
A Security Policy Oracle:
Detecting Security Holes Using Multiple API Implementations

Varun Srivastava
Yahoo!

varun iiit@yahoo.co.in

Michael D. Bond
The Ohio State University

mikebond@cse.ohio-state.edu

Kathryn S. McKinley Vitaly Shmatikov
The University of Texas at Austin

{mckinley,shmat}@cs.utexas.edu

Abstract
Even experienced developers struggle to implement security poli-
cies correctly. For example, despite 15 years of development, stan-
dard Java libraries still suffer from missing and incorrectly applied
permission checks, which enable untrusted applications to execute
native calls or modify private class variables without authorization.
Previous techniques for static verification of authorization enforce-
ment rely on manually specified policies or attempt to infer the pol-
icy by code-mining. Neither approach guarantees that the policy
used for verification is correct.

In this paper, we exploit the fact that many modern APIs have
multiple, independent implementations. Our flow- and context-
sensitive analysis takes as input an API, multiple implementations
thereof, and the definitions of security checks and security-sensitive
events. For each API entry point, the analysis computes the secu-
rity policies enforced by the checks before security-sensitive events
such as native method calls and API returns, compares these poli-
cies across implementations, and reports the differences. Unlike
code-mining, this technique finds missing checks even if they are
part of a rare pattern. Security-policy differencing has no intrinsic
false positives: implementations of the same API must enforce the
same policy, or at least one of them is wrong!

Our analysis finds 20 new, confirmed security vulnerabilities
and 11 interoperability bugs in the Sun, Harmony, and Classpath
implementations of the Java Class Library, many of which were
missed by prior analyses. These problems manifest in 499 entry
points in these mature, well-studied libraries. Multiple API imple-
mentations are proliferating due to cloud-based software services
and standardization of library interfaces. Comparing software im-
plementations for consistency is a new approach to discovering
“deep” bugs in them.

Categories and Subject Descriptors D. Software [D.2 Software
Engineering]: D.2.4 Software/Program Verification; K. Comput-
ing Milieux [K.6 Management of Computing and Information Sys-
tems]: K.6.5 Security and Protection

General Terms Languages, Security, Verification

Keywords Security, Authorization, Access Control, Static Analy-
sis, Java Class Libraries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1. Introduction
Demand for secure software is increasing, but ensuring that soft-
ware is secure remains a challenge. Developers are choosing
memory-safe systems [9, 39] and languages such as Java and
C# in part because they improve security by reducing memory-
corruption attacks. Even memory-safe systems, however, rely on
the access-rights model to ensure that the program has the appro-
priate permissions before performing sensitive actions. Unfortu-
nately, even experienced developers find it difficult to specify and
implement access-rights policies correctly. Consequently, semantic
mistakes—such as missing permission checks which enable mali-
cious code to bypass protection—have become a significant cause
of security vulnerabilities [26].

This paper presents a new approach to finding security vulner-
abilities in software libraries, also known as Application Program-
ming Interfaces (APIs). We leverage the increasing availability of
multiple, independent implementations of the same API. By de-
sign, these implementations must be interoperable and must im-
plement semantically consistent security policies. A security pol-
icy in the access-rights model consists of a mapping between secu-
rity checks, such as verifying permissions of the calling code, and
security-sensitive events, such as writing to a file or the network.
We exploit this consistency requirement to build a security policy
oracle, which accurately (i) derives security policies realized by
each implementation and (ii) finds incorrect policies.

