
Oil and Water? High Performance Garbage Collection in Java with JMTk

Stephen M Blackburn
Department of Computer Science

Australian National University
Canberra, ACT, 0200, Australia

Steve.Blackburn@cs.anu.edu.au

Perry Cheng

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY, 10598, USA
perryche@us.ibm.com

Kathryn S McKinley�
Department of Computer Sciences

University of Texas at Austin
Austin, TX, 78712, USA
mckinley@cs.utexas.edu

Abstract

Increasingly popular languages such as Java and C# re-
quire efficient and flexible garbage collection. This pa-
per presents the design, implementation, and evaluation of
JMTk, a Java Memory Management Toolkit in Java. We
show a software engineering success story with an efficient,
composable, extensible, and portable framework for quickly
building and evaluating collectors. JMTk attains its modu-
larity and efficiency using a few design patterns and com-
piler cooperation. Experimental comparisons with mono-
lithic Java and C implementations reveal significant per-
formance advantages from our design. Performance criti-
cal system software typically uses monolithic C at the ex-
pense of flexibility. Our results refute common wisdom that
only this approach attains efficiency, and suggest that per-
formance critical software can embrace modular design.

1 Introduction
The tension betweenflexibility andperformancepervades
systems development, and one goal usually gives way to the
other. Flexibility assists in rapidly realizing new ideas,and
good performance gives the realizations credibility. This
paper is a case study in mixing performance and flexibility
in a systems research context where both are critical.

Programmers are increasingly choosing object-oriented
languages with automatic memory management (garbage
collection) because of their software engineering benefits.
Although researchers have studied garbage collection for
a long time [3, 19, 20, 24, 26, 35], this reliance on it and
growing locality effects have made garbage collection re-
search a high priority academically [13, 25, 17, 29, 33] and
industrially [10, 11, 9]. Many collector implementations
are monolithic and do not share reused components [2, 21].
Performance comparisons across a range of approaches is
thus problematic and rare [5, 8, 21].�This work is supported by NSF ITR grant CCR-0085792, NSF CCR
grant CCR-0311829, DARPA grant F33615-03-C-4106, and IBM.Any
opinions, findings and conclusions or recommendations expressed in this
material are the authors and do not necessarily reflect thoseof the sponsors.

This paper presents the design, implementation, and
evaluation of JMTk, a Java Memory Management Toolkit
in Java for Java.1 JMTk’s flexibility is evidenced by support
for a wide range of collectors:copying, mark-sweep, refer-
ence counting, copying generational, hybrid generational,
and new ones [13, 14, 29]. We show how careful software
engineering combines good design with excellent perfor-
mance by comparing code and execution times of JMTk
in Jikes RVM [1, 2], a Java-in-Java Virtual Machine, with
monolithic Java and C implementations. JMTk is both more
succinct and higher performing.

We address the tension between flexibility and perfor-
mance with a combination of design features: 1) the use
of Java as a systems language, 2) well chosen design pat-
terns, 3) a clean interface between the virtual machine and
JMTk, and 4) the composition of policies and mechanisms
to define collectors. For correctness, we extend the Java
type system to implement physical addresses and opera-
tions to move and update them. Design patterns provide
performance and correctness in the face of concurrency by
teasing out lightweighthotpaths from heavyweight less fre-
quently executedcold paths, together withlocal andglobal
scopes. Additional patterns delineate collector phases and
policies for correctness and extensibility. JMTk includesa
narrow, portable interface between the runtime and memory
manager, which abstracts VM-specific object and program
representations. Researchers are porting JMTk to another
JVM, a C# runtime, and a Haskell runtime.

We evaluate JMTk’s trade-off between flexibility and
performance by comparing with the original, highly tuned
monolithic collectors in Jikes RVM [2]. JMTk’s flexibility
is evidenced two ways: 1) source code metrics reflect a sub-
stantially simpler and more modular design, and 2) JMTk
implements a much wider range and number of collectors.
We measure the performance using micro-benchmarks for
raw allocation and collection speeds, and using the SPEC
JVM benchmarks and a variant of the SPEC JBB2000 for

1JMTk is publicly available as part of Jikes RVM at:
http://www-124.ibm.com/developerworks/oss/jikesrvm/.



performance. On micro-benchmarks, JMTk performs on
average about 5% worse on allocation and tracing speed
than comparable monolithic Jikes RVM collectors. We
also implemented the micro-benchmark in C. JMTk outper-
forms the GNU C library’s allocation implementation on
average by 60%, due to aggressive compiler inlining and
reduced impedance in a Java-in-Java implementation. On
real benchmarks, JMTk consistently improves total perfor-
mance by up to 20% over the original monolithic collectors,
largely due to JMTk’s more flexible space management.

The background section next outlines the key mech-
anisms and policies for readers unfamiliar with memory
management. Section 3 compares JMTk with other mem-
ory management toolkits [13, 22, 21] none of which attain
the diversity and composability of implementation, nor the
performance of JMTk. Section 4 then discusses JMTk’s de-
sign, followed by results and conclusions. The key contri-
bution of this work is to describe a clean flexible design and
a fully fleshed out implementation of a performance criti-
cal system component, the memory manager, that practices
good software engineering. A surprising result is that this
design approach attains performance benefits as well.

2 Background
This section describes memory management terms and al-
gorithms, and how JMTk organizes the heap to implement
them. For a thorough treatment, see Jones and Lins [24].
Following the literature, the execution time consists of the
mutator (the program itself) and periodicgarbage collec-
tion. Some memory management activities, such as object
allocation, mix in with the mutator. Collection can run con-
currently with mutation, but for simplicity our discussion
assumes a separate collection phase.

JMTk groups regions of memory intospaceorganiza-
tions and implements garbage collection algorithms with a
policy which couples a space with an allocation and col-
lection mechanism.Whole heapcollectors use one pol-
icy. Generationalcollectors divide the heap into age co-
horts, and use one or more policies [3, 35]. For genera-
tional and other incremental algorithms, awrite barrier re-
members pointers into independently collected spaces. For
every pointer store, the compiler inserts write-barrier code.
At execution time, pointers into an independently collected
space are conditionally recorded by the write-barrier. JMTk
implements the following standard allocation and collection
mechanisms.

