names and labels of all files in840
foo. If file foo/bar has secrecy label 〈S(a, b)〉, any attempt to read the file’s attributes,841
such as its size, will fail, as size of the file could otherwise be used to leak information842
about the file’s contents.843

In a typical filesystem tree, secrecy increases from the root to the leaves. Creating844
labeled files in a DIFC system is tricky because it involves writing a new entry in845
a parent directory, which can disclose secret information. For example, we prevent846
a principal with secrecy label 〈S(a)〉 from creating a file with secrecy label 〈S(a)〉 in847
an unlabeled directory because it can leak information through the file name. In-848
stead, the principal should pre-create the file before tainting itself with the secrecy849
label.850

A principal may use the newly introduced create_labeled and mkdir_labeled sys-851
tem calls to create a file or directory with secrecy and integrity labels different from the852
principal’s current labels. Informally, a principal may create a differently labeled file if853
its current labels permit reading and writing the parent directory, and it has capabili-854
ties such that it can change its labels to match the new file. More formally, we allow a855
principal with labels 〈Sp, Ip〉 to create a labeled file or directory with labels 〈Sf , If 〉 if856
(1) Sp ⊆ Sf and If ⊆ Ip, (2) the principal has capabilities to acquire labels 〈Sf , If 〉, and857
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(3) the principal can read and write the parent directory with its current secrecy and 858
integrity label. This approach prevents information leaks during file creation while 859
maintaining a logical and useful interface. 860

Applying integrity labels to a filesystem tree is more complex than secrecy. The 861
intuitive reason for integrity labels on directories is to prevent an attacker from tricking 862
a program into opening the wrong file, for instance using symbolic links. The practical 863
difficulty with integrity for directories is that a task with integrity label IA cannot read 864
any files or directories without this label, potentially including /. If system directories, 865
such as /home, have the union of all integrity labels, then an administrator cannot add 866
home directories for new users without being given the integrity labels of all existing 867
users. Flume solves this problem by providing a flat namespace that elides this problem 868
with hierarchical directory traversal and simplifies application-level data storage with 869
integrity labels [Krohn et al. 2007]. 870

Applying integrity labels to a traditional Unix directory structure brings out a fun- 871
damental design tension in DIFC OSes between usability and minimizing trust in the 872
administrator. Laminar finds a middle ground by labeling system directories (e.g., /, 873
/etc, /home) with a system administrator integrity label when the system is installed. 874
A user may choose to trust the system administrator’s integrity label and read absolute 875
paths to files, or she may eschew trust in the system administrator by exclusively open- 876
ing relative paths. In the worst case, she creates her own chroot environment. Simple 877
relative paths were sufficient for all of the case studies in this article. Laminar’s ap- 878
proach supports incremental deployability by allowing users to choose whether to trust 879
the system administrator at the cost of extra work for stronger integrity guarantees. 880

Pipes. Laminar mediates Interprocess Communication (IPC) over pipes by labeling 881
the inode associated with the pipe message buffer. A process may read or write to a 882
pipe so long as its labels are compatible with the labels of the pipe. Message delivery 883
over a pipe in Laminar is unreliable. An error code due to an incompatible label or 884
a full pipe buffer can leak information, so messages that cannot be delivered are 885
silently dropped. Unreliable pipes are common in OS DIFC implementations [Krohn 886
et al. 2007; Vandebogart et al. 2007]. Linux does not include LSM hooks in the pipe 887
implementation; Laminar adds LSM hooks to the pipe implementation in order to 888
mediate reads and writes to pipes. 889

To prevent illegal information flows in Laminar, a pipe does not deliver an end-of- 890
file (EOF) notification when the writer exits or closes the pipe if the writing thread 891
cannot write to the pipe at the time it exits. This lack of termination implies that, if 892
a process exits inside of a security method, the JVM must ensure that the thread’s 893
label is visible to the kernel (Section 3.4) before issuing an exit system call, so that 894
the appropriate policies are applied when the OS closes the open file descriptors. Thus, 895
Laminar, like many OS DIFC implementations, only delivers EOF notifications if writing 896
the notification constitutes a legal flow. 897

Thus, the practical implication of unreliable delivery and eliminating EOF notification 898
is that reads from a pipe should be nonblocking. Otherwise, an application may hang 899
waiting for an EOF notification. In the common case where all applications in a pipeline 900
have the same labels, traditional Unix pipe behavior can be approximated with a 901
timeout. Using pipes in programs with heterogeneous, dynamic labels may require 902
modification for a DIFC environment. 903

Network Sockets and Other IPC. The Laminar OS prototype treats network sockets 904
and other IPC channels as having empty secrecy and integrity labels. Thus, input from 905
the network must be read by code with empty secrecy and integrity labels, and the data 906
must be labeled in a security method that validates the input. Managing information 907
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flows across systems is beyond the scope of this work, but has been addressed in other908
systems including DStar [Zeldovich et al. 2008]. The inodes associated with other909
Linux IPC abstractions, such as System V IPC, could be labeled similarly to pipes but910
would likely require additional analysis of any potential information flows resulting911
from idiosyncratic behavior.912

5. JAVA VM SUPPORT TO CONTROL INFORMATION FLOW913

We implement Laminar’s trusted VM in Jikes RVM 3.0.0,1 a well performing Java-in-914
Java VM [Alpern et al. 2000]. Our Laminar implementation is publicly available on915
the Jikes RVM Research Archive and on GitHub.3 All subsequent uses of the term VM916
refer to the Laminar-enhanced implementation in Jikes RVM.917

When a thread starts a security method, the VM inserts a check that determines918
if the thread has the capabilities to initialize the security method with the specified919
labels and capabilities, as described in Section 3.3. Thread capabilities are stored in920
the kernel. The VM caches a copy of the current capabilities of each thread to make921
the checks efficient inside the security method.922

The VM enforces information flow control for accesses to three types of application923
data: objects, which reside in the heap; locals, which reside on the stack and in registers;924
and statics, which reside in a global table.4 This section describes how the VM enforces925
the DIFC rules on objects, local variables, and static variables.926

5.1. Controlling Information Flow on Objects927

The VM interposes on every read and write to an object or static by transparently928
adding barriers before the operation. Barriers are not visible to the programmer and929
cannot be avoided, thus creating a natural point to mediate explicit data flows. The930
VM uses barriers to ensure that all accesses to data with nonempty labels occur within931
a security method and that references inside a security method conform to the DIFC932
rules in Section 2.933

Heap Objects. The VM tracks information flow for labeled heap objects. When an934
object is allocated, the VM assigns immutable secrecy and integrity labels to the object.935
We modify the allocator to take secrecy and integrity labels as parameters; the allocator936
adds two words to each object’s header, which point to secrecy and integrity labels.937
The VM assigns objects allocated inside security methods the labels of the method938
at the allocation point. To change an object’s labels, our implementation provides an939
API call, copyAndLabel, that clones an object with specified labels. The label change940
must conform to the label change rule (Section 2). The VM allocates labeled objects941
into a separate labeled object space in the heap, which we exploit to optimize the942
instrumentation that checks whether an object is labeled or not.943

Each object acts as a security container for its fields, and the object’s labels protect944
the fields from illegal access. The Laminar prototype requires that all fields of an object945
have the same labels. For example, consider an object pointed to by the reference o.946
The object has two fields, primitive integer x and reference y. When the program reads947
or writes o.x or o.y, the VM enforces DIFC rules based on the labels of the object948
referenced by o. If the program has labels that allow it to read the object referenced by949
o, then it may read or copy o.x and o.y. However, the object that o.y references may950
have the same or different labels. Thus, the programmer may assign distinct labels951

3http://www.jikesrvm.org/Research+Archive and https://github.com/ut-osa/laminar.
4Although objects and nonvolatile statics may be register-allocated and nonescaping objects can be scalar-
replaced, objects appear to be in the heap and statics appear to be in the global table when the VM compiler
adds the needed barriers.
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to the object referenced by o.y. If the application performs the dereference o.y.foo, 952
the VM must verify that the security method may read and dereference the reference 953
o.y based on the labels of the object referenced by o and then separately check the 954
read of reference foo based on the labels of the object referenced by o.y. The security 955
container model simplifies the task of labeling objects at allocation time, which is 956
easier for programmers to reason about and cheaper for the VM to enforce compared 957
to labeling individual object fields. 958

Labels. Applications do not have direct access to labels on data or principals, which 959
are used internally by the VM to enforce DIFC rules. Recall that a label may contain 960
one or more tags. 961

The Laminar API provides two functions that return a label. The functions return 962
the label in an immutable, opaque object of type Label. The instantiations of La- 963
bel support operations such as isSubsetOf(), minus(), and union(). The function 964
createAndAddCapability invokes the alloc_tag Laminar OS system call, which cre- 965
ates a new tag and adds the associated capabilities to the current thread, and returns 966
a Label object containing the single new tag to the application. The getCurrentLabel() 967
function returns the secrecy or integrity label of the enclosing security method. 968

For efficiency, Label objects may be safely shared by objects, security methods, and 969
threads because they are immutable; operations such as minus() and union() return a 970
new object instead of modifying an existing Label. Label objects are not used internally 971
by the VM for DIFC enforcement. Internally, the VM implements Label as a sorted 972
array of 64-bit integers to hold tags. Because a Label object is opaque, applications 973
cannot observe the individual values of the tags. Moreover, because object labels are 974
immutable, any attempt to change the labels on an object requires writing a reference 975
to the new object somewhere, which is an explicit, regulated information flow. Thus, a 976
program cannot create a covert channel by creating a Label with irrelevant tags. 977

