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Abstract—Adding features and fixing bugs often require sys-
tematic edits that make similar, but not identical, changes to many
code locations. Finding all the relevant locations and making the
correct edits is a tedious and error-prone process for developers.
This paper addresses both problems using edit scripts learned
from multiple examples. We design and implement a tool called
LASE that (1) creates a context-aware edit script from two or
more examples, and uses the script to (2) automatically identify
edit locations and to (3) transform the code.

We evaluate LASE on an oracle test suite of systematic edits
from Eclipse JDT and SWT. LASE finds edit locations with
99% precision and 89% recall, and transforms them with 91%
accuracy. We also evaluate LASE on 37 example systematic edits
from other open source programs and find LASE is accurate and
effective. Furthermore, we confirmed with developers that LASE
found edit locations which they missed. Our novel algorithm
that learns from multiple examples is critical to achieving high
precision and recall; edit scripts created from only one example
produce too many false positives, false negatives, or both. Our
results indicate that LASE should help developers in automating
systematic editing. Whereas most prior work either suggests edit
locations or performs simple edits, LASE is the first to do both
for nontrivial program edits.

I. INTRODUCTION

To add features, fix bugs, refactor, and adapt to new APIs,
developers often perform systematic edits—similar, but not
identical, changes to many locations. Kim et al. observe
that most structural changes involve systematic change pat-
terns [12]. Nguyen et al. find that many bug fixes are system-
atic, and most occur in methods with similar functions and ob-
ject interactions [21]. When an API evolves, client applications
must systematically adapt by constructing new objects, passing
new arguments, or replacing API calls [4]. When developers
fork software, they often copy patches between products of
the same family as the software evolves. For example, in a
recent case study of BSD products, developers copy 11%-16%
patches between OpenBSD, FreeBSD, and NetBSD [24]. In
all these examples, programmers manually find many code
locations and then apply similar, but not identical, edits to
them one by one. This process is tedious and error-prone.

Existing tools either suggest code locations or transform
code, but not both, except for specialized or trivial edits.
For example, much prior work infers code patterns or takes
them as input to find buggy code violating the patterns [5],
[14], [15], [26], [30], or they identify code clones that may
require similar edits [20], [21]. However, these tools do not
fix programs by applying code transformations. Other tools

apply code transformations, but the user must specify target
locations [18]. The closest work locates and applies very
simple or limited stylized changes [9], [23], [25], [29]. We
refer to limited changes such as API, concurrency, or security
policy corrections [2], [9], [25], and identical, lexical edits
to similar text [13] as stylized. Andersen and Lawall [2]
perform API updates, but they cannot position edits well
because they do not consider data and control dependences.
Given concurrency bug reports, Jin et al. insert synchronization
patterns and test them [9]. The most sophisticated approach
adds missing security logic [25]. None of these tools however
perform general program transformations that both fix bugs
and add functionality.

This paper describes the design and implementation of
LASE (Locating and Applying Systematic Edits) to help
developers evolve programs by performing general systematic
edits. Developers specify two or more example methods that
they edited by hand. LASE uses the examples to learn an edit
script, uses the script to find other edit locations, customizes
the script to each location, and applies the customized script.

From the examples, LASE infers the most specific gener-
alization of the edit operations and their context, resulting
in a partially abstract, context-aware edit script. Intuitively,
LASE infers edit operations (insert, delete, update, and move)
common to all examples and abstracts or omits edit operations
that differ between examples. For instance, if two examples
delete an if statement, but disagree on the names of types,
methods, or variables in the condition, LASE abstracts the
discrepant names, and if they agree on names, LASE uses the
concrete names, creating a partially abstract delete operation.
LASE next computes the common context of edit operations,
i.e., other statements that constrains edits. LASE uses context
to search for edit locations and position edits. For instance,
if two examples insert S as the first statement in a while

loop, the context is the while loop with the position of S as
the loop’s first child. LASE determines the largest common
context of edits with a novel algorithm that combines clone
detection [10], maximum common embedded subtree extrac-
tion [16], and dependence analysis. The result is an edit script
that consists of partially abstract edit operations and context.

LASE uses the script to find edit locations and transform the
code. We assume that methods with similar contexts require
similar edits and search for methods with code that matches the
script’s context. For methods that match, LASE customizes the



edit script by making abstract names and edit positions in the
script concrete based on the concrete names and code positions
in the target method. LASE then applies the customized edit
script and suggests the changed method to the developer for
review since LASE cannot guarantee the edit is correct.

We perform a thorough evaluation of LASE and its features
on systematic edits drawn from open-source programs. We use
real-world repetitive bug fixes that required multiple check-
ins in Eclipse JDT and SWT as an oracle. For these bugs,
developers applied supplementary bug fixes because the initial
patches were either incomplete or incorrect [22]. We evaluate
LASE by learning edit scripts from the initial patches and
determining if LASE correctly derives the subsequent, supple-
mentary patches. On average, LASE identifies edit locations
with 99% precision and 89% recall. The accuracy of applied
edits is 91%, i.e., the tool-generated version is 91% similar
to the developer’s version. We also evaluate LASE on a test
suite of 37 systematic edits drawn from five Java open source
projects. In these experiments, we find that LASE’s approach
to finding locations has significantly fewer false positives and
negatives when compared to other approaches, such as learning
edit scripts from single examples with fully abstract [18] or
fully concrete names. The partially abstract context and edit
scripts that LASE infers from multiple examples are critical to
achieving high precision, recall, and accuracy. Furthermore,
LASE identifies and correctly edits 9 locations in the oracle
test suite that developers confirmed they missed.

LASE is the first tool to learn nontrivial program edits from
multiple changed methods, to use scripts to find edit locations,
and to perform customized program transformations at each
found location. Our results show the power of automation for
adding features and fixing bugs in a large code base. Tools are
simply more systemic than humans.