A Bump Pointer Allocator appends new objects to the
end of a contiguous space by incrementing abump
pointerby the size of the new object.

A Free-List Allocator organizes memory into a size-
segregatedfree-list that divides memory into blocks of
sizek. New objects are allocated into a free cell of a
block whose size can just accommodate that object.

A Tracing Collector identifies live objects by computing a
transitive closure from therootswhich include stacks,
registers, and remembered pointers. It reclaims space
by copying live data out of the space, or by freeing
untraced objects.

A Reference Counting Collector counts the number of
incoming references for each object, and reclaims ob-
jects with no references.

JMTk formspolicieswith these mechanisms.

Copy space has Bump-pointer allocation and tracing col-
lection that copies live objects out of the space.

MarkSweep space has free-list allocation and tracing col-
lection that returns dead objects to the free-list.

RefCount space has free-list allocation and reference
counting collection that returns dead objects to the
free-list.

Immortal space has bump-pointer allocation and no col-
lection.

Large object space has a coarse-grained free-list of pages
andtreadmillcollection [24].

These policies are combined to form the following collec-
tors.

SemiSpace: SemiSpace uses two copy spaces. It allocates
into one. When full, it copies live objects into the
other, and then swaps them.

MarkSweep: MarkSweep uses one mark-sweep space. It
traces and marks the live objects, and lazily finds free
slots during allocation.

RefCount: The deferred reference-counting collector uses
a free-list allocator. During mutation, it buffers counts.
The collector periodically processes the counts, intro-
ducestemporaryincrements for deferred objects (e.g.,
roots), and then deletes objects with a zero count.

GenCopy: The classic copying generational collector [3]
allocates into a young (nursery) Copy space, and pro-
motes survivors into an old SemiSpace. The write bar-
rier records pointers from old to nursery objects. It col-
lects when the nursery is full, and reduces the nursery
size by the size of the survivors. When the old space is
full, it collects the entire heap.

GenMS: This hybrid generational collector is like Gen-
Copy except it uses a MarkSweep old space.

GenRC: This hybrid generational collector uses Ulterior
Reference Counting [14] to combine a copying nursery
with a RefCount mature space.

2



3 Related Work

This section compares JMTk with previous garbage col-
lection toolkits [13, 22, 21] and explicit memory manage-
ment [6, 7, 12, 36] toolkits. The UMass Language Inde-
pendent GC Toolkit was the first garbage collection toolkit
to tease apart the language and collector interface in or-
der to build portable garbage collectors [22]. Systems for
Smalltalk, Modula-3, Cecil, and Java [18] use the UMass
GC Toolkit. It provides generational copying collectors,
and manages memory in fixed-size blocks. It manages each
large object directly, using a list associated with each gen-
eration. It does not include free lists, so does not support
mark-sweep or reference counting collectors. Its design is
not general enough to include even some recent copying
collectors such as Older-First [33] nor Beltway [13].

GCTk, a more general Garbage Collection Toolkit for
Java addressed some of these shortcomings [13, 32]. GCTk
is the only other garbage collection toolkit we know of that
was implemented in Java. This framework provides a single
shared implementation of key functions such as scanning
andremembered setswhich record write barrier entries. In
addition, GCTk implements copying age-based collectors
by separating the collection increment from the heap posi-
tion [13, 32], but it did not include free-list allocation, nor
could it mix and match policies, and it was not intended
to be portable. JMTk improves upon GCTk in a number
of ways. It creates a cleaner, and we believe portable lan-
guage/compiler interface. JMTk uses a composable design
to easily mix and match policies and mechanisms. It also
adds free-list memory managers (e.g., mark-sweep and ref-
erence counting), a large object space, the composition of
disparate policies, and accounting for physical memory that
is independent of virtual memory use and uniform across
policies.

The Marmot system [21] is an ahead-of-time compiler
and runtime system for Java written in C. It provides semi-
space and copying generational collectors. It produces very
efficient allocation and write-barrier sequences using com-
piler cooperative inlining. JMTk generalizes this pattern
and applies it more broadly. JMTk includes a much wider
range of collectors and policies than Marmot, is modular
and extensible, and works in a just-in-time Java VM.

A few researchers have also built memory management
toolkits for explicit memory management of C/C++ pro-
grams [6, 7, 12, 36]. Heap layers is the most general and
high performance of these frameworks [12]. It provides
multiple and composable heaps. It achieves the perfor-
mance of existing custom and general-purpose allocators in
a flexible, reusable framework. It attains this combination
through the use of mixins [16]. Our framework could also
probably benefit from mixins that statically express mul-
tiple possible class hierarchies, but we have not investi-
gated it here. Explicit memory managers for C/C++ have

a very small interface and interact with the program only
through the malloc and free. JMTk has a more complex
interface since it interacts with a managed runtime system
on many mechanisms including scheduling, write barriers,
object model, and root identification. Because of the small
interface, C/C++ limits the memory manager to free-lists,
since objects cannot move. The Customizable Memory
Management (CMM) framework focuses on automatically
collecting these heaps, but uses virtual method calls, thus
sacrificing performance [6, 7]. These frameworks thus are
not and need not be as general as JMTk.

Yeateset al. [38] analyzed four tracing collectors and
identified six design patterns, of which two were new
domain-specific patterns. Their work did not include ref-
erence counting nor collector toolkits where multiple in-
stances of the same pattern might occur.

4 Design

JMTk’s highest level design goals areflexibility andperfor-
mance. Flexibility assists in rapidly realizing new research
ideas, and good performance gives the realizations credibil-
ity. Common wisdom holds that these goals are incompati-
ble. As a result, prior memory management systems focus
on high performance using monolithic and inflexible C and
assembly implementations that curtail creative research.

This section discusses how the design of JMTk reaches
both goals using Java as a systems implementation lan-
guage. It begins with three factors of our Java-in-Java im-
plementation: extensions to the Java type system, pragmas
for guiding the compiler, and the problem of the collector
executing within the heap that it is collecting. We then de-
scribe design patterns used to attain correctness and per-
formance. Then the interface between JMTk and the vir-
tual machine and its role in portability is discussed. Sec-
tion 4.4 outlines JMTk’s reusable memory management
mechanisms and policies, and how to compose them to
yield new systems. Finally we measure the reuse of compo-
nents and compare collectors in JMTk to the original mono-
lithic implementations. These results demonstrate the ben-
efits of modularity and aggressive software reuse.