Similar to any other object, the VM associates secrecy and integrity labels with the 978
instances of Label. An application may create a Label object using the new keyword or by 979
using trusted Laminar API functions. When a Label object is created, it has the secrecy 980
level of the thread at the time it was created. The integrity level of the Label object de- 981
pends on which function created it: Label objects created by new also have the integrity 982
of the thread at the time of creation, whereas Label objects created by the Laminar 983
API functions are given the highest integrity (�, representing the set of all possible in- 984
tegrity tags) because we trust the API and the VM. In general, Label objects have high 985
integrity and empty secrecy and can be used as parameters to any security method. 986

VM Instrumentation. To enforce DIFC rules, the VM’s compiler inserts barrier in- 987
strumentation just prior to every read and write in the application (Section 3.3). Inside 988
security methods, the compiler inserts barriers at a labeled object allocation (before the 989
compiler invokes the application’s constructor) that sets the labels. It inserts barriers 990
at every read from and write to an object field or array element. Inside security meth- 991
ods, barriers load the accessed objects’ secrecy and integrity Labels and check that 992
they conform to the current security method’s labels and capabilities. Outside security 993
methods, read and write barriers check that the accessed objects are unlabeled (i.e., 994
have empty secrecy and integrity labels). 995

The compiler inserts different barriers depending on whether the access occurs in- 996
side or outside a security method. If a method is called both from inside and outside 997
security method contexts, the compiler will produce two versions of the method. In 998
our prototype implementation, when a method first executes, the JVM invokes the 999
compiler, and it checks whether the thread is executing a security method and inserts 1000
barriers accordingly. Subsequent recompilation at higher optimization levels reuses 1001
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this decision. This approach, which we call static barriers, fails if a method is called1002
from both within and outside a security method. Thus, we also support a configuration1003
in which the compiler adds dynamic barriers. The barriers check whether the current1004
thread is in a security method or not and then execute the correct barrier. A produc-1005
tion implementation should use cloning to compile two versions of methods called from1006
both contexts, and each call site can call the appropriate version based on context.1007
(Some software transactional memory implementations use a similar approach [Ni1008
et al. 2008].) Because which version to call is statically knowable at each compiled1009
call site, the overhead one would attain with a method cloning implementation should1010
match what we measure for static barriers.1011

Because object labels are immutable, and security methods cannot change their1012
labels, repeating barriers on the same object is redundant. We implemented an in-1013
traprocedural, flow-sensitive data-flow analysis that identifies redundant barriers and1014
removes them. A read (or write) barrier is redundant if the object has been read1015
(written), or if the object was allocated, along every incoming path. Although this opti-1016
mization is intraprocedural, the VM’s dynamic optimizing compiler inlines small and1017
hot methods by default, thus increasing the scope of redundancy elimination.1018

Example. Figure 3 computes the sum of the grades obtained by two different stu-1019
dents. The student1 and student2 objects are labeled and have different secrecy values1020
associated with them. Once the security method starts, the VM assigns the thread the1021
secrecy and integrity labels specified by S and I, respectively. Lines L2 and L3 read1022
labeled objects and result in a security exception if the flow from student1.grades or1023
student2.grades to the thread in the security method is not allowed. Line L4 stores the1024
value in a new labeled Integer object and stores the reference in the labeled avgHolder1025
object. At lines L5–L6, the thread calls a declassifying security method, passing it the1026
capability to add and remove the secrecy tags by making an unlabeled copy of the1027
avgHolder.value object. If the CapSet passed to the security method is not a subset of1028
the current thread’s capabilities, then the program throws a security exception at L5,1029
which the end of the security method may catch; this is followed by returning from the1030
security method. Security exceptions are a category of Java language exceptions and1031
may be caught by the security method author. The VM does not propagate exceptions1032
out of a security method (Section 6.2). Because the declassifier runs with an empty1033
label, it may assign the new reference into the unlabeled outputHolder.value field. In1034
practice, a declassifier such as declassifyAverage would be nested inside a security1035
method with a nonempty secrecy label that first checked the potential output, as in1036
Figure 2, and the application of rules in the VM would be similar.1037

5.2. Restricting Information Flow for Locals and Parameters1038

Laminar does not track labels on local variables because they cannot be used outside1039
the scope of the current method, thus precluding an information flow to or from a1040
security method. Laminar assumes that locals have the secrecy and integrity labels1041
of the enclosing security method or empty labels outside of a security method. All1042
security methods take as input two parameters: the secrecy label and integrity label.1043
Declassifiers and endorsers may take a third parameter: the capability set. For clarity,1044
these are indicated in examples with separate argument parentheses on the secure1045
keyword.1046

If the explicit flow is legal, security methods in Laminar can accept additional inputs1047
and return outputs of primitive values (int, boolean, etc.) and references, which are1048
passed-by-value. A security method with a nonempty integrity label may only accept1049
input if the calling function is also in a security method with higher integrity or the1050
capability to add all missing integrity tags (i.e., an endorser). A security method with1051
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Fig. 3. Securely computing the average grades of two students. The student1 and student2 objects are
labeled. The object credentials contains the secrecy, integrity, and capabilities sets with which the security
method is initialized. The statements on the right side are the checks that are performed by the VM. The
symbol ? indicates an assertion, � indicates an information flow check, and the internal function change-
Label(Label to, Label from, CapSet caps) checks whether a label change would be permitted given the
input capabilities (caps).

an empty integrity label may read any input. Similarly, a security method may only 1052
return a value if it has an empty secrecy label or the value is returned to a more 1053
secret security method. Because declassifiers tend to be nested, most declassification 1054
examples write the output to an object or security container with an empty secrecy 1055
label that is passed as input to the method. 1056
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To enable containers for secure data, Laminar permits creation of objects with an1057
empty integrity label and nonempty secrecy label outside of a security method. By1058
creating objects with a nonempty secrecy label outside of a security method, the cre-1059
ation itself and the return of the reference cannot be dependent upon any secret in-1060
formation and thus cannot create any information flow. Once the initial secret object1061
reference is created, it can be passed to multiple security methods that operate on1062
secret data, acting as a container for secret data. Note that the first security method1063
the reference is passed to is the object’s constructor. If a labeled constructor throws1064
an exception, new must still return the labeled but uninitialized object. Because crit-1065
ical regions with an empty secrecy label but a nonempty integrity label can return a1066
value, allocation of objects with integrity tags can always be wrapped in an endorser1067
without any secrecy tags. The endorser may allocate an object with both secrecy and1068
integrity tags in its label so long as it drops its secrecy label before returning the1069
object.1070

Because a method with a nonempty secrecy label cannot return a value, the security1071
container abstraction serves as a means to facilitate passing secret, intermediate values1072
among security methods. The security container abstraction also neatly integrates with1073
common Java patterns of using the implicit this input parameter. In other words,1074
security methods may construct container objects and operate on them, as illustrated1075
in Figure 2.1076

5.3. Static Variables1077

Static (global) variables in the Laminar prototype have empty secrecy and integrity1078
labels. By inserting barriers at static variable accesses inside security methods, security1079
methods with an empty secrecy label may write static variables, and security methods1080
with an empty integrity label may read static variables.1081

We expect that a production implementation could support nonempty labels on statics1082
with modest overhead because static accesses are relatively infrequent compared to1083
field and array element accesses. Good security programming practices, like general-1084
purpose programming practices, recommend sparse use, if any, of statics. We did not1085
find this functionality necessary, and none of the applications in Section 9 needed1086
labeled static variables.1087

5.4. Instantiating Labels1088

Some care must be taken when creating objects to prevent race conditions between1089
assigning the object label and concurrent attempts to dereference the object. In the1090
Laminar implementation, the label fields of each object are hidden from the program-1091
mer (VM-internal) and are assigned between object allocation and calling the object’s1092
constructor. From the perspective of the Java memory model [Manson et al. 2005; Pugh1093
2005], the label fields should be treated similar to final fields. In the Java memory1094
model, final fields are visible to all threads before the constructor returns. The VM1095
must prevent reordering these assignments outside of the constructor, and the construc-1096
tor writer must not make external assignments of the this object. In order to protect1097
against a malicious constructor writer, a production Laminar VM would strengthen1098
this requirement slightly: The label assignments must be visible to all threads before1099
the constructor is called.1100

6. SECURITY IMPLICATIONS AND INFORMATION FLOW ENFORCEMENT MECHANISMS1101

This section summarizes the major classes of information flows that Laminar mediates1102
and the security implications of the Laminar design. This section pays particular atten-1103
tion to changes in the programming model introduced by Laminar, including security1104
methods and thread capabilities. This section also discusses security issues that are1105
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Table III. Laminar’s Programming Requirements and the Attacks They Prevent

Requirement Attack Prevented
Explicitly labeled objects in the JVM and OS. Illegal explicit information flow through objects.

Restrict information flow through explicit function
arguments and return values.

Illegal explicit information flow through arguments
and return values. Prevents information flow
through locals, which are out of scope in a security
method.

Static fields have empty security and integrity
labels.

Illegal explicit information flows through static
fields.

A security method may only have one exit point,
including exceptions. All exceptions will be caught
at the end of a security method.

Implicit information flows based on security method
control flow.

A security method will execute for a fixed amount of
time (not implemented).

Limits the bandwidth of timing and termination
channels, which would otherwise be increased by
multithreaded synchronization.

Dropping or creating a capability is treated as a
write to the thread’s capability set and requires an
empty secrecy label.

Prevents information flow through the thread’s
capability set.

A security method that takes a capability set as a
third parameter must be declared final.