Previous static analysis techniques for finding security vulner-
abilities either rely on manual policy specification and/or verifica-
tion, or infer frequently occurring policies by code-mining. For ex-
ample, Koved et al. derive a policy and then require programmers
to check by hand that permissions held at all sensitive points in the
program are sufficient [22, 28]. Sistla et al. take as input manu-
ally specified check-event pairs and verify that all occurrences of
the event are dominated by the corresponding check [30]. These
approaches are error-prone and limited in expressiveness. There
are hundreds of potential security-sensitive events and 31 poten-
tial checks in the Java Class Library; some policies involve multi-
ple checks and some checks do not always dominate the event. It
is easy to overlook a security-sensitive event or omit a rare check-
event pair in a manual policy. Koved et al. and Sistla et al. reported
no bugs for the Sun Java Development Kit (JDK) and Apache Har-
mony implementations of the Java Class Library. By contrast, our
analysis uncovered multiple, exploitable security vulnerabilities in
the same code.

Another approach is code-mining, which infers policies from
frequently occurring patterns and flags deviations as potential
bugs [10, 14, 35]. These techniques fundamentally assume that
the same pattern of security checks and security-sensitive opera-
tions occurs in many places in the code, and they are thus likely to
miss vulnerabilities that violate a unique policy—such as the Har-

mony bug described in Section 2. Frequent patterns may or may not
represent actual policies, resulting in false positives and negatives.
Code-mining techniques face an inherent tradeoff between cover-
age and the number of false positives. As the statistical threshold
is lowered to include more patterns, they may find more bugs, but
the number of false positives increases since deviations from rare
patterns can be mistakenly flagged as bugs.

Cross-implementation consistency as a “security policy oracle.”
Our key idea is to use any inconsistency in security semantics be-
tween implementations of the same API as an oracle for detecting
incorrect policies. Unlike approaches that rely on explicit policies
or frequent patterns, this technique completely avoids the need to
determine whether the policy is correct, replacing it by a much eas-
ier task of determining whether two policies are consistent.

Our use of consistency checking is very different from the code-
mining approaches. In our case, there are no benign inconsisten-
cies! Any semantic inconsistency between two implementations of
the same API is, at the very least, an interoperability bug or, in the
worst case, a security hole. In theory, policy differencing has no in-
trinsic false positives. In practice, imprecision in conservative static
analysis results in a very small number of false positives. Further-
more, our technique can discover a missing permissions check even
if this type of check occurs in a single place in the code. It may pro-
duce false negatives if exactly the same semantic bug occurs in all
implementations of a given library routine. This case is unlikely if
the implementations are developed independently, as is the case for
our main test subject, the Java Class Library.

Finding semantic inconsistencies with static analysis. Our analy-
sis takes as input two or more Java API implementations, security-
sensitive events, and security checks. Our definitions of security-
sensitive events and checks directly reflect the Java security model.
Security-sensitive events include calls to the Java Native Interface
(JNI), which is the only mechanism by which Java code commu-
nicates to the network, file system, or other external devices. Since
user code may change the internal state of the Java Virtual Machine
(JVM) using the Java Class Library, we include API returns in the
set of security-sensitive events. Application code should not be able
to reach security-sensitive events without proper permissions. In
the Java security model, security checks verify permissions held by
user code by calling methods in the SecurityManager class.

For every API entry point, we take all implementations and,
for each one, produce context-sensitive policies using flow- and
context-sensitive interprocedural analysis together with interproce-
dural constant propagation. The policies specify which checks may
and must precede each security-sensitive event. We compare the
policies for all events relevant to this entry point and report any
differences.

Case study: The Java Class Library. We demonstrate the effec-
tiveness of our approach by applying it to the Java Class Library.
This prominent, large, widely used API has multiple, independent
implementations: Sun JDK, GNU Classpath, Apache Harmony, and
several others. For example, JDK was announced in 1996 and is
very broadly deployed. It is the product of hundreds of program-
mers and its source code has been actively studied since Sun pub-
lished it in 2007. Different implementations of the Java Class Li-
brary API are intended to be fully interoperable.

Together, these implementations comprise over 1.7 million lines
of code. Any context-sensitive analysis must be concerned with
efficiency. Ours uses context memoization [38]. Analyzing each
library takes 20 minutes or less, which is likely to be acceptable as
part of testing. The three pairings share approximately 4,100 entry
points, and over 230 of these methods perform security checks. Our
analysis derives between 8,000 and 16,000 may and must security
policies per API.