4.1 Java as a Systems Language

JMTk grew out of Jikes RVM and thus, like Jikes RVM, is
implemented in Java. Implementing a language runtime in
itself presents some well known problems [1, 23]. We ad-
dress the key issues for Java here: 1) extensions for manip-
ulating memory directly, 2) exploiting VM compiler prag-
mas, and 3) how to safely implement a collector that exe-
cutes within the heap it collects (or, ‘eating your own dog
food’).

New Types for Unsafe Operations

JMTk uses a modest extension of Java defined by and de-
veloped for Jikes RVM [1, 2]. In order to access and

3



modify memory, we require unsafe operations. JMTk re-
quires that the VM defines three special types:VM_Address,
VM_Offset, and VM_Word. VM_Address corresponds to a
hardware-specific notion of memory address.VM_Offset

expresses the distance between two addresses, andVM_Word

corresponds to the value returned by dereferencing an ad-
dress. These types provide methods for pointer arithmetic,
pointer comparison, casts, and memory reads and writes in-
cluding atomic operations. The memory manager uses these
methods to perform its lowest-level operations, such as al-
locating and moving objects.

Since Java does not provide extensible primitive types,
these special types are Java classes and we rely on the un-
derlying VM to treat these types specially. The intended be-
havior is for values of such types to beunboxed, i.e., opera-
tions on these types never result in allocation. We currently
express these extensions using the idioms defined by Jikes
RVM. A source code transformation makes JMTk portable
to the gcc Java front end (gcj) and other targets such as
OVM [28] and Rotor [34].

Compiler Pragmas

We use Jikes RVM’s pragmas for controllinginlining and
interruptibility. In Jikes RVM, pragmas are scoped across
classes and methods using theimplements andthrows id-
ioms with suitably named interfaces and exceptions. For ex-
ample, the method qualifier ‘throws PragmaInline’ directs
the compiler to inline a method. Inlining is only scoped with
respect to individual methods. More specific pragma scopes
(such as method) override broader scopes (such as class), al-
lowing interruptible methods to exist within otherwise unin-
terruptible classes. Control over inlining helps improve ef-
ficiency for system-level code written in an object-oriented
style (see Section 4.2 and Section 6).

Specifying when the program can be interrupted is
important because exact garbage collection depends on
compiler-generated maps to identify pointers stored on the
stack. To ensure that all suspended threads have accu-
rate stack maps, the virtual machine makes sure that thread
switches occur only at garbage collectionsafe-points, which
are automatically generated by the compiler. JMTk needs
further control over this behavior and uses pragmas to mark
certain code as uninterruptible. For example, JMTk im-
plements write barriers with a call to a Java write-barrier
method (see Section 2). Pointer states at intermediate points
during a write-barrier sequence are not necessarily accurate,
and thus should not be exposed to the collector. To attain
atomicity on these operations, write barrier methods use
the uninterruptiblecompiler pragma to ensure that thread
switching never happens within the barrier.

Executing Within Its Own Heap

JMTk faces the problem of executing with all of its code
and state residing within the heap it is collecting (in Jikes

RVM code, threads and stacks all exist as heap objects due
to the Java in Java implementation). The collector must not
scavenge itself! More subtly, it is essential that copying col-
lectorspre-copyany GC-related instances and execute with
respect to that state in order to avoid referencing an out-
of-date snapshot of the collector’s state—such a snapshot
will lead to catastrophic time-warp once execution eventu-
ally switches to the copied instance. We address these issues
by allocating certain objects in an immortal (unmoving and
uncollected) space and by providing a generic feature that
pre-copies crucial state for any copying collector, relieving
the implementer of the collector from the burden of identi-
fying and acting upon the crucial instances.

4.2 Design Patterns Used in JMTk

JMTk uses design patterns for efficiency and reuse. JMTk
patterns include those identified in prior work (TriColor,
RootSet, Adapter, Facade, Iterator and Proxy) [37], and
four additional patterns: 1) exploiting the behavior of the
most heavily executed code for efficiency; 2) minimizing
contention and the synchronization for efficiency; 3) ex-
ploiting collection phases to simplify the construction of
collectors; and 4) delegating collector actions to specific
policies.

Hot and Cold Paths

Wherever appropriate, JMTk applies a pattern that uses very
efficient, lightweight mechanisms for frequently executed
code (thehot path), and periodically uses more heavyweight
mechanisms (thecold path). JMTk usually marks the hot
path with the compiler inline pragma. JMTk uses this pat-
tern extensively to reduce synchronization frequency, and
to allow more complex heuristics.

For example, a copying nursery performs most allocation
with a very fast, unsynchronized ‘bump pointer’, but peri-
odically (every 128KB), the allocator takes the slow path,
and acquires another 128KB chunk of memory. The ac-
quisition of each 128KB chunk is synchronized (multiple
threads contend for a pool of such chunks), and includes a
poll of the collection subsystem, giving it the opportunityto
invoke a collection if necessary. JMTk also applies this pat-
tern to write barriers and internal dynamic data structures
such as queues and buffers, which support concurrent allo-
cation.

Local and Global Scopes

In a concurrent system, determining the local or global
context of memory management functions (i.e., exposure
to contention or not) is essential to both correctness and
performance. In JMTk, scope is overt through the use of
classes. For example, JMTk typically associates an instance
with each thread2 and uses the class to reflect global state.

2Here we mean truly concurrent threads, which in Jikes RVM mapto
kernel threads and typically reflect the number of physical CPUs.

4



Instance methods operate over their data without synchro-
nization, and access shared state through synchronized class
methods. This model assumes a single global state. More
generally,N global instances may exist, over each of which
P threads operate concurrently. In this case, JMTk provides
‘local’ and ‘global’ variants of a class, withN instances of
the global class andN�P instances of the local class, each
mapped to one global instance. JMTk synchronizes only
accesses to the global state.