Prevents passing capabilities to unintended
functions via inheritance.

not addressed in the Laminar prototype and how subsequent research could mitigate 1106
these concerns. This section connects implementation details described previously in 1107
Sections 4 and 5 with the system’s security properties. Table III summarizes the key 1108
programming abstractions and requirements that Laminar places on the programmer 1109
and the attacks they prevent, all of which are discussed later in more detail. 1110

In each example and figure in this section, we use the following notation for labels. 1111
The value of a secrecy label with tags a and b is represented as S(a, b). In Java, this 1112
label is stored in a Label object. Similarly, an integrity label with tag i is represented 1113
I(i). Finally, a capability set with the ability to add a and remove i is represented as 1114
C(a+, i−). 1115

6.1. Explicit Information Flows 1116

An explicit information flow occurs when a program moves data from one variable 1117
to another or from program memory into an OS-managed data sink, such as a file. 1118
The Laminar JVM and OS kernel collaborate to track explicit information flows and 1119
prevent illegal information flows. This subsection reviews the strategy for each major 1120
programming abstraction and provides backward references for the implementation 1121
details. 1122

OS abstractions (Section 4). Laminar extends the Linux 2.6.22.6 kernel with an LSM 1123
that adds secrecy and integrity labels to a task (OS-visible thread) and file inodes, 1124
which include most IPC abstractions, such as pipes. The Laminar LSM interposes on 1125
all file handle reads and writes to validate the flow, as well as other system calls such 1126
as creating files and directories. We extend the Linux kernel with a few additional 1127
system calls and security hooks. 1128

Java objects (Section 5.1). Objects in the Laminar VM are explicitly labeled, and the 1129
VM checks the labels of an object before all reads from and writes to an object field. The 1130
Laminar VM extends Jikes RVM, which provides barriers that interpose each object 1131
read and write. 1132

Local variables (Section 5.2). Laminar does not label or track information flows 1133
through local variables. Because labeled data are accessed in security methods, locals 1134
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Fig. 4. Catch blocks handle illegal flows. Programmer may handle security exceptions separately from other
runtime errors (e.g., divide by zero). Label and capability values are inlined for clarity.

in an untrusted parent are out of scope inside the security method and vice versa.1135
With additional static analysis on information flow through locals, one could safely1136
implement security methods as arbitrary, lexically scoped blocks within a method, as1137
originally proposed [Roy et al. 2009], but we found the implementation was much more1138
complex.1139

Arguments and return values (Section 5.2). Laminar permits primitives and refer-1140
ences as input values to a security method as long as reading the input values would1141
not violate an integrity rule (e.g., no read down). Note that even object references are1142
passed by value in Java, so manipulating any input variables will not affect a local in1143
the calling frame. The VM will mediate all accesses to an object with barriers. Simi-1144
larly, the programming model is restricted such that a security method may only return1145
a value in the calling context if the write would not violate a secrecy rule (no write1146
down).1147

In the case of nested security methods, a more secret calling method may pass1148
an input to a less secret inner security method if the outer method has appropriate1149
declassification capability. Similarly, a higher integrity method may accept input from a1150
lower integrity parent if the outer method has the appropriate endorsement capability.1151
These rules for nested security methods are necessary to facilitate declassification and1152
endorsement.1153

Static variables (Section 5.3). The Laminar prototype treats all static fields as having1154
empty labels. The Laminar VM interposes on all static field accesses and prevents1155
illegal information flows to statics. In general, static fields are used infrequently, and1156
our application case studies did not require nonempty labels for static variables.1157

6.2. Handling Illegal Flows1158

When code in a security method attempts an illegal explicit information flow, the VM1159
creates an exception that transfers control to the end of the security method. As a1160
programmer convenience, the security method may catch exceptions in order to restore1161
program invariants. Any exceptions uncaught by the programmer will be caught by1162
the VM before the security method ends, thus hiding the control flow of the security1163
method from the caller.1164

For example, the code in Figure 4 shows an illegal explicit flow. The code attempts to1165
copy and thus leak the value of secret variable o.H, which it may not declassify, to the1166
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static, nonsecret variable L. Laminar raises an exception because the security method 1167
does not have the right to declassify o.H. The value of L does not change. The catch 1168
block gives the programmer a chance to restore program invariants before exiting the 1169
security method. 1170

If a thread tries to enter a security method for which it lacks appropriate capabilities, 1171
or if the thread passes illegal inputs to the security method, the VM raises an exception 1172
and transfers control to the security method’s terminating catch block. Essentially, 1173
entering a security method with invalid credentials will effectively skip execution of 1174
the security method without revealing any information to the calling thread. 1175

If a system call is attempted that would generate an illegal information flow, the OS 1176
returns a unique error code to the VM. The VM treats this error as a security exception; 1177
that is, the same way as an illegal flow through application-level variables. 1178

An attempt to access labeled data outside of a security method will terminate the 1179
application. To prevent covert channels by testing whether an object is labeled at all, 1180
assignments to references must be treated as explicit information flows, described in 1181
the next subsection. 1182

6.3. Information Flow through Object References 1183

When a labeled object is created in a security method, Laminar restricts how the object 1184
stores references in order to prevent information leaks. One option is that an object 1185
reference can be written to a static variable, which must have empty secrecy and 1186
integrity labels. Therefore, only a method with the capability to drop its labels (i.e., a 1187
declassifier) can store a labeled object reference in a static. Similarly, security methods 1188
with an empty secrecy label can return an object reference to the caller. 1189

A security method may store a reference to one object inside of another. For instance, 1190
suppose a security method writes a reference to newly created object x into object o’s 1191
field o.p. This assignment is an explicit flow from the security method into object o, and 1192
the VM-inserted barriers check the information flow. If o’s labels are 〈S(o), I()〉 and the 1193
security method’s labels are 〈S(o, x), I()〉, this assignment is an illegal flow that would 1194
violate the secrecy rule, and it triggers a security exception. 1195

Programmers may find it helpful to pass an object reference as input to multiple 1196
security methods. This convention does not leak data because object references are 1197
passed by value in the Java calling convention. As discussed earlier, returning an 1198
initial reference to an object or storing the reference in a static requires the capability 1199
to declassify the secret. Subsequent reads of the reference will not leak secret data. A 1200
subsequent security method cannot update a static reference unless it can declassify 1201
all of its secret data. Similarly, overwriting an input parameter in a security method 1202
does not propagate information to the caller because object references are passed by 1203
value in Java. 1204

This pattern for passing secret data among security methods can be generalized by 1205
creating security container objects—an object whose reference is public which stores 1206
a set of secret data or object references. Security methods with the same secrecy la- 1207
bel as the security container may conveniently write to the object and accept its ref- 1208
erence as input. This convention does not leak any information because the public 1209
reference is never changed, and the contents of the container are protected by VM 1210
barriers. 1211

To facilitate this pattern, we permit new to operate as a security method that can 1212
return a newly constructed object. Because the object is actually allocated from the heap 1213
and labeled before the constructor is called, a labeled object can always be returned 1214
without leaking secret information. If the constructor fails or throws an exception, the 1215
exception is masked, just as with any other security method, and a partially initialized, 1216
but labeled, object is returned. Objects with integrity tags must be allocated inside of 1217
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Fig. 5. Allocating and passing objects among security methods using local references. Runtime values of
labels and capability sets are inlined for clarity.

an endorser security method. Nested security methods can allow an endorser with the1218
capability to add a secrecy tag to create an object with both secrecy and integrity tags1219
in its label. This approach makes it easier for the programmer to create a security1220
container and pass it among security methods, without creating data leaks.1221

Local reference example. Figure 5 shows an example in which a local object reference1222
m is passed among security methods. The constructor for the new MyObj creates a labeled1223
object at line L1. This object is assigned to local reference m and passed to the security1224
method manipulateObj, where it is modified (L4). Outside of the security method, the1225
reference m may be safely copied to another reference k. An attempt to dereference1226
either reference outside of a security method will result in a runtime exception, since1227
both point to a labeled object.1228

Integrity example. Figure 5 also illustrates how Laminar guarantees integrity. In1229
line L1 we create an object and label it with integrity label b. This object is returned to1230
the calling thread and assigned to m. This reference m is passed to a security method1231
(manipulateObj) but because the local reference itself is untrusted, the reference must1232
be endorsed (L2) and then passed to the nested, high-integrity security method. The1233
reference k is also assigned outside the security method to a high-integrity object at1234
line L6. Since Laminar does not track labels of references, such an assignment outside1235
the security method is valid. However, Laminar would prevent low-integrity code from1236
modifying the high-integrity object. For example, the VM will raise an exception at line1237
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Fig. 6. An example implicit flow. Label and capability values are inlined for clarity.