Our analysis is very precise. It produces only 3 false positives,
while finding 20 new security vulnerabilities (6 in JDK, 6 in Har-
mony, 8 in Classpath) and 11 interoperability bugs that manifest
in 499 API entry points. Example vulnerabilities include opening
network connections and loading libraries without properly check-
ing permissions of the calling code. We reported all vulnerabilities
found by our analysis to the developers of the respective libraries,
who accepted and immediately fixed many of them [31–33].

In summary, our analysis uncovered multiple security vulnera-
bilities in three mature implementations of the Java Class Library,
with a minimal number of false positives. This paper demonstrates
that our approach (i) scales to industrial implementations of real-
world software libraries and (ii) is capable of discovering “deep”
bugs even in well-studied, tested, widely used code. Although we
describe our design and implementation with respect to the Java
programming language, our approach is applicable to other lan-
guages, such as C#, that use a similar access-rights model.

Current software engineering trends are likely to increase the
applicability of comparative API analysis. For example, the pro-
liferation of distributed, multi-layer software services encourages
separation of APIs from their implementations, and thus multiple
implementations of the same API. Many platforms are adopting the
Software-As-A-Service (SaaS) model [1, 16, 20, 29], which en-
courages multiple implementations of the same functionality and
thus provides the input material for our “security policy oracle.”
Widely used APIs sometimes have an open-source version, which
programmers can use as a reference policy oracle even when their
own code is proprietary. Even if all implementations of the same
API are proprietary, developers may be willing to share security
policies with each other without sharing the actual code.

2. Motivating Example
Figure 1 motivates our approach with an example from the JDK and
Harmony implementations of the Java Class Library. In Figure 1(a),
the JDK implementation of DatagramSocket.connect calls ei-
ther checkMulticast, or checkConnect and checkAccept be-
fore connecting to the network with a JNI call inside the method
invocation at line 16. For clarity of presentation, this and all other
examples elide unrelated code and the test for a non-null security
manager required by all security checks. In Figure 1(b), the Har-
mony implementation calls either checkMulticast, or check-
Connect before the equivalent method invocation at line 11.

Figure 2 illustrates some of the security policies inferred for
this code. Each policy includes a security-sensitive event and
a (possibly empty) set of security checks. Consider the API-
return event for JDK. There is a must and a may policy for
this event. The must check is the empty set and the may checks
are {{checkMulticast} or {checkConnect, checkAccept}}.
The call to checkAccept before the API return and, more impor-
tantly, before using JNI to make a network connection as a result of
invoking impl.connect, are missing in the Harmony may policy,
introducing a vulnerability.

The security-checking pattern in connect is unique. The
checkMulticast call is very rare and there is no other place in
the JDK library where it occurs together with checkAccept and
checkConnect. The “bugs as inconsistencies” methods [14, 35]
are not only likely to miss this bug, but may even wrongly flag the
JDK implementation because the pattern incorrectly used by Har-
mony is more common than the correct pattern used by JDK. The
rarity of this pattern and the fact that it involves multiple checks
mean that a manual policy is likely to miss it, too.

Both Harmony and JDK implement a may policy: there is
no single check that dominates all paths to the security-sensitive
event. Even if the manual policy happens to include all the right
event-check pairs, analyses that require the same check(s) on every

1 // JDK
2 public void connect(InetAddress address ,
3 int port) {
4 ... connectInternal(address , port); ...
5 }
6 private synchronized void connectInternal(

InetAddress address , int port) {
7 ...
8 if (address.isMulticastAddress ()) {
9 securityManager.checkMulticast(address);

10 } else {
11 securityManager.checkConnect(address.

getHostAddress (), port);
12 securityManager.checkAccept(address.