JMTk uses this pattern to build load balancing shared
data structures (such as work queues and sequential store
buffers), to build multi-threading mechanisms, and to op-
erate over free lists, bump pointers, mark-sweep collection,
reference counting, and other functions.

Prepare and Release Phases

JMTk uses a simple high level algorithm to implement
all of the stop-the-world (i.e., non-concurrent) collec-
tors. The algorithm has three phases:prepare, pro-
cess all work, and release. JMTk splits the phases into
global and local steps and performs them in the following
order: prepareGlobal, prepareLocal, processAllWork,
releaseLocal, andreleaseGlobal. TheprocessAllWork
method is common to all collectors, and consists of transi-
tively processing a collection work queue which is primed
in the prepare phase. Each new collector need only im-
plement the respective prepare and release phases. For in-
stance, a simple copying collector will establish all roots
of collection in the prepare phase, and reclaim the space in
the release phase. The infrastructure ensures proper syn-
chronization between phases and that the global versions
are called by exactly one thread.

Multiplexed Delegation

JMTk builds collectors through the composition of policies
and mechanisms. Plans (discussed in more detail in Sec-
tion 4.4 below) perform this composition. For example,
when an object needs to be allocated or traced for live-
ness, an appropriate method will be invoked on the plan,
which will delegateresponsibility to the appropriate policy
depending on the object. This is performed using a pattern
we call ‘multiplexing delegation’. In Figure 1 we see the
traceObject() method of theGenerational class, which
delegates tracing to a range of policies depending on the
space in which the object resides. When we analyzed the
cyclomatic complexity [27] of the plans (Section 4.5), we
found that the application of this pattern captured over 50%
of the complexity of the plans. This result is not surprising
since the role of the plan is composition and delegation.

4.3 The Virtual Machine Interface

Since one of JMTk’s goals is to be portable, the interface
between it and the rest of the virtual machine must be as
clear and thin as possible without compromising on design

1 public static VM_Address traceObject(VM_Address obj) {
2 if (obj.isZero()) return obj;
3 VM_Address addr = VM_Interface.refToAddress(obj);
4 byte space = VMResource.getSpace(addr);
5 if (space == NURSERY_SPACE)
6 return CopySpace.traceObject(obj);
7 if (!fullHeapGC)
8 return obj;
9 switch (space) {

10 case LOS_SPACE:
11 return losSpace.traceObject(obj);
12 case IMMORTAL_SPACE:
13 return ImmortalSpace.traceObject(obj);
14 case BOOT_SPACE:
15 return ImmortalSpace.traceObject(obj);
16 case META_SPACE:
17 return obj;
18 default:
19 return Plan.traceMatureObject(space, obj, addr);
20 }
21 }

Figure 1. A Multiplexed Delegation Pattern:
The traceObject Method for Generational Col-
lectors.

flexibility. Researchers have ported JMTk to a C interface,
using the gcj ahead-of-time compiler to build a static JMTk
library, and are porting it to Rotor [34], Microsoft’s open
C# runtime, among others.

We think of the interface in terms of therequirements
andfeaturesof the VM (virtual machine) and MM (memory
manager). The interface is bi-directional, reflected in the
classesVM_Interface and MM_Interface. VM_Interface

implements the requirements of the MM in terms of the
VM’s feature set, whileMM_Interface implements the re-
quirements of the VM in terms of the MM’s feature set.

The key requirements of the MM include identifying the
sources of pointers and providing access to per-object GC
state. In addition to these, the MM requires housekeeping
functionality such as low level memory operations (mmap,
bzero, memcpy, etc.), hardware timers, atomic memory op-
erations, error handling, I/O, and option processing. These
requirements are implemented in terms of the VM’s feature
set throughVM_Interface. Garbage collection typically be-
gins at the root set (global variables and local variables on
the threads’ stacks and registers). The VM enumerates these
roots objects into JMTk’s queue data structures. JMTk enu-
merates all pointers in these objects and performs a tran-
sitive closure over them. Some collectors maintain state
on a per-object basis (in the object header, for example).
TheVM_Interface provides this abstractly, giving portabil-
ity across VMs, languages, and object models.

Currently, JMTk allocates memory from the OS viammap

in 4MB chunks when needed. Depending on a flag, some of
the policies will return memory back to the operating sys-
tem by unmapping the memory. Whether this is desirable is
dependent on the scarcity of memory and the frequency of
memory-mapping operations.

5



On the other side, the VM requires that the MM pro-
vide allocation; finalization; soft, weak and phantom ref-
erences; write barrier implementations; and basic statistics
such as heap size and GC count. JMTk provides these with
theMM_Interface class.

4.4 Composition: Mechanisms, Policies, and Plans

At the heart of JMTk are the software engineering bene-
fits of composition. These benefits include reuse, quick de-
velopment of new collectors, robustness, fair comparisons
of algorithms by holding the underlying mechanisms con-
stant, and the opportunity for performance tuning. Section6
shows that JMTk obtains these benefits together with excel-
lent performance. We now outline the key compositional
elements in JMTk:mechanisms, policies, andplans.

Mechanisms

JMTk implements a rich set of collector-neutral, highly-
tuned mechanisms that are shared among collectors, includ-
ing bump pointer allocation; free list allocation; large ob-
ject allocation; finalization; soft, weak, and phantom ref-
erences; parallel load balancing data structures; template-
driven command line parsing; trial-deletion cyclic garbage
collection; a generic, abstract free list; and thread-safeand
GC-safe I/O routines.

Policies

JMTk currently implements five policies: immortal alloca-
tion, copying collection, mark-sweep collection, reference
counting collection, and treadmill collection. These policies
are each expressed succinctly in terms of the above mecha-
nisms. JMTk maps policies tospaces, which are contiguous
regions of virtual memory managed by a single policy. The
same policy can manage multiple spaces within an address
space. For example, in the GenCopy collector the copying
collection policy manages multiple spaces that correspond
to generations. Each policy follows the local/global pat-
tern (Section 4.2), implemented in terms of aSpace and
Local pair for each policy (for exampleMarkSweepSpace
and MarkSweepLocal). Each instance of a policy space
maps to a single virtual memory space, and has associated
with it P instances of the ‘local’ class, where the collector
is P-way parallel.