L7 when the value of the object pointed to by k is dereferenced outside of a security 1238
method. 1239

Secrecy example. Figure 5 illustrates how an object can also be used as a security 1240
container. As discussed earlier, reference m points to a secret object, which cannot be 1241
dereferenced outside of a security method. This object may store other secrets, such 1242
as object reference x, which can be read and modified inside high-secrecy security 1243
methods, illustrated in Line L5. 1244

6.4. Implicit Information Flows 1245

Security methods limit implicit flows by hiding the control flow within the security 1246
method and preventing exceptional control flow from leaving the method. An implicit 1247
information flow leaks secret data through control flow decisions [Denning and Denning 1248
1977]. To deal with implicit flows due to exceptional control flow, the VM requires 1249
every security method to have a catch block, as shown in Figure 4. The catch block 1250
executes with the same labels and capabilities as the security method. A security 1251
method may explicitly catch specific exception types (e.g., an arithmetic exception 1252
caused by a potential divide by zero in Figure 4) and use the ellipsis syntax to catch 1253
all other exceptions (equivalent to a catch block that catches any Throwable). The VM 1254
suppresses other types of exceptions inside a security method that are not explicitly 1255
caught inside the security method, including exceptions within the catch block. Thus, 1256
exceptions cannot escape a security method. The VM continues execution after the 1257
security method. 1258

A major benefit of security methods is that they limit the amount of analysis neces- 1259
sary to restrict implicit information flows. Figure 6 includes an attempt to create an 1260
implicit flow. This security method code tries to leak the value of secret variable o.H, 1261
which it may not declassify, by deliberately creating an exception when it attempts 1262
an illegal explicit flow to the variable L. A thread might attempt to register an excep- 1263
tion handler outside of the security method that would learn the value of o.H based on 1264
whether an exception occurred. This attack will not work because the VM will suppress 1265
any exceptions from leaving a security method. 1266

To prevent information leaks, recall that security methods also cannot return a value 1267
unless they have an empty secrecy label (Section 5.2). Thus, security exceptions inside 1268
a secret security method cannot be reflected in the return value. A security method 1269
that has an empty secrecy label but a nonempty integrity label may return a value. 1270
If such a nonsecret security method incurs a security exception, the return value will 1271
either be set by the catch block or will be the default value for the return type. 1272

Alternatively, a VM prototype could permit security methods to be simple blocks, as 1273
we proposed initially, called security regions [Roy et al. 2009]. Security regions must exit 1274
via fall-through control flow. Security regions cannot use break, return, or continue to 1275
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Fig. 7. Leaking data via a termination chan-
nel. Runtime values of labels and capabil-
ity sets are inlined for clarity.

Fig. 8. Leaking data via a single-threaded timing chan-
nel. Runtime values of labels and capability sets are
inlined for clarity.

exit, except in the trivial case where the control flow will continue at the statement1276
that immediately follows the security region.1277

Laminar thus eliminates implicit flows by hiding the control flow of a security method1278
from code outside of the security method. In Figure 4, code outside the security method1279
cannot distinguish an execution where o.H is true from one where it is false. In contrast,1280
DIFC systems that rely on static analysis prevent these flows by detecting them during1281
compilation [Myers and Liskov 1997]. To prevent implicit flows, dynamic DIFC systems1282
generally either restrict the programming model, which we have done, or adopt a1283
hybrid of static and dynamic analysis [Chandra and Franz 2007; Nair et al. 2008;1284
Venkatakrishnan et al. 2006].1285

6.5. Timing and Termination Channels1286

In addition to explicit and implicit flows, an adversary may try to leak information1287
covertly through timing and termination channels [Lampson 1973]. A timing channel1288
attempts to leak information based on how long a piece of code executes. A termination1289
channel is a special timing channel that leaks information by executing in an infinite1290
loop depending on a secret value. We do not eliminate all timing and termination1291
channels for multithreaded programs, but we discuss potential solutions that minimize1292
their bandwidth.1293

Termination Channels. Figure 7 shows an example of a termination channel that1294
attempts to leak secret information based on whether the application terminates. If1295
control returns from this security method, then unprivileged code can learn that o.H is1296
false. Similarly, a colluding application might learn that o.H is true if the application1297
appears to hang.1298

No general-purpose DIFC system can ensure termination of a program (or, in Lam-1299
inar’s case, a security method). The primary goal in dealing with termination chan-1300
nels is preventing a deterministic or high-bandwidth channel. OS-based systems can1301
suppress termination notification [Efstathopoulos 2008; Krohn et al. 2007; Zeldovich1302
et al. 2006] and thereby eliminate termination channels. Even this approach arguably1303
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Fig. 9. A timing channel attack that with high probability prints L with the same value as the secret H.
Runtime values of labels and capability sets are inlined for clarity.

creates some disruption in the CPU scheduling that might create a channel that is 1304
noisy and thus difficult to exploit. 1305

In a language-level system like Laminar, untrusted code placed after a security 1306
method can detect whether a security method has terminated. A number of solutions 1307
have been explored in the literature, surveyed by Kashyap et al. [2011]. One option is 1308
to use static analysis to identify the labels of all variables used to make control flow 1309
decisions and only permit the code to execute if it can declassify these labels [Chandra 1310
and Franz 2007; Liu et al. 2009] or to restrict the programming model to forbid using 1311
a secret value as a conditional variable [Volpano and Smith 1999]. Another option is 1312
to partition and schedule the code based on labels [Kashyap et al. 2011]. A final option 1313
is to bound the maximum execution time of sensitive code [Askarov et al. 2010; Tiwari 1314
et al. 2009a] and return control to the untrusted code even if the sensitive code has not 1315
completed. 1316

For Laminar, the most attractive approach to termination channels is simply bound- 1317
ing the execution time of a security method. If the maximum execution time (perhaps 1318
specified by the programmer) is exceeded, a security exception would be generated. 1319
Control would be transferred to the catch block, permitting the secure code to clean up 1320
(again for a bounded period) and then return to the unlabeled thread. This approach 1321
would prevent security methods from leaking data based on termination by artificially 1322
forcing all security methods to terminate. 1323

Timing Channels. Similarly, a timing channel can leak information based on the 1324
execution time of a security method (or other privileged code in a different DIFC 1325
system). Figure 8 shows a timing channel that artificially delays execution based on 1326
the value of secret variable o.H. This sort of channel can be created even with a single 1327
thread by recording the time before and after execution. 1328

In practice, these timing and termination channels have been low bandwidth and are 1329
difficult to exploit—especially in single-threaded applications. However, multithreaded 1330
applications are more vulnerable to these exploits because more threads can synchro- 1331
nize the order in which they execute a security method, which is then visible outside 1332
the security methods. Figure 9 illustrates a timing channel where threads artificially 1333
delay the length of security method execution based on the value of secret variable o.H. 1334
Even though neither security method explicitly leaks anything or fails to terminate, 1335
the execution time orders the execution of updates to the static variable L, thus leaking 1336
the value of H with high probability, but somewhat slowly. 1337

Figure 10 shows a more subtle attack that efficiently and deterministically leaks one 1338
bit of information per security method execution. In this example, signal is a variable 1339
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Fig. 10. Leaking information via synchronization and timing. Runtime values of labels and capability sets
are inlined for clarity.

with empty labels. If the secret, H, is 1 then Thread 2 gets into a while loop until1340
Thread 1 exits its security method and sets the value of signal to 1. Thus, at the end1341
of the security method, the value of signal is the same as that of secret H. A variant1342
of this attack is also possible with only one thread in a security method and a second1343
thread sleeping and then writing to signal.1344

We observe that the attacker in Figure 10 increases the bandwidth of timing chan-1345
nels by leveraging a data race on a signal variable. It is likely that the bandwidth of1346
some timing attacks in a dynamic DIFC system like Laminar could be reduced if the1347
program were known to be Data Race Free (DRF). Relying on programmers to write1348
DRF programs is straightforward but will fail to prevent attacks if programmers make1349
mistakes. Guaranteeing DRF through language design and type checking would pro-1350
hibit data races but requires programmer effort [Boyapati et al. 2002]. Alternatively,1351
the memory model could be strengthened so that synchronization-free regions appear1352
to execute atomically [Ouyang et al. 2013]. We note that even DRF programs can still1353
include timing channels, such as the one in Figure 8. Previous work has demonstrated1354
how a language-based DIFC system can reduce or eliminate timing channels in multi-1355
threaded programs by requiring data race freedom and that all traces of accesses to1356
public or low-secrecy variables are not influenced by secret inputs [Huisman et al. 2006;1357
Zdancewic and Myers 2003]. In general, locks for variables that are accessed across1358
multiple labels must be acquired in code with either the lowest secrecy and highestQ31359
integrity. Since correct lock acquisition complicates the programming model, we leave1360
further investigation to future work.1361

Recent work [Askarov et al. 2010; Askarov and Myers 2012; Zhang et al. 2011]1362
provides an alternative promising approach to mitigating timing channels in language-1363
based systems by (1) predicting the expected runtime of a security-sensitive method,1364
(2) ensuring that every instance runs at least this long by delaying the return, and1365
(3) if the prediction is exceeded, increasing the prediction for future instances. This1366
predictive mitigation strategy substantially limits the ability of an attacker to create1367
a timing-based implicit flow.1368

A variant of timing-based mitigation could be adopted by Laminar, in which program-1369
mers specify the execution time of a security method, plus some epsilon for imprecision1370
in the runtime system. Fixing execution time would address both timing and termina-1371
tion channels, and we expect that this would be robust to synchronization-based timing1372
attacks. We leave a formal treatment of this approach in the presence of concurrency1373
to future work.1374
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Fig. 11. An attempt to use thread capabilities as a storage channel. Runtime values of labels and capability
sets are inlined for clarity. Based on the value of H, the thread tries to permanently drop a capability.
Laminar prevents this leak by ensuring programs only make permanent capability changes outside of a
security method.

6.6. Capability Management 1375

Laminar adds a set of capabilities to each thread that persist across security methods. 1376
A critical concern is to ensure that the capability set not be used to create a storage 1377
channel to leak information. To avoid this, we treat a thread’s capability set as a 1378
nonsecret, trusted variable, and any tag creation or deletion is an explicit, mediated 1379
information flow. Because we trust the JVM to manipulate the capability set correctly, 1380
the capability set’s integrity label is treated as � inside of a security method, and we 1381
permit threads to read the capability set outside of a security method. 1382

Figure 11 illustrates how such an attack might be attempted otherwise. The attacker 1383
thread initially creates a disposable capability for tag l, in Label L. Inside one security 1384
method, the thread drops l based on the value of secret o.H and later tries to use 1385
the capability (implicitly) in another security method to create a labeled directory. The 1386
thread does possess the C(l−) to declassify any data protected by l, which should create 1387
a public output if it is successful. In this attack, the value of o.H determines whether 1388
the thread drops the C(l−) capability, which determines whether the thread can create 1389
a directory with an irrelevant tag in its label. The untrusted code can see whether the 1390
directory exists and learn the value of o.H. In this example, the thread is essentially 1391
using the thread’s capability set as a storage channel to leak a secret value. 1392
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Fig. 12. A potential “confused deputy” when managing capabilities in an untrusted thread. Runtime values
of labels and capability sets are inlined for clarity.