getHostAddress (), port);
13 }
14 if (oldImpl) {
15 connectState = ST_CONNECTED_NO_IMPL;
16 } else {
17 ... getImpl ().connect(address , port); ...
18 }
19 connectedAddress = address;
20 connectedPort = port;
21 ...
22 }

(a) JDK implementation of DatagramSocket.connect

1 // Harmony
2 public void connect(InetAddress anAddr ,
3 int aPort) {
4 synchronized (lock) {
5 ...
6 if (anAddr.isMulticastAddress ()) {
7 securityManager.checkMulticast(anAddr);
8 } else {
9 securityManager.checkConnect(anAddr.

getHostName (), aPort);
10 }
11 ...
12 impl.connect(anAddr , aPort);
13 ...
14 address = anAddr;
15 port = aPort;
16 ...
17 }
18 }

(b) Harmony implementation of DatagramSocket.connect

Figure 1: Security vulnerability in Harmony: checkAccept is
missing. The correct security policy is unique to this method.

MUST check: {}
Event: API return from DatagramSocket.connect

MAY check: {{checkMulticast},{checkConnect, checkAccept}}
Event: API return from DatagramSocket.connect

(b) JDK DatagramSocket.connect security policies

MUST check: {}
Event: API return from DatagramSocket.connect

MAY check: {{checkMulticast},{checkConnect}}
Event: API return from DatagramSocket.connect

(b) Harmony DatagramSocket.connect security policies

Figure 2: Example security policies

path [7, 22, 28, 30] will produce a warning for both implementa-
tions, which is a false positive for the correct JDK implementation.

Our analysis finds this vulnerability using (1) precise, flow- and
context-sensitive interprocedural analysis that computes both may
and must policies, and (2) differencing of policies from multiple
implementations.

3. Security Policies
This section explains security policies in the access-rights model
in more detail. Section 4 explains how we compute the policies
implemented by a given API entry point and Section 5 describes
our algorithm for comparing policies.

A security policy in the access-rights model is a mapping from
security-sensitive events to one or more security checks for each
event. Our analysis takes events and checks as input. A security-
sensitive event is a program event, such as a write to a file, that
the application should not be able to execute unless it holds cer-
tain rights or privileges. A security check verifies that the appli-
cation holds a particular right. The access-rights model is the cor-
nerstone of Java security. For example, unchecked native method
calls can give user applications unauthorized network access, while
unchecked returns of internal JVM state, i.e., the value of a pri-
vate variable, can leak data. The definitions of security checks
and events that we use in this paper directly reflect Java’s security
model.

A security policy “maps” an event to a check if the check
occurs before the event. Our analysis computes both must and may
policies. A must policy means that the check in question must occur
on every execution path leading to the event. A may policy means
that the check is predicated on some condition. At first glance,
may policies may appear insecure, but they are often needed to
implement the correct security logic. For example, Figure 2(a)
shows a policy that always performs one or more checks, but the
particular check differs depending on control flow.

Security checks. The SecurityManager class in Java provides 31
methods that perform security checks for user code and libraries.
For example, checkPermission() verifies that the calling context
holds a particular permission and throws an exception otherwise.
We restrict our analysis to these methods, although programmers
can define their own, additional security checks. Our analysis keeps
track of which of the 31 security checks is invoked at any given
point. For example, it differentiates between checkPermission()
and checkConnect().

Our analysis does not ensure that the parameters to security
checks are the same as the ones used by the security event. This
imprecision could be a source of false negatives.

Security-sensitive events. The Java Native Interface (JNI) defines
all interactions with the outside environment for Java programs,
e.g., opening files, connecting to the network, and writing to the
console. We therefore define all calls to native methods as security-
sensitive events.