Plans

JMTk uses the termplan to define the highest level of com-
position. A plan composes policies to build a memory man-
agement algorithm. For example, the GenMS plan com-
poses a variety of policies. Each of these policies is man-
ifest as a space declared within the plan, which binds each
space to a region of virtual memory. Virtual and physi-
cal memory resources are associated with spaces and the
multiplex pattern (Section 4.2) ensures that allocation and
tracing use the appropriate policy depending on the space.

JMTk implements a growing number of plans that include
SemiSpace, MarkSweep, RefCount, CopyMS, GenCopy,
GenMS, NoGC, and GenRC which implements the recently
published Ulterior Reference Counting [14] collector. Re-
searchers are currently adding two more recently published
collectors: Beltway [13], and Mark-Copy [29].

StopTheWorld

BasePlan

BumpPointer

MonotoneVM

MemResource

BumpPointer

MonotoneVM

MemResource

MonotoneVM

MemResource

MemResource Generational Nursery

Mature Space

Immortal

FreelistVM

TreadmillLocal

TreadmillSpace

MarkSweepLocal

MarkSweepSpace

GenMS

Large Object Space

Figure 2. Composition of GenMS.

m NCSS NCSS/m BC BC/m CCN CCN/m

Watson 2.0.0
SemiSpace 50 1234 24.7 2223 44.5 325 6.5

MarkSweep 78 2288 29.3 3955 50.7 658 8.4
GenCopy 56 1597 28.5 2696 48.1 422 7.5

GenMS 90 2311 25.7 4719 52.4 633 7.0
Total 274 7430 27.1 13593 49.6 2039 7.4

Watson 2.2.0
SemiSpace 40 426 10.7 850 21.2 139 3.5

MarkSweep 31 346 11.2 574 18.5 105 3.4
GenCopy 42 659 15.7 1312 31.2 220 5.2

GenMS 40 531 13.3 1294 32.4 171 4.3
Total 153 1962 12.8 4030 26.3 635 4.2

JMTk
SemiSpace 30 237 7.9 463 15.4 98 3.3

MarkSweep 29 240 8.3 421 14.5 89 3.1
GenCopy 19 117 6.2 198 10.4 49 2.6

GenMS 18 104 5.8 158 8.8 43 2.4
Generational 36 279 7.8 434 12.1 102 2.9

Total 132 977 7.4 1674 12.7 383 2.9

Table 1. Methods (m), Non-comment Source
Statements (NCSS), Bytecodes (BC), and Cy-
clomatic Complexity (CCN) for Four Garbage
Collectors in Three Systems

Figure 2 illustrates the composition mechanism dis-
cussed in this section with a diagram of the GenMS collec-
tor. The unbold boxes represent the mechanisms and these
form four groups, each representing a different space. For
example, the mature space is managed with the mark-sweep
collection (ı.e. MarkSweep) policy. The bold boxes repre-
sent various plan classes with the GenMS being the most
specific one. The solid arrows represent class inheritance,
the dashed arrows point to static fields, and the dotted ar-
rows point to instance fields. Each of the four groups show
the local-global and hot-cold pattern. The 4-way multi-
plexing is demonstrated by the connection between the plan
components and the four spaces.

6



4.5 Exploiting Java’s Features in JMTk

This section evaluates how well JMTk attains its software
engineering goals with reuse and inheritance. Table 1 com-
pares the implementation of a classic copying generational
collector (GenCopy) and a hybrid copying, mark-sweep
generational collector (GenMS) in JMTk written in Java
with an object-oriented style and two releases of the Watson
collectors written in Java with a monolithic style. Watson
2.0.0 was the first public release of the Watson collectors in
Jikes RVM, and Watson 2.2.0 reflected a major clean up and
refactoring and was thelast public release.

Table 1 reports the number of methods, lines of code,
and number of bytecodes, and method cyclomatic complex-
ity [27] for each of the three systems. JMTk uses a com-
mon superclassGenerational to implement most of the
functionality of the two generational collectors. Command
line parameters select among multiple nursery sizing po-
lices (fixed, bounded, flexible) in these collectors. The Wat-
son collectors implement only the fixed nursery policy (the
Watson 2.0.0 code base included adistinct collector with
1850 lines of code which implemented a variable nursery
generational collector). In addition, there is an enormous
reduction in overall complexity, the object-oriented style
in JMTk attains an average method cyclomatic complex-
ity [27] substantially lower than in the Watson implemen-
tations. Cyclomatic complexity measures the complexity
of the branching and looping. This approach reflects our
faith in the capacity of Jikes RVM’s aggressive optimizing
compiler [1, 2] to produce high quality code from strongly
objected-oriented source.

5 Methodology

This section briefly describes Jikes RVM, our experimental
platform, and key characteristics of our benchmarks.

We use JMTk in Jikes RVM version 2.3.0.1 (formerly
known as Jalapeño). Jikes RVM is a high-performance
VM written in Java with an aggressive optimizing com-
piler [1, 2]. We use configurations that precompile as much
as possible, including key libraries and the optimizing com-
piler (the Fast build-time configuration), and turn off as-
sertion checking. For our micro-benchmarks, we use the
highest level of optimization and run the benchmark mul-
tiple times to exclude compiler activity. For all other ex-
periments, we use the adaptive compiler which uses sam-
pling to select methods that it then optimizes [4]. Adaptive
compilation introduces variations in the load on the garbage
collector due to its statistical choices and because compila-
tion of different write-barriers for each collector is partof
the runtime system as well as the program and induces both
different mutator behavior and collector load [15].

We perform all of our experiments on a 2 GHz Intel
Xeon, with 16KB L1 data cache, a 16K L1 instruction
cache, a 512KB unified L2 on-chip cache, and 1GB of

Watson
alloc (MB) alloc:min small:large

202 jess 403 25:1 6:5
213 javac 593 23:1 16:5
228 jack 307 22:1 2:1

205 raytrace 215 12:1 8:5
227 mtrt 224 11:1 11:5

201 compress 138 8:1 1:3
pseudojbb 339 7:1 36:5

209 db 119 6:1 2:1
222 mpegaudio 51 4:1 3:4

Table 2. Benchmark Characteristics

memory running Linux 2.4.20. We run each benchmark at
a particular parameter setting five times and use the fastest
of these. The variation between runs is low, and we believe
this number is the least disturbed by other system factors
and the natural variability of the adaptive compiler with re-
spect to its heap allocation and time.