To prevent such a leak in Laminar, threads may only drop a capability either (1) out-1393
side of a security method or (2) in a security method with an empty secrecy label.1394
Essentially, dropping a capability is a write to the thread’s capability set, which has1395
an empty secrecy label. Thus, this operation must be treated as an explicit write and1396
mediated appropriately.1397

Capabilities and Confused Deputies. One problem with threads that dynamically1398
assign capabilities to security methods is that a bug in the untrusted thread code can1399
inadvertently give a security method an inappropriate capability. Figure 12 shows a1400
“confused deputy” [Hardy 1988] variant of the calendar example. The server thread1401
accidentally gives Bob’s declassifier Alice’s declassification capability. Perhaps realizing1402
the mistake, Bob copies Alice’s entire calendar into his calendar—a legal information1403
flow.1404

Dynamic capability management was a design decision made in the interest of pro-1405
grammability. Unfortunately, as it stands, this choice increases the auditing burden on1406
the security method developer. Not only must Alice audit her own security methods,1407
she must audit the capability management code of threads that hold her declassifi-1408
cation capability. Capabilities are Alice’s primary credentials in Laminar, so it is not1409
surprising that capability management code requires a security audit. In some cases, it1410
might be possible to trade auditing capability management code for auditing all secu-1411
rity methods that a thread may call. However, that set might be difficult to determine1412
statically, and it might include dynamically loaded methods and methods written by1413
other users.1414

To mitigate some of the risks of accidentally passing capabilities to the wrong secu-1415
rity method, especially in the presence of inheritance of standard methods, capabilities1416
must be explicitly passed to endorsing and declassifying security methods. Moreover,1417
security methods receiving capabilities must be marked as final, thus disabling in-1418
heritance. For security methods that manipulate labeled data without label changes,1419
no capabilities need be passed to the method. When a security method is not explic-1420
itly passed capabilities, the thread’s capability set will be temporarily assigned to the1421
empty set for the duration of the security method.1422

When a security method calls a function, its capabilities are not passed to this1423
function unless the function is a nested security method that is explicitly passed1424
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capabilities as arguments. This restriction reduces the risk of unexpected informa- 1425
tion flows through a third-party library. 1426

An alternative design could allow Alice to map her capability to a hash of specific 1427
security methods, either in addition to or instead of thread capabilities. Such a mapping 1428
of capabilities to a security method alleviates the need to audit any code outside of the 1429
security method. We leave development of such a mechanism for future work. 1430

7. LIMITATIONS 1431

Although Laminar regulates explicit information flows and hides control flow within 1432
a security method to prevent implicit flows, it is prone to attacks that exploit covert 1433
channels. For example, in the case of dynamic class loading, a user can query the VM to 1434
determine if a class has been loaded and use this additional information to leak sensi- 1435
tive data. In multithreaded programs, attackers may collude and use timing channels 1436
to leak information. We propose to mitigate these timing channels by fixing the exe- 1437
cution time of a security method (Section 6.5). Such channels could also be mitigated 1438
by restricting the behavior of the scheduler [Sabelfeld and Myers 2003]. Laminar as- 1439
sumes that code blocks enclosed inside security methods always terminate. Otherwise, 1440
as explained in Section 6.4, information can leak through termination channels. 1441

The Laminar prototype trusts Java Native Interface (JNI) code that is included as 1442
part of the JVM. It does not track information flow through JNI code and does not allow 1443
third-party JNI modules. A production JVM could track the information flow through 1444
correct JNI code because the JNI specification requires C and Java to use separate 1445
heaps. The required copying of input and output data could serve as a natural point at 1446
which to check labels. We note that, as an optimization, many JVM implementations 1447
do give the C code pointers into the Java heap. This optimization must be disabled. 1448
A deeper concern is protecting against untrusted, user-provided JNI code. Because 1449
C is not memory safe, a malicious JNI module could guess or otherwise discover the 1450
location of JVM-internal bookkeeping. Protecting the JVM from untrusted JNI code 1451
would require a sandboxing technique, such as running the JNI in a separate address 1452
space, and is beyond the scope of our work. 1453

In general, the implementation could handle Java reflection calls by intercepting 1454
them and handling them like normal calls for the purposes of Laminar’s security checks. 1455
The implementation could similarly handle calls to sun.misc.Unsafe methods, which 1456
perform raw memory accesses, by instrumenting the methods to perform Laminar’s 1457
checks. However, the prototype currently ignores these cases. 1458

There is, however, a specific concern with combining reflection, multithreading, and 1459
file descriptors to create a covert channel. For instance, one could conditionally create 1460
a secret file inside of a security method, which influences the assigned file descriptor to 1461
file or socket creation outside of a security method, leading to a covert channel. This risk 1462
is only introduced when threads with different labels share a file descriptor table. The 1463
current Laminar prototype blocks this attack by relying on the fact that file descriptor 1464
values are hidden from the application in the FileInputStream and FileOutputStream 1465
classes without reflection or sun.misc.Unsafe. Thus, care would need to be taken in 1466
allowing an application to directly interact with the file descriptor table. 1467

The current implementation of Laminar does not allow application developers to 1468
read object labels, which may be useful for debugging. It is possible that some degree 1469
of visibility into object labels could be given to developers without creating new covert 1470
channels, but we leave this issue to future work. 1471

The current implementation of Laminar treats static variables as unlabeled instead 1472
of associating labels with them (Section 5.3). Since most programs use statics infre- 1473
quently, an improved implementation could track their labels without affecting the 1474
performance results. 1475
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Fig. 13. Laminar VM overhead on programs without security methods.

As described in Section 3.8, the Laminar design does not trust javac to implement1476
any DIFC enforcement but does trust javac to correctly compile the Java source to1477
bytecode. Our prototype does not include a bytecode verifier, which could detect and1478
reject invalid bytecode. Thus, the prototype Laminar VM trusts that bytecodes con-1479
form to the specification. A production Laminar VM implementation would include a1480
bytecode validator.1481

The Laminar design requires security code to be written as methods, in order to1482
simplify the enforcement of information flow rules on local variables (Section 5.2). With1483
additional static analysis, it is possible that security code could be arbitrary, lexically1484
scoped regions, as originally proposed [Roy et al. 2009]. After experimenting with a1485
number of variations on the design, our experience is that restricting security code to1486
methods strikes the best balance among programmability, security, and efficiency.1487

Finally, several restrictions on the programming model are not currently checked in1488
the Laminar VM runtime system but would be implemented in a production system.1489
Rather, we require programmers to adhere to these restrictions and manually enforce1490
them in our application studies. Specifically, the Laminar JVM prototype does not1491
currently enforce input and output restrictions to security methods, enforce restrictions1492
on labeled allocation, or restrict that security methods that accept capabilities are1493
declared final. The VM could easily enforce all of these rules at runtime, and the JIT1494
compiler could use static analysis to enforce some of them as well.1495

8. LAMINAR PERFORMANCE1496

This section reports the performance overheads incurred by adding Laminar to Jikes1497
RVM and Linux. We conducted these experiments on a quad-core Intel Xeon 2.83GHz1498
processor with 4GB of RAM. We configure Jikes RVM to run on four cores. The VM’s1499
heap is configured with a maximum size of 1,024MB. All results are normalized to1500
values obtained on unmodified Linux 2.6.22.6 and Jikes RVM 3.0.0. We measured1501
Laminar’s overhead on standard Java benchmarks without security methods to be less1502
than 10% using static barriers specific to code outside security methods. We measured1503
Laminar OS overhead on lmbench, a standard OS benchmark, to be less than 8% on1504
average.1505

8.1. JVM Overhead1506

Figure 13 shows the overhead of Jikes RVM with the Laminar enhancements on the1507
DaCapo Java benchmarks [Blackburn et al. 2006], version 2006-10-MR2, and a fixed-1508
workload version of SPECjbb2000 called pseudojbb [Standard Performance Evaluation1509
Corporation 2001]. Because compilation decisions are nondeterministic, running times1510
vary, so we execute 25 trials of each experiment and take the mean.1511
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Table IV. Execution Time in Microseconds of Several lmbench OS
Microbenchmarks on Linux with Laminar

Benchmark Linux Linux w/ Laminar % Overhead
stat 0.92 0.94 2.0
fork 96.40 97.00 0.6
exec 300.00 302.00 0.6
0k file create 6.29 6.56 4.0
0k file delete 2.54 2.68 6.0
mmap latency 6,877.00 7,035.00 2.0
prot fault 0.24 0.26 7.0
null I/O 0.13 0.17 31.0

These bars represent two sets of runs, one with dynamic barriers and one with only 1512
static barriers. The darker bar shows the overhead of dynamic barriers, which check 1513
dynamically if they are in a security method as well as performing the secrecy and 1514
integrity checks as appropriate. Dynamic barriers add 23% overhead on average. The 1515
lighter bar is the overhead of using static barriers, which only do the appropriate per- 1516
object DIFC checks. This overhead is 9.7% on average. As discussed in Section 5.1, a 1517
mature implementation of Laminar would use method cloning to eliminate dynamic 1518
barriers. Because method cloning has comparable overheads to static barriers, code 1519
outside of a security method is expected to have an average overhead of 9.7%. This result 1520
is consistent with Blackburn and Hosking’s measurements of barriers [Blackburn and 1521
Hosking 2004]. 1522