In addition, we consider all API returns to be security-sensitive
events. If a method performs security checks but does not use the
JNI, these checks are thus included in its security policy. Such
checks are used in API implementations that give user code ac-
cess to internal JVM state or private variables, or store parame-
ter values for later use. These accesses should be secured consis-
tently in all implementations of an API because they reveal internal
JVM or library state to untrusted applications and/or enable ap-
plications to modify this private state. By including API returns,
we broaden the definition of security-sensitive events as compared
to prior work [22, 28, 30]. This broader definition helps us find
more vulnerabilities. For example, Figure 6 shows and Section 6.2

1 // Implementation 1
2 public Obj A(Obj obj) {
3 if (condition) {
4 checkRead ();
5 obj.add(data1);
6 return obj;
7 } else {
8 return null;
9 }

10 checkRead ();
11 obj.add(data2);
12 // Private data1 and data2 returned in obj
13 return obj;
14 }
15

16 // Implementation 2
17 public Obj A(Obj obj , Data data1 , Data data2) {
18 if (condition) {
19 obj.add(data1);
20 return obj;
21 } else {
22 return null;
23 }
24 checkRead ();
25 obj.add(data2);
26 // Private data1 and data2 returned in obj
27 return obj;
28 }

Figure 3: Hypothetical bug showing the need for a broad definition
of security-sensitive events.

describes a vulnerability that we detect because our definition of
security-sensitive events is not limited to JNI calls only.

Broader definition of security-sensitive events. Our analysis can
further broaden the definition of security-sensitive events. In addi-
tion to JNI calls and API returns, we experimented with including
individual accesses to private variables, JVM state, and API param-
eters. In particular, security-sensitive events could include all reads,
writes, and method invocations on API parameters and private vari-
ables, as well as reads, writes, and method invocations on variables
that are data-dependent on API parameters and private variables.

For this definition of security-sensitive events, we computed
data dependencies using a simple interprocedural dataflow analy-
sis that propagated an event tag. It marked all statements in the
definition-use chains involving private variables and API parame-
ters, and propagated the mark interprocedurally through parameter
binding in method invocations. If there were multiple instances of
the same event type, e.g., two returns or two accesses to the same
parameter, we combined the corresponding policies. This defini-
tion of security-sensitive events is very liberal and marks many
more events as sensitive. It generates over 90,000 security policies
for each Java Library implementation, whereas restricting security-
sensitive events to JNI calls and API returns results in 16,700 or
fewer policies for each implementation.

This broad definition of security-sensitive events did not result
in finding more bugs, nor generating more false positives during
our analysis of the Java Class Library, but it helped us diagnose
the cause of differences in the implementations’ respective security
policies. For other APIs, this broad definition may more accurately
capture the semantics of library implementations and thus find er-
rors missed with a narrower definition of security-sensitive events.

For example, this broad definition is needed to detect the in-
consistency between implementations in the hypothetical example
shown in Figure 3. Restricting security-sensitive events to JNI calls

and API returns results in a {checkRead} may policy for the API-
return event in both implementations. If we instead consider the
reads of private variables data1 and data2 as distinct security-
sensitive events, the analysis infers (1) a {checkRead} must policy
for the read of data1 in the first implementation and (2) an empty
must policy for the same event in the second implementation. The
analysis will thus report an inconsistency.

4. Computing Security Policies
Given an API and multiple implementations thereof, our approach
extracts and compares security policies realized by the implemen-
tations. The analysis computes the security checks that each API
always performs (must analysis) or may perform (may analysis)
before each security-sensitive event. The analysis uses a flow- and
context-sensitive interprocedural algorithm enhanced with flow-
and context-sensitive forward constant propagation [17, 36]. Any
context-sensitive analysis must be concerned with scalability. To
reduce analysis time and guarantee convergence, we do not iterate
over recursive call paths. We further eliminate useless re-analysis
with a form of memoization [38] that records security policies and
relevant parameters at each method invocation.

We implement the analysis in the Soot static analysis frame-
work1 [25] and use Soot’s method resolution analysis, alias analy-
sis, and intraprocedural constant propagation.