II. MOTIVATING EXAMPLE

This section uses a motivating example drawn from revi-
sions of org.eclipse.compare to show LASE’s work flow and
compare it to our prior work that learns from one example.
Figure 1 shows three methods with similar changes: mA, mB,
and mC. The unchanged code is in black, added code is in blue
with ‘+’, and deleted code is in red with ‘−’. The changes
to method mA delete two print statements (lines 3 to 4), insert
a local variable declaration next for each enumerated element
(line 9 of mA), perform a type cast to MVAction on the variable
(line 10), and then process it. Figure 2 shows how SYDIT [18]
generates an edit script from one exemplar change and then the
developer tells SYDIT where to apply the inferred edit script.

An edit script consists of edit operations (insert, delete,
move, and update) and context, unmodified statements in
the method on which the edit statements are control or
data dependent. The context expresses constraints that other
statements place on the edit and positions the edit. In Figures 2
and Figure 3, gray bars represent edit context, red bars
represent deleted code, and blue bars represent inserted code.
Figure 4 shows the edit script inferred by SYDIT from mA.
Unfortunately with only one example, the resulting edit script

Aold to Anew

1. public void textChanged (TEvent event) {
2. Iterator e=fActions.values().iterator();
3. - print(event.getReplacedText());
4. - print(event.getText());
5. while(e.hasNext()){
6. - MVAction action = (MVAction)e.next();
7. - if(action.isContentDependent())
8. - action.update();
9. + Object next = e.next();
10.+ if (next instanceof MVAction){
11.+ MVAction action =(MVAction)next;
12.+ if(action.isContentDependent())
13.+ action.update();
14.+ }
15. }
16. System.out.println(event + " is processed");
17.}

Bold to Bnew

1. public void updateActions () {
2. Iterator iter = getActions().values().iterator();
3. while(iter.hasNext()){
4. - print(this.getReplacedText());
5. - MVAction action=(MVAction)iter.next();
6. - if(action.isDependent())
7. - action.update();
8. + Object next = iter.next();
9. + if (next instanceof MVAction){
10.+ MVAction action =(MVAction)next;
11.+ if(action.isDependent())
12.+ action.update();
13.+ }
14.+ if (next instanceof FRAction){
15.+ FRAction action = (FRAction)next;
16.+ if(action.isDependent())
17.+ action.update();
18.+ }
19. }
20. print(this.toString());
21.}

Cold to Cnew

1. public void selectionChanged (SEvent event) {
2. Iterator e = fActions.values().iterator();
3. while(e.hasNext()){
4. - MVAction action=(MVAction)e.next();
5. - if(action.isSelectionDependent())
6. - action.update();
7. + Object next = e.next();
8. + if (next instanceof MVAction){
9. + MVAction action =(MVAction)next;
10.+ if(action.isSelectionDependent())
11.+ action.update();
12.+ }
13. }
14.}

Fig. 1. A systematic edit to three methods based on revisions from 2007-04-
16 and 2007-04-30 to org.eclipse.compare

cannot find edit locations because it suffers both from over
specification and over generalization.

The script learnt from mA includes deleting two statements
(lines 3 and 4), but these operations are overly specific to
mA and prevent the script from being applied to mB and mC.
Meanwhile, the script learnt from mA abstracts all names of
variables, methods, and types, used in mA to increase flexibility
when looking for matches in a target method. For instance,
abstracting variable e of type Iterator to v$0 of type t$0

enables v$0 to match variables e in mA and mC, and iter in
mB, both of which have type Iterator. However, abstractiing
every name is too flexible and matches variables in many
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Fig. 2. SYDIT learns an edit from one example. A developer must locate
and specify the other methods to change.
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Fig. 3. LASE learns an edit from two or more examples. LASE locates other
methods to change.

1. … … method_declaration(… …){ 
2.   T$0 v$0 = v$1.m$0().m$1(); 
3.   DELETE: m$2(v$2.m$3()); 
4.   DELETE: m$2(v$2.m$4()); 
!
3.   while(v$0.m$5()){ 
 
4.     UPDATE: T$1 v$3 = (T$1)v$0.m$6();       
5.         TO: T$2 v$4 = v$0.m$6(); 
6.     if(v$3.m$7()){ 
7.      … … 
8.     }  
9.     INSERT: if(v$4 instanceof T$1){ 
10.        INSERT: T$1 v$3 = (T$1)v$4; 
11.        … … 
12.        } 
 
 
 
 
 
!

MOVE 

Fig. 4. Edit script from SYDIT abstracts all concrete names. Gray marks
edit context, red marks deletions, and blue marks additions.

1. … … method_declaration(… …){ 
2.   Iterator v$0 = u$0:FieldAccessOrMethodInvocation 

.values().iterator(); 
3.   while(v$0.hasNext()){ 
4.     UPDATE: MVAction action = (MVAction)v$0.next();       
5.         TO: Object next = v$0.next(); 
6.     if(action.m$0()){ 
7.      … … 
8.     }  
9.     INSERT: if(next instanceof MVAction){ 
10.        INSERT: MVAction action = (MVAction)next; 
11.        … … 
12.        } 
 
 
 
 
 
!

MOVE 

Fig. 5. Edit script from LASE abstracts code names that differ in the
examples and uses concrete names for common ones. Gray marks edit
context, red marks deletions, and blue marks additions.

unrelated methods, and consequently would incorrectly apply
edit scripts to too many methods.

This paper seeks an edit script that serves double duty,
both finding edit locations and accurately transforming the
code. LASE learns from two or more example edits to solve
the problems of over generalization and over specification.
Although developers may also want to directly create or
modify a script, since they already write and edit code, we
think providing multiple examples is a natural interface.