8.2. OS Overhead 1523

We use the standard lmbench [McVoy and Staelin 1996] system call microbenchmark 1524
suite to measure the overheads imposed on unlabeled applications when running on 1525
Laminar OS. A selection of the results is presented in Table IV. 1526

In general, the overhead of the Laminar OS modifications are less than 8%, which 1527
is similar to previously reported overheads for Linux security modules [Wright et al. 1528
2002]. The only performance outlier is the “null I/O” benchmark, which has an overhead 1529
of 31%. This benchmark represents the worst case for Laminar because the system call 1530
does very little work to amortize the cost of the label check. As a comparison, Flume 1531
adds a factor of 4-35× to the latency of system calls relative to unmodified Linux [Krohn 1532
et al. 2007]. 1533

9. APPLICATION CASE STUDIES 1534

This section describes four case studies (GradeSheet, Battleship, Calendar, and 1535
FreeCS) and how we retrofitted these applications with DIFC security policies. 1536
GradeSheet implements a database with security policies for entering and reading 1537
grades by professors, TAs, and students. Battleship is a two-player game that keeps 1538
secrets about ship locations. Calendar manages multiple users calendars and arranges 1539
meeting times, similar to our running example. FreeCS is a chat server that imple- 1540
ments security policies on group memberships and invitations. For each benchmark, we 1541
describe in more detail its functionality, modifying and retrofitting its security policies, 1542
and its performance. 1543

Table V summarizes application details. All of the retrofitted applications implement 1544
more powerful security policies than their unmodified counterparts, yet all modifica- 1545
tions add at most 10% to the source code. We list the lines of code statically within 1546
a security method, which is under 7% of the total lines of code. This count does not 1547
include code in methods called by a security method (e.g., library methods) that do not 1548
implement security policies. 1549
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Table V. Application Characteristics

Application LOC Protected Data Added LOC (%) SM LOC (%) % time in SMs
GradeSheet 900 Student grades 92 (10%) 62 (6.9%) <1%
Battleship 1,700 Ship locations 95 (6%) 57 (3.4%) 18%
Calendar 6,200 Schedules 290 (5%) 189 (3.0%) 1%
FreeCS 22,000 Membership properties 1,200 (6%) 80 (0.4%) <1%
Lines of code (LOC), security sensitive data, Laminar specific LOC we added, LOC inside a Security
Method (SM) statically (excluding code called by an SM), and percent time in security methods.

Fig. 14. Overhead of executing applications retrofitted with Laminar.

Figure 14 breaks down into four parts the overheads added by securing them using1550
Laminar. Start/end SM is the overhead of application modifications to support DIFC,1551
including starting and ending security methods and security operations, such as copy-1552
AndLabel. The Alloc barriers configuration denotes the time overhead for allocating1553
labeled objects and assigning their label sets. The Static barriers configuration is the1554
overhead from read and write barriers when the security context is known at com-1555
pile time. Finally, the Dynamic barriers configuration is the overhead from barriers1556
that check context at runtime. We note that GradeSheet and Battleship run correctly1557
with static barriers, but Calendar and FreeCS require dynamic barriers because some1558
methods are called from both inside and outside security methods. As discussed in1559
Section 5.1, method cloning would obviate the need for dynamic barriers, and we thus1560
expect that in practice overhead will match the overhead of Static barriers.1561

In all our experiments, we disabled the GUI, as well as other I/O and network-1562
related operations, so that the Laminar overheads are not masked by them. Hence,1563
the slowdown in deployed applications would be less than what is reported in our1564
experiments. In particular, when we wait for the Battleship game to draw the GUI1565
between scripted moves in the test cases, the measured Laminar overhead drops to 1%.1566
For comparison, Flume [Krohn et al. 2007] adds 34–43% slowdown on the MoinMoin1567
wiki application. Flume labels data at the granularity of an address space and cannot1568
enforce DIFC rules on heterogeneously labeled objects in the same address space.1569

9.1. GradeSheet1570

GradeSheet is a small program that manages the grades of students [Birgisson et al.1571
2008]. GradeSheet has three types of end users: professors, TAs, and students. The1572
main data structure is a two-dimensional object array GradeCell. The (i, j)th object1573
of GradeCell stores the information about student i and her grades on project j. A1574
sample policy states that (1) the professor can read/write any cell, (2) the TA can read1575
the grades of all students but only modify the ones related to the project that she1576
graded, and (3) students can only view their own grades for all projects.1577

Table VI shows how to express this policy by assigning labels and capabilities to the1578
data and the threads working on behalf of each type of user, respectively. Specifically,1579
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Table VI. GradeSheet Security Sets for Objects and Threads Serving
End Users, where S Is Secrecy, I Is Integrity, and C Is Capability

Name Security Set
GradeCell (i,j) S = 〈si〉, I=〈pj〉
Student (i) C = 〈s+

i , s−
i 〉

TA (j) C = 〈⋃i=n
i=1 s+

i , p+
j , p−

j 〉
Professor C = 〈⋃i=n, j=m

i=1, j=1 (s+
i , s−

i , p+
j , p−

j )〉

we guard the (i, j)th entry in the GradeCell with the secrecy tag si and the integrity tag 1580
pj . Each student i has the capabilities to add or remove si, so students can read their 1581
own grades in any project. Each TA j has the capability to add tags si and the integrity 1582
tag for the project that she graded (pj). This tag ensures that TAs can read the grades 1583
of all students, but the integrity constraint prevents them from modifying grades for 1584
projects that they did not grade. 1585

Interestingly, Laminar found an information leak in the original policy. The policy 1586
allowed a student to calculate and read the average grades in a project, which leaks 1587
information about the grades of other students. Using Laminar, we specified that only 1588
the professor is allowed to calculate the average and declassify it. 1589

Our experiments measure the time taken by the server to process a mix of queries by 1590
the TA. Overall, the queries are 72% writes and 28% reads, including reads of student 1591
ID and average grade, and reads and writes of student grades. The Laminar-enabled 1592
version has a 7% slowdown compared to the unmodified version. 1593

9.2. Battleship 1594

Battleship is a common board game played between two players. Each player secretly 1595
places her ships on the grid in her board. Play proceeds in rounds. In each round, 1596
a player shoots a location on the opponent’s grid. The player who first sinks all the 1597
opponent’s ships wins the game. 1598

We modified JavaBattle,5 a 1,700-line Battleship program available on SourceForge. 1599
Each player Pi allocates a tag pi and labels her board and the ships with it. The 1600
capability p−

i is not given to anyone else, ensuring that only the player can declassify 1601
the locations of her ships. In the original implementation, players directly inspect the 1602
coordinates of a shot to determine whether it hit or missed an opponent’s boat. Under 1603
Laminar, each player sends her guess to her opponent, who then updates his board 1604
inside a security method. The opponent then declassifies whether the guess was a hit 1605
or a miss and sends that information back to the first player. We added fewer than 100 1606
lines of code to secure the program to run with Laminar. 1607

In our experiments, the game is played between computers on a 15×15 grid without a 1608
GUI. Figure 14 shows that the secured version adds 56% overhead with static barriers. 1609
The overhead is high because the benchmark spends a substantial portion of its time of 1610
its time (18%) inside security methods. In a deployed Battleship, which would display 1611
the intermediate state of the board to the players, the overhead is significantly less. In 1612
an experiment where we displayed the shot location after each move, the runtime of 1613
the application increases significantly, and Laminar overhead drops to 1%. 1614

9.3. Calendar 1615

We modified k5nCal,6 a multithreaded desktop calendar that provides a graphical in- 1616
terface and allows users to subscribe to multiple external iCalendar-based calendars. It 1617

5http://sourceforge.net/projects/javabattle/.
6http://k5ndesktopcal.sourceforge.net.
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has different threads for rendering the GUI, importing calendar files, and periodically1618
fetching updates from remote calendars. Our modifications provide similar functional-1619
ity as in the examples from earlier in this article. We label all data structures and .ics1620
files that store a user’s calendar information with the user’s secrecy tag. We wrap all1621
functions that access private calendar data inside security methods, including a sched-1622
uler that finds available meeting times for multiple users. In the original program, a1623
user could view the calendar of other users, a feature we disabled.1624

Our experiments measure the time to schedule a meeting, which includes reading the1625
labeled calendars of Bob and Alice, finding a common meeting date, and then writing1626
the date to another labeled file that Alice can read. The scheduling code executes in1627
a thread that has the capabilities to read data for both Alice and Bob, but can only1628
declassify Bob’s data. The output file is protected by Alice’s secrecy tag. Our experiment1629
schedules 1,000 meetings. Figure 14 shows that the secured version of Calendar runs1630
6% slower than unmodified Calendar.1631

We note that a substantial portion of the time in the calendar application is spent1632
on internal thread creation and management, and even more time would be spent1633
rendering a GUI if we had not disabled this feature. For comparison, we lifted the1634
scheduling code out of the rest of the application and wrote a microbenchmark that1635
scheduled appointments in a tight loop on a single thread. In this case, the percentage1636
of time in security methods increased to 71%, and the total overhead was 77%. In1637
practice, we expect things like user interaction and thread management to dominate1638
execution time, thus minimizing the impact of security methods.1639