Call graph. The analysis starts by building call graphs rooted at all
public and protected API entry points, and derives separate policies
for each API entry point. Protected methods are included because
API clients can potentially call them by overriding the correspond-
ing class. These methods thus represent unintended paths into the
API and are important to analyze. In theory, any static analysis is
incomplete in the presence of dynamic class loading since the code
is not available until run time. In practice, the Java Class Library
and many other APIs are closed-world and do not depend on dy-
namic class loading.

Soot computes application call graphs, but its analysis is en-
gineered for applications with a single entry point. Because APIs
have many entry points, we build the call graph on the fly, using
Soot’s method resolution analysis which resolves 97% of method
calls in the Java libraries. If Soot does not resolve a method in-
vocation, our implementation does not analyze it. This inaccuracy
could be a source of false negatives or positives, but did not produce
false positives in our evaluation. As shown in prior work, type-
resolving events, such as allocation, make simple type hierarchy
analysis very effective at resolving method invocations [11, 34].
The Java libraries’ coding conventions—for example, the use of fi-
nal methods—further improve the precision of method resolution.

Analysis overview. Computing security policies is essentially a
reaching definitions analysis where the definitions are security
checks and the uses are security-sensitive events. The dataflow
lattice is the power set of the 31 security-checking methods. The
analysis propagates checks (definitions) to events (uses). After con-
verging, the resulting security policy is a mapping from event state-
ments to the checks that reach them.

We perform interprocedural and context-sensitive analysis,
propagate constants across method calls, and eliminate the result-
ing dead code, for the following reasons. It is typical for an API
method to first call a method that performs a security check and
then call another method that contains a security-sensitive event.
It is also common to perform the security check(s) conditionally,
based on the value of a parameter (see Section 4.2 for an example).

1 http://www.sable.mcgill.ca/soot/

Algorithm 1 Intraprocedural Security Policy Dataflow Analysis
procedure SPDA
{Initialize dataflow values}
for all vεAllStatements do

if MUST then
OUT(v)← ⊥

else {MAY}
OUT(v)← >

end if
NOTVISITED← NOTVISITED ∪ v

end for
{Propagate dataflow values}
worklist← EntryPoint
while worklist 6= φ do
v ← getNode(worklist)
if MUST then

IN(v)←
T

p∈PRED(v) OUT(p)

else {MAY}
IN(v)←

S
p∈PRED(v) OUT(p)

end if
OUT(v)← IN(v) ∪ SP(v)
if OUT(v) changed ∧ v ∈ NOTVISITED then

worklist← worklist ∪ SUCC(v)
NOTVISITED← NOTVISITED− v

end if
end while

Algorithm 2 Interprocedural Security Policy Analysis
procedure ISPA(m, SP, paramConsts)
if hashTable.hasKey(〈m, SP, paramConsts〉) then
{Same analysis state, so return hashed result}
return hashTable.lookup(〈m, SP, paramConsts〉)

else
{Compute result for this analysis state}
newSP← SPDA(m, SP, paramConsts)
hashTable.put(〈m, SP, paramConsts〉, newSP)
return newSP

end if

4.1 Intraprocedural analysis
For ease of presentation, we first describe the intraprocedural com-
ponent of the analysis. Algorithm 1 shows our intraprocedural se-
curity policy dataflow analysis (SPDA), which propagates secu-
rity checks. The MUST and MAY analyses differ in (i) the meet
function, performing intersection for MUST and union for MAY,
and (ii) the initial flow values, which are ⊥ for MUST and > for
MAY. SPDA assigns a unique identifier to each of the 31 security-
checking methods. It initializes OUT(v) of each statement that per-
forms a check to the corresponding identifier, i.e., OUT(v) = SP =
{check}. For all other statements, it initializes SP = ∅.

Because SPDA is a reaching definition analysis and uses a
lattice that is a powerset, it is rapid, converging in two passes with
structured control flow [27].