Figure 3 shows the work flow of LASE. The developer
specifies two exemplar changed methods, mA and mB. LASE
infers the edit script shown in Figure 5 from the examples.
It uses the edit script to find matching locations, specializes
the script to each location, applies the result, and suggests the
transformed code to the developer. Using multiple examples
requires new algorithms to identify common changes and
context, and to abstract or omit differences. None of these
algorithms are necessary when learning from a single example.

LASE first finds the longest common edit operation subse-
quence among exemplar edits to filter out operations specific
to only a single example. Notice that LASE omits the deleted
print statements from mA (lines 3 and 4) in Figure 5 because
the edits are not common to mA and mB. LASE extracts the
context for each common edit and then determines the largest
common edit-relevant context. This algorithm combines clone
detection, maximum common embedded subtree extraction on
the Abstract Syntax Tree (AST), and dependence analysis.
Finally, if type, method, and variable names agree, LASE uses
these concrete names, otherwise LASE abstracts the discrepant
names in both edit operations and context. For example in

Figure 5, LASE uses Iterator because it is common to mA and
mB. Since field access fActions in mA and method invocation
getActions() in mB match but differ, LASE generalizes them
to an abstract name u$0:FieldAccessOrMethodInvocation.

III. APPROACH

This section summarizes LASE’s three phases and formal-
izes our terminology. The following sections then describe
each phase in detail. We represent edit operations and context
with Abstract Syntax Trees (AST).
Phase I: Generating an Edit Script. Generating an edit script
from multiple examples has four steps.

1) Generating Syntactic Edits. For each changed method
mi ∈ M={m1, m2, . . ., mn}, LASE compares the old
and new versions of mi and creates an edit: Ei =
[e1, e2, . . . , ek] where ei is an insert, delete, move, or
update operation of AST statements.

2) Identifying Common Edit Operations. LASE identifies
the longest common edit operation subsequence Ec such
that ∀1 ≤ i ≤ n, Ec ⊆ Ei, and Ec preserves the
sequential order of operations in each Ei.

3) Generalizing Identifiers in Edit Operations. When a
common edit operation e ∈ Ec uses distinct type,
method, and variable names in different methods, LASE
replaces the concrete names with abstract names, result-
ing in E. Otherwise, it uses the original concrete names.

4) Extracting Common Edit Context. LASE finds the largest
common context C relevant to E using code clone detec-
tion, maximum common embedded subtree extraction,



LCEOS(s(Ei, p), s(Ej , q)) =


0 if p = 0 or q = 0

LCEOS(s(Ei, p− 1), s(Ej , q − 1)) + 1 if equivalent(ep, eq)

max(LCEOS(s(Ei, p)), s(Ej , q − 1)), LCEOS(s(Ei, p− 1), s(Ej , q))) if !equivalent(ep, eq)

(1)

s(E∗, i) represents the edit operation subsequence e1, ..., ei in E∗.

and dependence analysis. LASE abstracts names in the
context C as well as the edits E.

The result of this process is a partially abstract, context-aware
edit script ∆P .

Phase II: Finding Edit Locations. LASE uses the edit script’s
context C to search for methods Mf that match C.

Phase III: Applying an Edit. For each mf ∈ Mf , LASE
specializes ∆P to mf by mapping abstract names and abstract
edit positions in ∆P to concrete ones in mf , producing ∆f .
LASE applies this concrete edit script to mf and suggests the
resulting method mf’ to the developer.

IV. PHASE I: LEARNING FROM MULTIPLE EXAMPLES

A. Generating Syntactic Edits

For each exemplar changed method mi ∈ M , LASE uses
Fluri et al.’s AST differencing algorithm [6] to compare the
AST of mi’s old and new versions and create a sequence of
node edit operations Ei consisting of:
• insert (Node u, Node v, int k): insert u and position it

as the (k + 1)th child of v.
• delete (Node u): delete u.
• update (Node u, Node v): replace u’s label and AST

type with v’s while maintaining u’s position in the tree.
• move (Node u, Node v, int k): delete u from its current

position and insert it as the (k + 1)th child of v.
Although insert and delete are sufficient to describe all edits,
update and move operations link dependent edit operations and
make the edit easier to apply.

B. Identifying Common Edit Operations

LASE identifies common edit operations in {E1, E2, . . . En}
by iteratively comparing the edits pairwise using a Longest
Common Edit Operation Subsequence (LCEOS) algorithm [8],
as shown in Equation (1).

We do not require exact equivalence between edit operations
because systematic edits are not necessarily identical. We
define the comparison function equivalent(ep, eq) in two
ways: concreteMatch(ei, ej , ts) and abstractMatch(ei, ej).

LASE first applies concreteMatch(ei, ej , ts) to compare ei
and ej using their edit types and labels. Labels are string
representations of AST nodes with identifiers and operators. If
two operations have the same node type and their labels’ bi-
gram string similarity [1] is above the threshold ts, the function
returns true. We use ts = 0.6 to include more matches. LASE
also matches AST node types inexactly, tolerating mapping
return statement to expression statement, and while to for

to do.

If LASE fails to find any common edit operation between
two edits with concreteMatch, it applies abstractMatch(ei, ej),
which converts all concrete names of types, methods, and
variable to abstract identifiers t$, m$, and v$. If two operations
have the same edit type and their labels’ abstract represen-
tations match, abstractMatch returns true. Other matching
heuristics may also perform well, such as abstracting names
one at a time, but we did not explore them.

The result of matching is a list of concrete edit operations
that are equivalent and common to all exemplar methods, but
their identifier names and AST types may not match.