Table 2 shows key characteristics of each of our bench-
marks using fast adaptive compilation. We use the eight
SPEC JVM benchmarks, andpseudojbb, a variant of
SPEC JBB2000 [30, 31] that executes a fixed number of
transactions to perform comparisons under a fixed garbage
collection load. Thealloc column in Table 2 indicates the
total number of megabytes allocated. The second column
lists the ratio of total allocation to the minimum heap size
for the GenMS collector in JMTk to quantify the garbage
collection load. Watson collector users must statically par-
tition the heap into 3 parts: immortal, large, and small ob-
jects (see Section 6.2 for additional discussion). For all of
our experiments, the Watson collectors use 1 MB of immor-
tal space. We determined experimentally the minimum size
for the small and large object spaces and show this ratio in
third column. When varying heap sizes, we allocate 1MB to
Watson’s immortal space and allocate the remaining space
to the small and large spaces according to the ratio in col-
umn 3.

6 Results

We first compare our implementations of SemiSpace and
MarkSweep with the original highly tuned Jikes RVM col-
lectors called theWatsoncollectors to illustrate that our col-
lector design has not come at a performance penalty. We
compare on micro-benchmarks to reveal raw throughput.
JMTk’s abstractions cost about 5% compared to the Watson
collectors. We also compare JMTk with a standard C mal-
loc implementation on micro-benchmarks to reveal whether
Java is a suitable systems language, where JMTk actually
attains better performance due to the Jikes RVM compiler’s
inlining, a Java in Java feature. To measure what users will
see in practice, we compare JMTk and Watson collectors on
standard benchmarks, measuring garbage collection, muta-
tor, and total time. JMTk attains significantly better per-
formance largely because it dynamically partitions the heap

7



Allocation Tracing
Rate (MB/s) Rate (MB/s)

Watson SemiSpace 690 58
JMTk SemiSpace 610 55

Watson MarkSweep 600 93
JMTk MarkSweep 575 69

Table 3. Allocation and Tracing Rates

No Inlining Inlining

JMTk SemiSpace 396 610
JMTk MarkSweep 315 575

C malloc 478 —
C calloc 338 —

Table 4. Allocation Rates for JMTk and C

based on usage. Finally, we compare six of JMTk’s collec-
tors as a proof of concept indication of JMTk’s utility as a
memory management research platform.

6.1 Raw Speed Comparisons

We measure throughput (raw speed) of allocation and trac-
ing on JMTk and the Watson collectors to reveal the runtime
cost of our abstractions. The micro-benchmark constructs a
binary tree whose nodes have two references fields for the
children and two data fields. We compute the allocation rate
by allocating 100 MB of unconnected binary nodes, and the
tracing rate by tracing 100 MB of a balanced binary tree.
Table 6.1 shows the results of these tests on the SemiSpace
and MarkSweep as implemented by JMTk and the Watson
collectors. The JMTk collectors are slower by 11% and 4%
in allocation speed for SemiSpace and MarkSweep, respec-
tively. On tracing rates, the slowdown is 4.7% and 25.8%
The slowdown in allocation rates comes directly from the
reuse in our abstraction. In particular, the SemiSpace al-
location code contains an extra load instruction to retrieve
the bump pointer object whereas the corresponding fields in
the Watson collectors are manually inserted in an unrelated
class as an optimization. The most serious discrepancy in
the MarkSweep tracing rate comes from algorithmic differ-
ences between JMTk and Watson discussed below. JMTk’s
more efficient use of space in the MarkSweep policy and in
all plans more than makes up for this discrepancy.

We also tested the allocation rates of JMTk and the GNU
C library’s malloc (ptmalloc version 1.108, which is based
on version 2.7.0 of the Lea allocator). Since this version of
malloc uses a function call, the fairest comparison is with no
inlining in JMTk.3 On the flip side, since Java returns ze-
roed memory, calloc rather malloc should be used. Table 4
shows that inlining gives a significant advantage (about 35%
to 45%) and zeroing memory does have a significant cost
(29%). The best comparison (JMTk MarkSweep - noinline
versus C calloc) shows that C has a slight advantage 6.8%.

3We will manually implement an inlined version of the ptmalloc allo-
cator and compare it with JMTk for the final version of this paper.

1

2

3

4

5

6

7

8

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

4.5

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

(a) GC time

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 3 4 5 6

8.2

8.4

8.6

8.8

9

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

(b) Mutator time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
9.5

10

10.5

11

11.5

12

12.5

13

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

(c) Total time

Figure 3. JMTk versus Watson

6.2 JMTk versus Watson Collectors

Figure 3 compares JMTk and Watson on the benchmarks
from Table 2 using the geometric mean on garbage collec-
tion, mutator, and total time. Mutator time includes allo-
cation, adaptive compilation, and application time. These
results vary the heap size from the minimum in which any
collector executes to 6 times the minimum at 16 different
points, and are normalized to the best result.

Although the JMTk and Watson collectors are similar in
spirit, there are a few key differences. JMTk stores collec-
tor meta-data in the heap, whereas Watson collectors do not,

8



enjoying a small space advantage. Both families directly
manage objects larger than 8 KB with a large object space
(LOS). These collectors trace the LOS on every collection.
Watson’s LOS is a next-fit algorithm with page alignment.
It does not maintain a free list. To satisfy a request, it se-
quentially scans through the LOS memory until it finds suf-
ficient contiguous free pages. JMTk uses a free list.

The Watson collectorsstaticallydivide the heap into ar-
eas that hold small, large, and immortal objects based on
command line parameters. We experimentally determined
the smallest possible parameter for the small, large and im-
mortal spaces. We use the ratio between large and small and
a constant immortal setting to give the Watson collectors the
best possible command-line parameters at any heap size. In
JMTk, a command line parameter sets the total heap size
and then JMTk dynamically checks that the sum of the three
spaces (and others depending on the collector) does not ex-
ceed the specified heap size. JMTk thus enjoys a space ad-
vantage during the periods that the program is not using the
maximum in the large and immortal space. This advantage
accounts for much of the differences in the garbage collec-
tion times for both SemiSpace and MarkSweep collectors
in Figure 3(a). JMTk SemiSpace runs in smaller heaps than
Watson SemiSpace for the same reason. This result is also
reflected but dampened in Figure 3(c) since collection time
is a fraction of total time. Of course, each of the Watson col-
lectors could have implemented dynamic heap partitioning,
but JMTk’s modular design provides this feature to every
collector without additional implementation effort.