9.4. FreeCS Chat Server1640

FreeCS7 is an open-source chat server written in Java. Multiple users connect to the1641
server and communicate with each other. FreeCS supports 47 commands, such as creat-1642
ing groups, inviting other users, and changing the theme of the chat room. The original1643
security policy consists of an authorization framework that restricts what commands1644
can be used by a user. All these policies are written in the form of if..then checks.1645
These authorization checks are actually checks on the role of a user. For example, a1646
user who is in the role of a VIP and has superuser power on a group can ban another1647
user in the group.1648

We improve the security code in FreeCS by labeling sensitive data structures and1649
accessing them inside security methods. We made most of our modifications in two1650
classes—Group and User. We localized all security checks by adding security methods1651
to these classes. The abstraction of a role maps naturally onto integrity labels. For1652
example, we protected the banList data structure with two tags, one that corresponds1653
to the notion of VIP and the other for the group’s superuser. Now, only users who1654
have the add capability for these two tags can use the ban command. We modified1655
the authentication module to assign each user either the VIP capability, superuser1656
capability, or no enhanced capability when she logs in. The authentication module is1657
trusted to manage the VIP and superuser capabilities. Our experiments measure the1658
time to process requests from 4,000 users, each invoking three different commands.1659
Laminar’s overhead is 5% (Figure 14).1660

9.5. Summary1661

The four case studies reveal a pattern in the way applications are written. First, most1662
applications have only a few key data structures that need to be secured, like the ar-1663
ray of student grades in GradeSheet or the playing boards in Battleship. Second, the1664
interface to access these data structures is quite narrow. For example, InternalServer1665

7http://freecs.sourceforge.net.
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in GradeSheet and DataFile in Calendar contain the functions used to access the im- 1666
portant data. These observations support our hypothesis that Laminar requires only 1667
localized and modest changes to add DIFC security to many types of applications. 1668
Third, most of the data structures require heterogeneous labeling—the single array 1669
data structure GradeCell has different labels corresponding to different students. Het- 1670
erogeneous labeling is impractical in OS-based systems [Krohn et al. 2007; Vandebog- 1671
art et al. 2007; Zeldovich et al. 2006] because they support a single label on the whole 1672
address space or require the programmer to map application data structures onto la- 1673
beled pages. The Laminar VM easily solves this problem with fine-grained tracking 1674
of labels on the data structure, for example, individual array elements and objects in 1675
GradeSheet. 1676

An open question is the how this approach will scale to larger applications. Our 1677
experience with Laminar is that the performance overheads are primarily determined 1678
by the amount of code that executes inside a security method and that developer effort is 1679
a function of how many declassification or endorsement points the code requires, rather 1680
than the amount of data the program secures. The case studies presented here had 1681
natural and simple endorsement and declassification points, which were close to the 1682
actual uses of labeled data—minimizing overheads and effort. For larger applications, 1683
this trend may continue. However, it is possible that larger applications may instead 1684
require a larger portion of code in security methods to manipulate labeled data or that 1685
more substantial refactoring may be required to minimize the code that must execute 1686
in a security method. We leave larger application case studies for future work. 1687

10. RELATED WORK 1688

Previous DIFC systems have either used only PL abstractions or OS abstractions. 1689
Laminar instead enforces DIFC rules for Java programs using an extended VM and 1690
OS. By unifying PL and OS abstractions for the first time with a seamless labeling 1691
model, Laminar combines the strengths of previous approaches and further improves 1692
the DIFC programming model. Table VII summarizes the taxonomy of design issues 1693
common to DIFC systems, ranging from the trusted code base, security guarantees, 1694
resource granularity, to threats, all addressed in more detail here. 1695

From IFC to DIFC. Information Flow Control (IFC) stemmed from research in multi- 1696
level security for defense projects [Department of Defense 1985]. In the original military 1697
IFC systems, an administrator must allocate all labels and approve all declassification 1698
requests [Karger et al. 1991]. Modern Mandatory Access Control (MAC) systems, like 1699
security-enhanced Linux (SELinux), also limit declassification and require a static col- 1700
lection of labels and principals. DIFC systems provide a richer model for implementing 1701
security policies in which applications allocate labels and assign them to data and 1702
declassify [Myers and Liskov 1997]. 1703

Static DIFC analysis. Many language-based DIFC systems augment the type system 1704
to include secrecy and integrity constraints enforced by the bytecode generator [Myers 1705
1999; Myers et al. 2001; Simonet and Rocquencourt 2003]. These systems label program 1706
data structures and objects at a fine granularity but require programming an intrusive 1707
type system or in an entirely new language. These language-based systems trust the 1708
whole OS and provide no guarantees against security violations on system resources, 1709
such as files and sockets. 1710

Hybrid DIFC enforcement. A key strength of static analysis is that static anal- 1711
ysis tends to be the most robust language-level defense against implicit channels 1712
(Section 6.4). Purely dynamic systems generally cannot effectively regulate implicit 1713
flows. As a result, a number of primarily dynamic JVM systems have augmented 1714
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Table VII. High-level Approaches to DIFC Implementation

Issue PL solutions OS solutions PL & OS solution
[Arden et al. 2012; Chandra
and Franz 2007; Liu et al.
2009; Myers et al. 2001;
Simonet and Rocquencourt
2003]

Asbestos [Efstathopoulos
2008; Vandebogart et al.
2007], HiStar [Zeldovich
et al. 2006], Flume
[Krohn et al. 2007]

Laminar

Modified Compiler & type system
([Arden et al. 2012; Liu et al.
2009; Myers et al. 2001;
Simonet and Rocquencourt
2003]) or JVM and bytecode
compiler ([Chandra and
Franz 2007])

(1) Complete OS or (2)
User-level reference
monitor & kernel module

VM and kernel module

Trusted Compiler, VM, & OS OS VM & OS
Fine-grained information flow tracking?

Interprocedural static
analysis or JVM
instrumentation

Either not supported or
inefficient because of
page table mechanisms

Dynamic VM
enforcement via inserted
read/write barriers

Secure files & OS resources?
Can label file handles in the
application and add dynamic
checks to system calls, but
limited visibility into OS to
validate these assumptions.

(1) Modify entire OS or
(2) User-level reference
monitor & kernel

Kernel

Implicit
flows?

Static analysis, combined
with dynamic checks in some
cases [Arden et al. 2012;
Chandra and Franz 2007;
Liu et al. 2009].

Not applicable—tracks
information flow at
thread or address space
granularity

Security method design
restricts visibility into
control flow from outside
the security method.

Termination, probabilistic, and timing channels?
Predictive Mitigation
[Askarov et al. 2010;
Askarov and Myers 2012;
Zhang et al. 2011]

HiStar, Flume, &
Asbestos suppress
termination notification

Not handled

Laminar combines aspects of PL and OS solutions, and innovates in dynamic flow tracking.

dynamic enforcement of explicit flows with static analysis for implicit flows (thus called1715
a Hybrid DIFC system).1716

Chandra and Franz develop a version of the JVM that enforces information flow con-1717
trol policies on unmodified Java programs [Chandra and Franz 2007]. Like Laminar,1718
this JVM combines static analysis on Java bytecode with dynamic analysis. Security1719
policies are expressed externally—such as restricting how sensitive data may exit the1720
program. This system relies on whole-program, side-effect analysis to restrict implicit1721
flows by labeling the program counter. Moreover, this system does not address threads1722
and allows implicit flows through uncaught exceptions. Finally, the dynamic analysis1723
in this system is relatively expensive, 23–159%, whereas Laminar’s reported applica-1724
tion overheads are 5–56%. Laminar’s security methods instead strike a balance that1725
minimizes programmer effort but substantially limits the scope and overhead of static1726
and dynamic analysis.1727

Trishul adopts a similar design as Chandra and Franz, but better handles implicit1728
flows through caught exceptions via static analysis [Nair et al. 2008]. Trishul does not1729
handle uncaught runtime exceptions, such as divide by zero. Trishul relies on a con-1730
servative global program counter secrecy label when static analysis cannot prevent an1731
implicit flow, such as when referencing certain object reference fields. This abstraction1732
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is prone to “label creep,” and programmers must manually remove labels according to 1733
application security policies. The performance overhead of Trishul varies and tends 1734
to be highest on object manipulation and lowest for system calls. For a prime num- 1735
ber benchmark, the overhead is 167% [Nair 2009]. A key contribution of Laminar is 1736
a highly optimized JVM design, as well as a judicious and programmable abstraction 1737
selection that keeps overheads low. 1738

The Laminar VM prevents implicit flows instead by restricting how control can 1739
return from a security method—a property that can be checked dynamically. Arguably, 1740
some restrictions could be relaxed with additional static analysis. Although Laminar 1741
does not rely on static analysis for safety, it does employ some analysis during JIT 1742
compilation to optimize security checks (Section 5.1) and could be considered a hybrid 1743
DIFC system. 1744

OS IFC. Asbestos [Vandebogart et al. 2007] and HiStar [Zeldovich et al. 2006] are 1745
new OSs that provide DIFC properties. Flume [Krohn et al. 2007] is a user-level ref- 1746
erence monitor that provides DIFC guarantees without making extensive changes to 1747
the underlying OS. These OS DIFC systems provide little or no support for track- 1748
ing information flow through application data structures with different labels. Flume 1749
tracks information flow at the granularity of an entire address space. HiStar enforces 1750
information flow at page granularity and supports a form of multithreading by forc- 1751
ing each thread to have a page mapping compatible with its label. Using page table 1752
protections to track information flow is expensive, both in execution time and space 1753
fragmentation, and complicates the programming model by tightly coupling memory 1754
management with DIFC enforcement. Laminar supports a richer, more natural pro- 1755
gramming model in which threads may have heterogeneous labels and access a variety 1756
of labeled data structures. For example, all of our application case studies use threads 1757
with different labels. 1758