C. Generalizing Identifiers in Edit Operations

LASE next generalizes names as needed. When all edit oper-
ations agree on a concrete name, LASE uses the concrete name.
If one or more edit operations use a different name, LASE gen-
eralizes the name. For example, Figure 1 shows eA = delete(
MVAction action=(MVAction)e.next()) matches with eB
= delete(MVAction action=(MVAction)iter.next()). When
LASE detects the discrepant variable names e vs. iter,
it generalizes them by creating a fresh abstract identifier
v$0, substituting it for the original names, and creating
e = delete(MVAction action=(MVAction)v$0.next()). LASE
records the pairs (e, v$0), (iter, v$0) in a map. It then
substitutes v$0 for all instances of e in mA and EA, and all
instances of iter in mB and EB to enforce a consistent naming
for all edit operations and edit context. If some subsequent
common edit operations are inconsistent with the current
mappings, LASE omits them, resulting in a list of partially
abstract edit operations E.

D. Extracting Common Edit Context

This section explains how LASE extracts the common edit
context C for E from the exemplar methods with clone
detection and then refines this context based on consistent
name usage, AST subtree extraction, and dependences.

1) Finding Common Text with Clone Detection: For all
matched edits {E1, E2, . . . , En}, LASE extracts relevant un-
changed context code. LASE first finds common text by divid-
ing the methods with edits into three parts. Given matching
edits E1 on AST nodes n1, n2 ∈ m1 and E2 on n′1, n

′
2 ∈ m2,

let n1 precede n2 in m1. LASE divides the methods into code
preceding n1 and n′1, code between the two matching nodes,
and code after them. LASE next compares each of these three
code segments in m1 and m2 with a clone detector [10]. This
step reveals all possible common text shared between each pair
of methods. This common text over approximates context. The
steps below refine the context based on name mapping, com-
mon embedded subtree extraction, and dependence analysis.
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Fig. 6. mA’s and mB’s AST

2) Generalizing identifiers: Because clone detection uses
text similarity, it does not guarantee that type, method, and
variable names in one method are mapped consistently in other
methods. LASE collects all name mappings between the two
methods’ clone pairs. If there are conflicting mappings, LASE
retains the context statements for the most frequent mappings
and excludes any inconsistent statements from the context.
If different concrete names map consistently with each other,
LASE generalizes them to a fresh abstract name and substitutes
it for the names in all context statements and edit operations
to create an abstract common context Cabs.

3) Extracting Common Subtree(s) with MCESE: Because
clone detection uses text matching, the AST structure of
two nodes may not match, e.g., two matching nodes may
have different parent nodes. To solve this problem, LASE
uses an off-the-shelf Maximum Common Embedded Subtree
Extraction (MCESE) algorithm [16] to find the largest com-
mon forest structure, as shown in Equation 2. This algorithm
traverses each AST in pre-order, indexes nodes, and encodes
the tree structure into a node sequence. By computing the
longest common subsequence between the two sequences and
reconstructing trees from the subsequence, LASE finds the
largest common embedded subtree(s), Csub. It then excludes
all the other statements from the context.

MCESE(s, t)

=



0 if s or t is empty

max


MCESE(head(s), head(t)) if equivalent(s[0], t[0])

+MCESE(tail(s), tail(t)) + 1,

MCESE(head(s)tail(s), t),

MCESE(s, head(t)tail(t)) otherwise
(2)

Consider mA’s and mB’s AST in Figure 6. LASE traverses
mA’s AST in pre-order, indexes nodes, and encodes the tree
into node sequence s = [1, 2, -2, 3, -3, 4, -4, 5, 6, -6, 7,
8, 9, -9, -8, -7, -5, 10, -10, -1], where “−” marks finishing
the traversal of current node. Indexes X and −X mark the

boundaries of the subtree rooted at X’s node. Similarly, LASE
creates sequence t = [1, 2, -2, 3, 4, -4, 5, -5, 6, 7, 8, -8,
-7, -6, -3, 9, -9, -1] for mB . We then use Equation (2) to
find the longest common subsequence between them, which
corresponds to subsequence [1, 2, -2, 5, 6, -6, 7, 8, 9, -9, -8,
-7, -5, -1] of s and [1, 2, -2, 3, 5, -5, 6, 7, 8, -8, -7, -6, -3,
-1] of t. The reconstructed trees out of these sequences are
colored with orange and circled with dash lines.

In the equation, head(s) returns the sequence of nodes
sub-rooting at s[0] (excluding s[0] and -s[0]), while tail(s)
returns the subsequence following -s[0]. For instance, given a
sequence s = [1, 2, -2, -1, 3, -3], head(s) = [2, -2], tail(s) =
[3, -3]. The function equivalent(i, j) checks string equality
between the two nodes’ labels.

4) Refining Edit Context with Dependence Analysis: The
common text extracted between any two methods may include
irrelevant code, i.e., code that does not have any control or
data dependence relations with edited code. Blindly including
them as edit context puts unnecessary constraints on potential
edit locations, causing false negatives during edit location
search. LASE thus further refines the extracted context based
on control and data dependences.

LASE performs control and data dependence analysis and
then determines direct and transitive dependences between edit
operations and context statements in each changed method.
For each edit operation, LASE unions all the unchanged AST
statements that are the source of dependences with the edit
as relevant context. Finally, it intersects the identified edit-
relevant context in each method to produce Cdep. If C =
Csub

⋂
Cdep is not empty, LASE sets the context of E to C,

omitting unrelated statements. If Cdep is empty, LASE sets
C = Csub, since matching an empty context is not useful for
detecting edit locations. E and C define a partially abstract,
context-aware edit script, ∆P , where each edit operation in E
is positioned with respect to context C.

V. PHASE II: FINDING EDIT LOCATIONS

Given an edit script ∆P , LASE searches for methods con-
taining ∆P ’s context C. Based on our assumption that methods



containing similar edit contexts are more likely to experience
similar changes, LASE suggests them as edit locations.