Although JMTk and Watson SemiSpace are nearly equal
algorithmically, Figure 3(b) shows a performance advan-
tage in mutator time for JMTk. The advantage of JMTk
SemiSpace is strongly correlated with smaller heap sizes,
which suggests collection-induced locality as the cause
(collection occurs more frequently at smaller heap sizes,
compacting the space and improving locality). The different
traversal orders used by the JMTk and Watson implementa-
tions most likely account for JMTk’s advantage.

Algorithmically, the two MarkSweep collector are sim-
ilar, but the Watson one uses different size classes. It uses
powers of two and some additional ones: 12, 20, 84, and
524. This results in worst case internal fragmentation of
50%. Since most objects are small, this worst case is un-
likely. However our size classes obtain a perfect fit on all
objects less than 64 bytes and have a worst case fragmenta-
tion of 1=8. Because the Watson MarkSweep collector has
a one word header, it enjoys a runtime advantage of on av-
erage 2% for our benchmarks over the two word header in
JMTk. (We plan to implement this optimization in JMTk.)

6.3 Variety of Implementation

Figure 4 presents total execution time for one application,
202 jess, with some of the collector implementations cur-

rently available in JMTk, but leaves for future work detailed
performance analysis and comparisons. It adds the clas-
sic generational (GenCopy, GenMS) and reference counting
(RefCount) collectors, as well as a more recent generational
reference counting (GenRC) [14]. The generational collec-
tors uniformly enjoy a performance advantage.

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6

10

15

20

25

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

Figure 4. JMTk Collectors on 202 jess

6.4 Detailed Results

7 Conclusion

JMTk is a case study in mixingperformanceand flexi-
bility in a systems research context where both are criti-
cal. The renewed industrial and academic importance of
garbage collection highlights the need for a memory man-
agement toolkit where ideas can be rapidly realized and
compared without sacrificing performance. Three factors
point to JMTk’s flexibility: 1) it implements a wide range of
collectors, 2) it is being used to develop significant new col-
lectors [14, 29], and 3) code metrics show it is dramatically
simpler and more modular than previous implementations.
Careful co-operation with an aggressive optimizing com-
piler allows this flexible design to attain performance bene-
fits as well. On micro-benchmarks JMTk is only 5% slower
than a monolithic Java implementation and 60% faster than
standard non-inlined malloc in C, while JMTk consistently
improves total performance on real benchmarks by up to
20%. This success in mixing flexibility and performance
through strong object-oriented design in Java refutes com-
mon wisdom about performance critical software and sug-
gests that such an approach can be more widely embraced.

While JMTk has met its initial design goals, there are
several areas where further work is necessary. First, the
portability of JMTk has to be tested and the work to port it to
other systems is ongoing. Second, the parallelism of JMTk
is untested and preliminary evidence shows that, at least in
some cases, the scalability is noticeably worse than for the
Watson collectors. Third, while the design of JMTk is gen-
eral, the code is somewhat immature and further tuning, in-

9



1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

10.5

11

11.5

12

12.5

13

13.5

14
20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

6.5

7

7.5

8

8.5

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

7.5

8

8.5

9

9.5

10

20 30 40 50 60 70 80 90 100 110

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

16

17

18

19

20

21

22
20 40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

10

10.5

11

11.5

12

12.5

13

13.5

10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

8.5

9

9.5

10

10.5

11

20 40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

7.5

8

8.5

9

9.5

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
18

19

20

21

22

23

24

25
50 100 150 200 250

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

Figure 5. Total Time

cluding the addition of other object models, is needed.

References
[1] B. Alpern et al. Implementing Jalapeño in Java. InProc. of the

1999 ACM SIGPLAN Conf. on OOPSLA, volume 34(10) ofACM
SIGPLAN Notices, pages 314–324, Oct. 1999.

[2] B. Alpern et al. The Jalapeño virtual machine.IBM System Journal,
39(1):211–238, February 2000.

[3] A. W. Appel. Simple generational garbage collection andfast allo-
cation. Software Practice and Experience, 19(2):171–183, 1989.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive
optimization in the Jalapeño JVM. InConf. on OOPSLA, volume
35(10) ofACM SIGPLAN Notices, pages 47–65, October 2000.

[5] C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A comparative
evaluation of parallel garbage collectors. InLanguages and Com-
pilers for Parallel Computing, 14th International Workshop, LCPC
2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[6] G. Attardi and T. Flagella. A customizable memory management
framework. InProceedings of the USENIX C++ Conference, Cam-
bridge, Massachussetts, 1994.

[7] G. Attardi, T. Flagella, and P. Iglio. A customizable memory man-
agement framework for C++. Software Practice & Experience,
28(11):1143–1183, 1998.

[8] H. Azatchi and E. Petrank. Integrating generations withadvanced
reference counting garbage collectors. InInternational Conference
on Compiler Construction, Warsaw, Poland, Apr. 2003. To Appear.

[9] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and S. Smith.
Java without the coffee breaks: A nonintrusive multiprocessor
garbage collector. InProc. of the ACM SIGPLAN’01 Conference
on PLDI, volume 36(5) ofACM SIGPLAN Notices, June 2001.

[10] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. InProceedings of the
Thirtith Annual ACM Symposium on the Principles of Programming
Languages, pages 285–294, New Orleans, LA, Jan. 2003.

[11] D. F. Bacon and V. T. Rajan. Concurrent cycle collectionin reference
counted systems. In J. L. Knudsen, editor,Proc. of the 15th ECOOP,
volume 2072 ofLecture Notes in Computer Science, pages 207–235.
Springer-Verlag, 2001.

[12] E. D. Berger, B. G. Zorn, and K. S. McKinley. Building high-
performance custom and general-purpose memory allocators. In Pro-
ceedings of the SIGPLAN 2001 Conference on Programming Lan-
guage Design and Implementation, pages 114–124, Salt Lake City,
UT, June 2001.