Laminar provides DIFC guarantees at the granularity of methods and data struc- 1759
tures with modest changes to the VM. It also adds a security module to a standard 1760
operating system, as opposed to Asbestos and HiStar, which completely rewrite the 1761
OS. Most of Laminar’s OS DIFC enforcement occurs in a security module whose archi- 1762
tecture is already present within Linux (LSMs) [Wright et al. 2002]). The Laminar OS 1763
does not need Flume’s endpoint abstraction to enforce security during operations on 1764
file descriptors (e.g., writes to a file or pipe) because the kernel-level reference monitor 1765
can check the information flow for each operation on a file descriptor. 1766

Laminar adopts the label structure and the label/capability distinction derived from 1767
Jif and used by Flume. Capabilities in DIFC systems are distinct from capability- 1768
based operating systems, such as EROS [Shapiro et al. 1999]. These systems use 1769
pointers with access control information to combine system and language mechanisms 1770
for stronger security but use a centralized IFC model, rather than the richer DIFC 1771
model. Thus, capability systems cannot enforce DIFC rules, and programs must be 1772
completely rewritten to work with the capability programming model. 1773

Integrating language and OS security. Hicks et al. observe that security-typed lan- 1774
guages can ensure that OS security policies are not violated by trusted system applica- 1775
tions, such as logrotate [Hicks et al. 2007]. Their framework, called SIESTA, extends 1776
Jif to enforce SELinux [Loscocco and Smalley 2001] MAC policies at the language level. 1777
The aims of Laminar and SIESTA are orthogonal. SIESTA provides developers with a 1778
mechanism to prove to the system that an application is trustworthy, whereas Laminar 1779
provides the developer a unified abstraction for specifying application security policies. 1780

Implicit information flows. Implicit information flows can leak secret data based on 1781
program control flow, as when a conditional statement is based on the value of a secret 1782
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variable. DIFC systems based on static analysis can identify when labeled variables1783
can influence control flow and use this information to label the program counter of1784
the function [Chandra and Franz 2007; Liu et al. 2009]. In other words, a function1785
with a secret program counter label may not be called by a function with an unlabeled1786
program counter.1787

Venkatakrishnan et al. develop a framework that statically transforms program code1788
in a simple procedural language into a form that can detect implicit flows at runtime1789
[Venkatakrishnan et al. 2006]. Their model essentially adds explicit assignments to a1790
program counter variable in the code at all conditional statements and procedure calls1791
and catches illegal flows at runtime. This model is applied in the context of IFC and1792
noninterference and has not been extended to DIFC or concurrency.1793

Le Guernic proposes an automaton-based information flow model and type system1794
that uses static analysis to identify potential implicit flows [Guernic 2007]. Unlike1795
other systems, this model also identifies synchronization events in threaded systems1796
and imposes additional restrictions at runtime around conditional statements. These1797
restrictions include requiring that locks be acquired before any conditional is evaluated1798
based on a secret variable and executing statements within certain conditionals atomi-1799
cally. Unlike many IFC systems, this design avoids termination channels on failures by1800
suppressing individual lines of code that might cause an implicit flow. Laminar adopts1801
a similar approach to securing concurrency by limiting the possible interleavings of1802
security methods.1803

Shroff proposes a dynamic monitor and type system that can prevent implicit flows1804
either with the help of a static type analysis, which can be overly conservative in some1805
cases, or by learning the implicit flows in repeated executions [Shroff et al. 2007]. In the1806
dynamic-only mode, the system records the explicit flows within all taken branches. In1807
subsequent executions, if a different branch is taken, the recorded flows of previous ex-1808
ecutions are used to identify potential implicit flows. In dynamic mode, this system can1809
permit some number of leaks before converging on a tight approximation of secure rules.1810

Fabric and Mobile Fabric add additional checks, both static and dynamic, to prevent1811
additional implicit flows in distributed and federated systems, respectively [Arden et al.1812
2012; Liu et al. 2009]. For example, loading a class from a remote server may indicate1813
that a secret code took a certain execution path. The Fabric systems add additional1814
labels and checks to prevent these flows.1815

Laminar restricts implicit information flows by restricting how exceptional control1816
flow returns from a security method. OS DIFC systems generally do not need to address1817
implicit flows because DIFC is enforced at process granularity, which hides control flow1818
within the process by design.1819

Asymmetric behavior for secrecy and integrity. In general, DIFC systems treat secrecy1820
and integrity as duals. As a result, the bottom of the label lattice, or least-restricted1821
data, is public and trusted. In Laminar, most application code and data are untrusted1822
and have an empty label. We believe this choice is appropriate for a threat model1823
where an adversary may have contributed code to the application, and any given policy1824
concern applies to a small subset of the code. As a result, however, the measures taken1825
to ensure secrecy and integrity are different. For instance, removing capabilities and1826
creating security container objects must execute outside of a security method to ensure1827
that the operation is public and does not leak secret information. In contrast, security1828
methods trusted with an integrity tag must generally sanitize public data and endorse1829
this input. In the worst cases, malformed public data can make the system unavailable.1830

Termination, timing, and probabilistic channels. Implicit flows can be combined1831
with termination, storage, and other features to create more powerful channels.1832
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Vachharajani et al. argue that implementing DIFC with dynamic checking is as correct 1833
as static checking by showing that the program termination channels of static and 1834
dynamic DIFC systems leak an arbitrary number of bits [Vachharajani et al. 2004]. 1835
They prove that a correct dynamic DIFC system will overapproximate information flow, 1836
rejecting some programs that do not contain actual information flow violations. Russo 1837
and Sabelfeld similarly prove that a purely dynamic DIFC system will reject programs 1838
that a static analysis would not under a flow-sensitive analysis (i.e., when variables 1839
can change labels over the course of the computation) [Russo and Sabelfeld 2010]. 1840
Russo and Sabelfeld argue that these deficiencies can be recovered in a hybrid model, 1841
where some measure of static and dynamic analysis are combined. Laminar is a hybrid 1842
DIFC system but relies on dynamic checks and restricting the programming model 1843
to mitigate covert channels, and thus its security methods explicitly overapproximate 1844
information flow. 1845

Recent work by Zhang, Askarov, and Myers developed a predictive mitigation strat- 1846
egy for timing channels [Askarov et al. 2010; Askarov and Myers 2012; Zhang et al. 1847
2011]. Predictive mitigation essentially ensures that all instances of a sensitive method 1848
run for the same length of time. If a method runs longer than expected, all future in- 1849
stances run for the new maximum length. This strategy has been developed in static 1850
analysis systems but could be extended to dynamic DIFC systems such as Laminar. 1851

In general, DIFC systems attempt to eliminate covert channels, which may be used to 1852
leak information, but do not eliminate timing channels [Lampson 1973] or probabilistic 1853
channels [Sabelfeld and Myers 2003]. DIFC systems can eliminate some implicit flows, 1854
as discussed in Section 6.4. 1855

Formalizing information flow properties. Prior work has formally defined safety 1856
properties for information flow systems, primarily in the context of a type system. 1857
The most restrictive is noninterference [Goguen and Meseguer 1982], in which the 1858
output of a low-security computation cannot be influenced by the values of high- 1859
security computation. This definition precludes declassification and endorsement. In 1860
the case of our calendar example, a calendar application that enforced noninterfer- 1861
ence could not output a mutually agreeable meeting time. Observational determinism 1862
is a generalization of noninterference to concurrent programs [Huisman et al. 2006; 1863
Zdancewic and Myers 2003]. Observational determinism generally requires the pro- 1864
gram to be DRF, as well as requiring equivalent traces of possible accesses to nonsecret 1865
data. 1866

An alternative safety condition is robustness [Chong and Myers 2005, 2006; Myers 1867
et al. 2004; Zdancewic and Myers 2001]. Within the lattice of labels in the decentral- 1868
ized label model, a robust system enforces boundaries on the ability of a principal to 1869
influence data or read data. In other words, a robust system would not allow a principal 1870
to expand its ability to read data based on the parts of the system it can influence. This 1871
model incorporates declassification, endorsement, multiple and mutually distrusting 1872
principals, and principals that can contribute and execute code. 1873

Noninterference, observational determinism, and robustness have been applied pri- 1874
marily to DIFC-type systems. We leave adapting a property such as observational 1875
determinism to a dynamic DIFC system for future work. 1876

In summary, Laminar combines the strengths of PL and OS DIFC systems. Laminar 1877
handles implicit flows and enforces the same fine-grained information flow control poli- 1878
cies as performed by prior PL DIFC systems but without static analysis of all program 1879
components. Laminar enforces the same DIFC security policies on system resources 1880
as the OS DIFC systems enforce. Laminar, however, makes it easier to deploy and use 1881
information flow control systems by introducing security methods that encapsulate 1882
security code and are intuitive to program. 1883
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11. CONCLUSION1884

Laminar is the first DIFC system to unify PL and OS mechanisms for information flow1885
control. It provides a natural programming model to retrofit powerful and auditable1886
security policies onto existing, complex, multithreaded programs.1887

Although abstractions such as the security method minimize the refactoring burden1888
on the programmer who wishes to adopt DIFC, the implementation mechanisms, such1889
as dynamic policy enforcement and allowing a thread to execute methods with different1890
labels, introduce additional opportunities for covert channels. To prevent some covert1891
channels, the current Laminar implementation imposes a number of modest restric-1892
tions that we would like to relax in future work, such as limiting the use of static1893
variables and forbidding file relabeling. This future work should be driven by a formal1894
model of security methods that facilitates careful reasoning about security properties,1895
especially about covert channels that arise due to concurrency.1896
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