Because C is partially abstract, it contains both con-
crete and abstract type, method, and variable names. When
LASE matches C with a method m, it matches concrete
names exactly and abstract names by type or AST node.
For instance, Iterator in C only matches Iterator in m.
An abstract name, such as v$0, matches any variable,
while u$0_FieldAccessOrMethodInvocation only matches
FieldAccess or MethodInvocation AST nodes. LASE reuses
the MCESE algorithm from Section IV-D to find the max-
imum common context between C and m, but redefines the
equivalent(i, j) function to compare concrete names based
on string equality and abstract names based on identifier type
and AST node type. If each node of the common context C
matches a node in method m, LASE records name mappings
between them and then suggests m as an edit location mf .

This algorithm for identifying edit locations is simple be-
cause the context in the edit scripts precisely encodes the exact
and flexible matching criteria.

VI. PHASE III: APPLYING THE EDIT

To apply the edit to a suggested location mf , LASE must cus-
tomize the edit ∆P for mf . For this process, we slightly modify
the edit customization and edit application algorithms that
we introduced previously [18]. The customization algorithm
replaces all abstract names in ∆P with the corresponding con-
crete names from mf based on the name mappings established
in Phase II. LASE retains all the concrete names in ∆P . In
addition, LASE positions each edit operation concretely in the
target method in terms of AST node positions. LASE uses the
the data and control dependences contained in the edit script
and computes dependences in the target method. It uses the
dependences to maintain correct and consistent relationships
between identifiers and statements as described in our prior
work [18]. The result is ∆f , which fully specifies each edit
operation as an AST modification with concrete labels and
node positions. LASE applies this customized, concrete edit
script and suggests the resulting version to developers.

VII. EVALUATION

This section evaluates LASE’s precision and recall when
finding correct edit locations and its accuracy when applying
edits. We use two oracle test suites. One test suite consists
of multiple systematic edits that fix the same bug in multiple
commits, drawn from two open-source programs, Eclipse JDT
and Eclipse SWT. The other one contains 37 systematic edits
from five Java open-source programs (jEdit, Eclipse jdt.core,
Eclipse compare, Eclipse core.runtime, and Eclipse debug).
We explore sensitivity to (1) multiple examples versus one
example, (2) example choice, and (3) strategies for identifier
abstraction and context. LASE matches context against all
methods in the entire program reasonably quickly, taking 28
seconds on average on the five open-source subject programs,
which are representative of medium and large Java projects.

TABLE I
LASE’S EFFECTIVENESS ON REPETITIVE BUG PATCHES TO ECLIPSE

Edit Location Operations
Index Bug (patches) mi Σ X P % R % A % E C AE %

1 73784 (1) 4 4 4 100 100 53 7 2 29
2 82429 (2) 16 13 12 92 75 81 9 9 100
3 114007 (3) 4 4 4 100 100 100 6 6 100
4 139329 (3) 6 2 2 100 33 74 6 3 50
5 142947 (6) 12 12 12 100 100 100 1 1 100
6 91937 (2) 3 3 3 100 100 95 5 3 60
7 103863 (5) 7 7 7 100 100 100 34 34 100

*8 129314 (3) 3 4 4 100 100 100 2 2 100
9 134091 (4) 4 4 4 100 100 73 24 24 100

10 139329 (3) 3 4 3 75 100 100 1 1 100
11 139329 (3) 3 3 3 100 100 88 12 12 100
12 142947 (6) 9 9 9 100 100 83 6 6 100
13 76182 (2) 6 6 6 100 100 90 6 6 100
14 77194 (3) 3 3 3 100 100 97 13 13 100
15 86079 (3) 3 3 3 100 100 100 25 25 100

*16 95409 (3) 7 9 9 100 100 78 4 4 100
17 97981 (2) 4 3 3 100 75 100 3 3 100

Average 6 5 5 98 93 89 10 9 91

18 74139 (3) 5 5 5 100 100 100 1 1 100
19 76391 (3) 6 3 3 100 50 100 3 3 100
20 89785 (3) 5 5 5 100 100 95 5 3 60
21 79107 (2) 3 2 2 100 67 92 4 4 100
22 86079 (4) 4 2 2 100 50 100 8 8 100
23 95116 (4) 5 4 4 100 80 100 3 3 100

*24 98198 (2) 9 15 15 100 100 95 3 3 100
Average 5 5 4 100 78 97 4 4 94

Total Average 6 5 5 99 89 91 8 7 92

* LASE suggests edits missed by developers.

A. Precision, Recall, and Accuracy with an Oracle Data Set

To measure precision, recall, and accuracy, we use an oracle
test suite based on edits to Eclipse JDT and Eclipse SWT
identified by work on supplementary bug fixes [22], [24].
They find bug fixes spanning multiple commits to understand
characteristics of incomplete or incorrect bug fixes, using
the bug ID and clone detection. The work illustrates that
developers miss locations that they need to change when
initially fixing a bug, further motivating our work.

We select systematic edits from these programs. If a bug
is fixed more than once and there exist clones of at least
two lines in bug patches checked in at different times, we
manually examine these methods for systematic changes. We
find 2 systematic edits in Eclipse JDT and 22 systematic edits
in Eclipse SWT, as shown in Table I, where the first two
rows are from JDT, while the rest are from SWT. The table
groups the examples into two sets based on whether LASE
refines the context with program dependence analysis or not
(see Section IV-D4). The first 17 edits have non-empty Cdep,
and thus C = Csub

⋂
Cdep. The last 7 edits have empty Cdep

and thus C = Csub.
We use these patches as an oracle test suite for correct

systematic edits and test if LASE can produce the same results
as the developers given the first two fixes in each set of
systematic fixes. Since the developers may not be perfect,
there may be incorrect edits or missing edits for which we
cannot control. Indeed, we confirmed with developers that
LASE found 9 methods in 3 fixes (starred in Table I) and
applied correct edits that they missed! When LASE produces
the same results as developers do in latter patches, it indicates



that LASE will help programmers detect edit locations earlier,
reduce errors of omission, and make systematic edits.