[13] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss.
Beltway: Getting around garbage collection gridlock. InProc. of
SIGPLAN 2002 Conference on PLDI, volume 37(5) ofACM SIG-
PLAN Notices, Berlin, Germany, June 2002.

[14] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. InProc. of the ACM
SIGPLAN Conference on Object-Oriented Systems, Anaheim, CA,
Oct, 2003.

[15] S. M. Blackburn and K. S. McKinley. In or out? Putting write barriers
in their place. InProc. of the Third Int’l Symposium on Memory

10



1

2

3

4

5

6

7

8

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6
1

2

3

4

5

6

7

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

4.5

20 30 40 50 60 70 80 90 100 110

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6
1

2

3

4

5

6

7

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

4.5

5
20 40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6
1

2

3

4

5

6

7

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

2

3

4

5

6

7

8

1 2 3 4 5 6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
50 100 150 200 250

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

Figure 6. GC Time

Management, volume 37 ofACM SIGPLAN Notices. ACM Press,
June 2002.

[16] G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz,
editor,Proc. of the Conf. on OOPSLA / Proc. of the European Conf.
on ECOOP, pages 303–311, Ottawa, Canada, 1990. ACM Press.

[17] P. Cheng and G. Belloch. A parallel, real-time garbage collector. In
Proceedings of the ACM SIGPLAN’01 Conference on PLDI, volume
36(5) ofACM SIGPLAN Notices, pages 125–136, June 2001.

[18] J. Dean, G. DeFouw, D. Grove, V. Litinov, and C. Chambers. Vortex:
An optimizing compiler for object-oriented languages. InACM Conf.
Proc. OOPSLA, pages 83–100, San Jose, CA, Oct. 1996.

[19] L. P. Deutsch and D. G. Bobrow. An efficient incremental auto-
matic garbage collector.Communications of the ACM, 19(9):522–
526, September 1976.

[20] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. Steffens.
On-thefly garbage collection: An exercise in cooperation.Commu-
nications of the ACM, 21(11):966–975, September 1976.

[21] R. Fitzgerald and D. Tarditi. The case for profile-directed selection of
garbage collectors. In T. Hosking, editor,ISMM 2000 Proceedings of
the Second International Symposium on Memory Management, pages
111–120, Minneapolis, MN, Oct. 2000.

[22] R. Hudson, J. E. B. Moss, A. Diwan, and C. F. Weight. A language-
independent garbage collector toolkit. Technical Report TR-91-47,
Dept. of Computer Science, University of Massachusetts, Amherst,
Sept. 1991.

[23] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to
the future: the story of squeak, a practical smalltalk written in itself.

In Proceedings of the 1997 ACM SIGPLAN conference on Object-
oriented programming systems, languages and applications, pages
318–326. ACM Press, 1997.

[24] R. E. Jones and R. D. Lins.Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, July 1996.

[25] Y. Levanoni and E. Petrank. An on-the-fly reference counting
garbage collector for Java. InACM Conf. Proc. OOPSLA, pages 367–
380, Tampa, FL, Oct. 2001.

[26] H. Lieberman and C. E. Hewitt. A real time garbage collector based
on the lifetimes of objects.Communications of the ACM, 26(6):419–
429, 1983.

[27] T. J. McCabe. A complexity measure.IEEE Transactions on Soft-
ware Engineering, 2(4):308–320, Dec. 1976.

[28] K. Palacz, J. Baker, C. Flack, C. Grothoff, H. Yamauchi,and J. Vitek.
Engineering a customizable intermediate representation.In ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and Em-
ulators (IVME 03), 2003.

[29] N. Sachindran and J. E. B. Moss. Mark-copy: Fast copyingGC with
less space overhead. InThe ACM SIGPLAN Conference on Object-
Oriented Systems, Languages, and Applications, Oct. 2003.

[30] Standard Performance Evaluation Corporation.SPECjvm98 Docu-
mentation, release 1.03 edition, March 1999.

[31] Standard Performance Evaluation Corporation.SPECjbb2000 (Java
Business Benchmark) Documentation, release 1.01 edition, 2001.

[32] D. Stefanović, M. Hertz, S. M. Blackburn, K. McKinley,and J. Moss.
Older-first garbage collection in practice: Evaluation in ajava virtual
machine. InMemory System Performance, June 2002.

11



1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 3 4 5 6
9.6

9.8

10

10.2

10.4

10.6

10.8

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

20 30 40 50 60 70 80 90 100 110

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6

16

17

18

19

20

21
20 40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 2 3 4 5 6

10.6

10.8

11

11.2

11.4

11.6

11.8

12

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 2 3 4 5 6

9.2

9.4

9.6

9.8

10

10.2

10.4

10 20 30 40 50 60 70

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6

6.6

6.8

7

7.2

7.4

7.6

7.8

8

20 40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 2 3 4 5 6

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

20 30 40 50 60 70 80

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 3 4 5 6

16.5

17

17.5

18

18.5

50 100 150 200 250

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

Figure 7. Mutator Time

[33] D. Stefanović, K. McKinley, and J. Moss. Age-based garbage col-
lection. InACM Conf. Proc. OOPSLA, Denver, CO, Nov. 1999.

[34] D. Stutz, T. Neward, and G. Shilling.Shared Source CLI Essentials.
O’Reilly, 2003.

[35] D. M. Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm.ACM SIGPLAN Notices,
19(5):157–167, April 1984.

[36] K.-P. Vo. Vmalloc: A general and efficient memory allocator. Soft-
ware Practice & Experience, 26(3):1–18, 1996.

[37] S. A. Yeates and M. de Champlain. Design of a garbage collec-
tor using design patterns. In C. Mingins, R. Duke, and B. Meyer,
editors,Proceedings of the Twenty-Fifth Conference of (TOOLS) Pa-
cific., pages 77–92, Melbourne, 1997.

[38] S. A. Yeates and M. de Champlain. Design patterns in garbage col-
lection. InProc. of the 4th Annual Conf. on the Pattern Languages
of Programs, volume 6 “General Techniques”, 2-5 1997.

12