We give LASE as input two random changed methods in
the first patch. If there is only one changed method in the
first patch, we randomly select the second one from the next
patch. LASE generates an edit script from these two examples,
finds edit locations, customizes the edit for each location, and
applies the customized edit to suggest a new version.

Table I shows the results. The table lists the Bug identifier,
the number of patches, and number of methods mi that
developers changed. For each Edit Location, we present Σ: the
number of methods that LASE identifies as change locations;
X: the number of methods correctly identified; precision P:
the percent of correctly identified edit locations compared
to all found locations; recall R: the percentage of correct
locations out of all expected locations; and accuracy A: the
syntactic similarity between the tool-suggested version and
the expected version, only for edited methods. The Operation
columns present E: the number of edit operations shared
among repetitive fixes for the same bug, i.e., operations we
expect LASE to infer; C: the number of operations correctly
inferred by LASE; and AE: the percentage of operations
correctly inferred over expected operations.

LASE locates edit positions with respect to the oracle data
set with 99% precision, 89% recall, and performs edits with
91% accuracy. We check accuracy by visual inspection and
compilation. Most of the inferred edits are nontrivial and LASE
handles these cases well. For instance, edit case 7 requires 34
operations. LASE correctly infers all 34 of them, correctly
suggests 7 edit locations, and correctly applies customized
edits with 100% accuracy.

In three edit cases (8, 16, and 24), LASE suggests 9 edits that
developers missed. Note that the number of methods correctly
identified for each is larger than the number of methods
developers changed. We confirmed all these omission errors
with the Eclipse developers and mark the test cases with an
asterisk in Table I. These results indicate that LASE will help
developers make systematic edits consistently and help reduce
errors of omission.

LASE cannot guarantee 100% edit application accuracy
for four reasons. First, the inferred edit is sometimes a
subset of the exemplar edits and LASE cannot suggest edits
specific to a single location. For instance in edit case 2,
LASE infers all 9 edit operations shared among repetitive
fixes for the same bug, but it misses some specific edits and
does not achieve 100% accuracy. Second, abstract names may
not have corresponding concrete names in the edit location.
For example, if an abstract name is only used by inserted
statements, LASE cannot decide how to concretize it. Third,
based on string similarity, LASE’s AST differencing algorithm
cannot always infer edits operations correctly. For instance, if
trailingComments != null is updated to trailingPtr >= 0

in one method, and rComments != null is updated to rPtr

>=0 in another method, the inferred operations for the later
includes an insert and delete operation pair since the two
strings are not similar enough for LASE to infer an update

TABLE II
LASE’S EFFECTIVENESS WHEN LEARNING FROM MULTIPLE EXAMPLES

# of
P % R % A %exemplars

Index 4

2 100 51 72
3 100 82 67
4 100 96 67
5 100 100 67

Index 5

2 100 80 100
3 100 84 100
4 100 91 100

Index 7

2 100 83 100
3 100 84 100
4 100 88 100
5 100 92 100
6 100 96 100

Index 12

2 78 90 85
3 49 98 83
4 31 100 82

Index 13

2 100 100 95
3 100 100 94
4 100 100 93
5 100 100 91

Index 19

2 100 66 100
3 100 94 100
4 100 100 100
5 100 100 100

Index 23
2 100 72 100
3 100 88 100
4 100 96 100

operation. When LASE compares an update operation to the
insert and delete operations, the edit types do not match and
it does not extract a common edit operation. Fourth, LASE’s
LCEOS algorithm cannot always find the best longest common
edit operation subsequence between two sequences because it
does not enumerate or compare all possible longest common
subsequences to choose the best one. Although each of these
problems occurred, none occurs frequently.

The number of exemplar edits influences effectiveness. To
determine how sensitive LASE is to the number and choice of
exemplar edits, we randomly pick 7 cases in the oracle data
set and enumerate subsets of exemplar edits, e.g., all pairs
of two exemplar methods. We evaluate the precision, recall,
and accuracy for each choice of exemplars and calculate the
average for each cardinality to determine how sensitive LASE
is to the choice and number of exemplar edits.

Table II shows that precision P does not change as a function
of the number of exemplar edits for these examples, except for
case 12, where two exemplars are the most accurate. Recall R
is more sensitive to the choice and number of exemplar edits,
increasing as a function of exemplars. The more exemplar
edits provided, the less common context is likely to be shared
among them, and the easier it is to match. However, the context
will still be specific, resulting in high precision. Precision can
go down when more diverse examples are given, but this case
(case 12) only occurred once in these tests.

In theory, Accuracy A can vary inconsistently with the
number of exemplar edits, because it strictly depends on the
similarity between edits. For instance, when exemplar edits are
diverse, LASE extracts fewer common edit operations, which
lowers accuracy. When exemplar edits are similar, adding



exemplar methods may not decrease the number of common
edit operations, but may induce more identifier abstraction and
result in a more flexible edit script, which increases accuracy.

B. Sensitivity of Edit Scripts

This section explores how sensitive the results are to edit
script features. We first compare learning from multiple exam-
ples to a single example. We use LASE to generate edit scripts
from example pairs and SYDIT [18] to generate edit scripts
from single examples. SYDIT only learns from one example
and abstracts all names. It does not find edit locations but
relies on developers to choose locations. We use LASE to find
locations for SYDIT’s scripts and apply edits. The experiments
show that using multiple examples finds locations with higher
precision and recall than using one example, and motivates
using two or more examples.

We measure precision and recall of edit location suggestion
and accuracy of edit application on the SYDIT test suite [18]
of five open source programs: jEdit, Eclipse jdt.core, Eclipse
compare, Eclipse core.runtime, and Eclipse debug. This suite
contains 56 pairs of exemplar changed methods. Each method
pair demonstrates at least one similar edit operation and the
two methods are at least 40% similar according to the syntactic
program differencing (see Section IV-A). We remove the
simple cases, e.g., edits on initially empty methods or only
one statement, resulting in 37 pairs. For each pair, we extend
the oracle set of exemplar edits as follows. We first apply LASE
to infer the systematic edit demonstrated by both methods and
search for edit locations in the program’s original version.
Then we manually examine all found locations. If a location
is indeed edited similarly in the next version but not in the
known pairs, we include it in the oracle set.

Table III shows the results. On average, learning from one
example has lower precision and recall when looking for edit
locations as compared to learning from two examples, but has
higher accuracy when suggesting edits for correctly identified
locations. Several reasons explain these results.
• Inferring a common context from two examples results

in a mix of concrete and abstract identifiers. Searching
with a partially abstract context is more precise than a
fully abstract context, which matches more methods. The
partially abstract context recalls more than a concrete
context does, which matches fewer methods.

• Using two examples reduces the edit to a common subset,
so the derived edit is likely to be less accurate for any one
target location, since it may lack some edit operations.

• LASE includes all nodes transitively depended on by
any edited node in the inferred context, deriving a more
precise context as compared to SYDIT’s context, which
is based on direct dependence relations.

• LASE matches context differently than SYDIT.
Table IV shows the average sensitivity of LASE to the ab-
straction and context algorithms by comparing their average
precision, recall, and accuracy on all 37 systematic edits.

LASE AbsAll differs from LASE by abstracting all identi-
fiers instead of only abstracting identifiers when necessary.

TABLE III
LEARNING FROM ONE EXAMPLE VERSUS MULTIPLE EXAMPLES

ID mi
Two Examples One Example

Σ X P % R % A % Σ X P % R % A %

1 5 6 5 83 100 100 10 5 50 100 100
2 2 3 2 67 100 80 7 2 29 100 100
3 5 7 5 71 100 100 277 1 0 25 100
4 2 3 2 67 100 96 596 2 0 100 97
5 5 6 5 83 100 100 5 3 60 60 100
6 2 73 2 3 100 100 3354 2 0 100 100

Average 4 18 4 62 100 94 708 3 23 81 100

7 2 2 2 100 100 92 24 2 8 100 83
8 2 2 2 100 100 100 76 2 3 100 100
9 3 3 3 100 100 100 4 2 50 67 100

10 2 2 2 100 100 100 8 2 25 100 100
11 2 2 2 100 100 100 3 2 67 100 100
12 2 2 2 100 100 100 2 1 50 50 100
13 2 2 2 100 100 96 5 1 20 50 100
14 2 2 2 100 100 99 3 2 67 100 100

Average 2 2 2 100 100 98 16 2 36 83 98

15 2 2 2 100 100 100 2 2 100 100 100
16 2 2 2 100 100 100 2 2 100 100 100
17 2 2 2 100 100 100 1 1 100 50 100
18 2 2 2 100 100 96 1 1 100 50 100
19 2 2 2 100 100 100 2 2 100 100 100
20 2 2 2 100 100 100 2 2 100 100 100
21 2 2 2 100 100 100 2 2 100 100 100
22 2 2 2 100 100 75 1 1 100 50 100
23 4 4 4 100 100 100 4 4 100 100 100
24 2 2 2 100 100 100 2 2 100 100 100
25 2 2 2 100 100 86 1 1 100 50 100
26 2 2 2 100 100 87 1 1 100 50 100
27 5 5 5 100 100 100 5 5 100 100 100
28 2 2 2 100 100 100 1 1 100 50 100
29 2 2 2 100 100 74 2 2 100 100 99
30 2 2 2 100 100 88 1 1 100 50 100
31 2 2 2 100 100 100 2 2 100 100 100
32 2 2 2 100 100 100 2 2 100 100 100
33 2 2 2 100 100 84 1 1 100 50 100
34 6 6 6 100 100 100 6 6 100 100 100
35 6 6 6 100 100 100 6 6 100 100 100
36 6 6 6 100 100 100 6 6 100 100 100
37 6 6 6 100 100 100 6 6 100 100 100

Average 3 3 3 100 100 95 3 3 100 83 100

TABLE IV
COMPARISON BETWEEN LASE AND ITS VARIANTS

P % R % A %

LASE 94 100 96
LASE AbsAll 75 100 96
LASE SigCon 98 60 100
LASE SigAbs 78 88 97
LASE Sydit 74 82 99
LASE DirDep 94 100 96

Therefore, LASE AbsAll’s inferred context is more general
than context inferred by LASE and it matches more methods,
causing more false positives and lower precision.

LASE SigCon learns from a single example and uses all
concrete identifiers which makes LASE SigCon’s inferred edit
very specific to the example. Consequently, LASE SigCon’s
derived context is too specific to find all edit locations. Its
average recall is just 60% with many false negatives. In many
cases, LASE SigCon’s context can only find the method from
which it is inferred and cannot detect any other edit location.
In contrast, LASE has 100% recall on these examples.

LASE SigAbs learns from a single example and abstracts all
names. The resulting context is too general and it suggests edit



locations with lower precision and higher recall, but applies
edits with lower accuracy than context from LASESigCon.

LASE Sydit differs from LASE by using SYDIT’s context
matching algorithm to search for locations instead of MCESE.
SYDIT’s algorithm assumes that developers specified the target
method and it matches. The comparison shows that LASE

Sydit results in lower precision and recall, but higher accuracy.
MCESE is much better at identifying the correct locations.

LASE DirDep uses direct dependence relations to include
unchanged nodes for edit context, instead of using the tran-
sitive closure of dependence relations. In many cases, this
algorithm produces the same context as LASE, but even when
LASE DirDep is smaller, excluding the extra dependences in
edit context does not affect precision, recall, or accuracy. This
result suggests that the direct control and data dependences
are often sufficient to position the edit relative to all the
dependences.

To sum up, compared with learning from one example,
LASE’s new algorithms that learn from multiple examples
are critical to finding correct edit locations. LASE’s context
discriminates well and thus finds the correct edit locations
with high precision and recall. Since programmers struggle a
lot with errors of omission, if need be, LASE should sacrifice
edit application accuracy to increase precision and recall. Once
LASE identifies correct locations, if the applied edit is not fully
correct, developers still have the opportunity to review and
correct the code. Finding and suggesting missed edit locations
is thus the most important feature of LASE.

VIII. RELATED WORK

This section describes related work on programming by
demonstration, code search, edit location suggestion, and
automated code repair.
Example-based Program Migration and Correction. The
most closely related work automates API migration [2]. This
work detects client differences in API usage from multiple
instances, creates an edit script (referred to as a semantic
patch) for the correct usage, and transforms programs to use
updated APIs. They focus on stylized API usage correction and
cannot always correctly position edits in target contexts, be-
cause they compute edit positions without considering control
or data dependence constraints on the unchanged surrounding
context [3]. In comparison, LASE supports more expressive,
customizable transformations and uses context to correctly
position edits. Their evaluation is limited to understanding a
handful of API usage changes, whereas our evaluation uses the
edit scripts to search for edit locations, applies a customized
edit to each location, and measures LASE’s effectiveness
systematically in terms of precision, recall, and accuracy.

Our prior work, SYDIT, produces code transformation from
a single example [18]. It requires developers to supply tar-
get edit locations, whereas LASE finds the target locations.
Furthermore, we find one example is not sufficient to create
an edit script that can find other edit locations. The partial
abstraction LASE obtains from multiple examples significantly
reduces false positives and negatives.

Simultaneous text editing automates repetitive editing [19].
Users interactively demonstrate edits in one context and the
tool replicates identical lexical edits on pre-selected code
fragments. In contrast, LASE performs similar yet different
edits using a syntactic context-aware, abstract transformation.
Edit Location Suggestion. Sophisticated code search takes as
input queries, such as def-use and method-call sequences, and
may identify locations missing similar edits. Wang et al. pro-
pose a dependence query language to find code snippets that
require similar edits [27]. In PQL, developers write declarative
rule-based queries to look for matching code fragments and
correct an erroneous execution on the fly [17]. LibSync helps
client applications migrate API calls by learning migration
patterns with respect to a partial AST with control and data
dependences [20]. Although LibSync suggests example API
updates, it does not transform code. These tools suggest edit
locations, but developers must manually apply edits.
Program Synthesis. Recent work learns from examples or
specifications and then automatically synthesizes a program in
a domain-specific language [7]. Researchers have applied this
approach to string manipulation macros, table transformation
in Excel spreadsheets, geometry construction, and programs.
However, none edit general purpose programs.
Automated Code Repair. Automatic program repair generates
candidate patches and checks correctness using compilation
and testing [29]. For example, Weimer et al. generate candidate
patches by replicating, mutating, or deleting code randomly
from the existing program. They do not infer edits from
multiple edit examples, nor do they systematically apply an
edit to multiple places. Specification-based program repair
such as AutoFix-E [28] generates simple bug fixes from
manually prescribed contracts. FixMeUp inserts missing se-
curity checks interprocedurally using a specification, but these
additions are very specific and stylized [25]. Kim et al. [11]
use ten common bug fix patterns inferred from Eclipse JDT’s
version history to improve the patch suggestions of Weimer
et al. [29]. However, the patterns are created manually. LASE
automates bug fix pattern inference and reduces manual ef-
fort significantly. Given concurrency error reports, Jin et al.
select from and test a handful of synchronization patterns to
fix them [9]. They insert appropriate synchronization into a
compiler intermediate representation, whereas LASE directly
modifies the program. Although LASE does not coordinate
cross method or interprocedural changes, it handles a much
larger class of edits than all these tools.

IX. DISCUSSION AND CONCLUSIONS

Our results reveal some limitations and directions for future
work. For example, LASE enforces a total order on edit
operations, but the edits themselves define a partial order. As
a result, LASE may miss locations with different statement
orders but the same semantics. LASE applies an edit script
to a method exactly once. If the method location requires
multiple applications of the script, LASE will only suggest
a partially correct transformed program. Another limitation



is that LASE only learns from examples changed in syn-
tactically similar ways. When developers make semantically
similar but syntactically different changes to examples, LASE
cannot derive an edit script. In addition, LASE performs
intraprocedural analysis within a single method, but some
changes require moving code from one method to another or
coordinating changes to multiple methods, such as inserting
synchronization.

To overcome some of these limitations, a future tool could
help users directly modify and apply inferred edit scripts as
necessary. Another direction would be to add interprocedural
analysis to coordinate cross-method updates, although our
experience indicates that combining interprocedural analysis
and the expressiveness of general purpose edits is a very hard
problem. A first approach may be to leverage refactoring and
bug fix patterns from prior work.

In summary, LASE is the first tool to learn edits from mul-
tiple examples, automatically find appropriate edit locations,
and apply customized edits to these locations. The edits are
general-purpose and partially abstract. They include context,
which consists of unchanged nodes that position edits based
on data and control dependences. Other tools are either limited
to much simpler changes, or only suggest locations, or only
perform stylized edits. Our results show that LASE has very
high recall, precision, and accuracy across a range of real-
world nontrivial bug fixes and feature additions. Furthermore,
LASE found edits that developers confirmed they missed,
suggesting this type of tool will help programmers.
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