4.2 Interprocedural, context-sensitive analysis
This section explains how we extend the intraprocedural dataflow
analysis to make it interprocedural and context sensitive. ISPA, our
interprocedural security policy analysis, is shown in Algorithm 2.
When ISPA encounters a statement v that contains a method in-
vocation, it invokes the analysis recursively on the target method.
As mentioned above, our implementation ignores method invoca-
tions that Soot cannot resolve to a unique target, which may lead to

false negatives and positives. ISPA performs interprocedural con-
stant propagation together with the security analysis, tracking con-
stant parameter values (described below). The analysis binds any
current constant dataflow values to the parameters and uses them
together with the current policy as the initial state to analyze the
target method.

This analysis does not scale because it analyzes every statically
possible calling context separately. In practice, however, many of
the method’s calling contexts have the same dataflow values. We
eliminate redundant work via the following memoization scheme.
The first time our analysis encounters a call to some method, it
analyzes the method, passing in the initial policy and any constant
parameters. If analyzing the method changes the policy, we store
the policy and the constant parameters. Otherwise, we simply store
the initial policy. When the analysis encounters the same method in
a different calling context but with the same policy flow values, it
reuses the stored policy and avoids re-analyzing the method.

We use ISPA to analyze each API entry point. The algorithm
takes as input a method m and the current analysis state, which
consists of the current security policy SP and any known constant
parameters paramConsts tom. The algorithm is mutually recursive
with SPDA (Algorithm 1), which invokes ISPA at method invoca-
tions with the current values of SP and paramConsts. Thus, the
computation of OUT(v) in the while loop requires a change—a re-
cursive call to gather SP(v), if v is a resolved method invocation.
SPDA uses IN(v) as the initial flow value of the method’s entry
basic block and seeds constant propagation with the incoming con-
stant parameters (both not shown).

Constant propagation. For better precision, our analysis propa-
gates constants intraprocedurally and interprocedurally. The secu-
rity policy from Harmony in Figure 4 motivates this analysis. It
shows a common pattern in which a parameter determines whether
a security check is performed. This code uses two URL constructors.
The first constructor always passes null as the handler parameter
to the second constructor, which—correctly—performs no security
checks. In other contexts, however, the second constructor performs
one security check (line 7). Interprocedural constant propagation is
required to accurately differentiate these two contexts and prevent
false positives.

Soot supports Wegman-Zadeck intraprocedural constant propa-
gation [36]. Soot’s algorithm propagates integer and boolean con-
stants and null reference assignments into conditional statements
and eliminates unexecutable statements. We extend the analysis
at method invocations to pass constant parameters to the target
method. Because constant parameters are an essential part of the
analysis state, our memoization scheme includes them as dataflow
values: both the policy SP and the constant parameters paramCon-
sts must match in order to reuse previous results.

Convergence. SPDA and ISPA are guaranteed to converge be-
cause they are monotone and distributive. Constant propagation is
a monotone forward analysis. Intraprocedural constant propagation
is guaranteed to converge on the structured control-flow graphs in
Java, but because the call graph is recursive and not structured,
context-sensitive interprocedural constant propagation is not guar-
anteed to converge. For example, if a call passes in a constant pa-
rameter that the callee increments until it reaches some limit, each
context would be considered unique. In a context-sensitive analysis,
constant propagation can produce an unbounded number of unique
constant parameters due to method recursion. We prevent this case
by terminating early on recursive methods. In our implementation,
if the analysis encounters a recursive call, i.e., a call to a method
that is already on the call stack, it does not re-analyze the method.
An alternative implementation could instead bound the number of
traversals of a recursive subgraph.

1 // Harmony
2 public URL(String spec) {
3 this((URL) null , spec ,
4 (URLStreamHandler) null);
5 }
6 public URL(URL context , String spec
7 URLStreamHandler handler) {
8 if (handler != null) {
9 securityManager.checkPermission(

specifyStreamHandlerPermission);
10 strmHandler = handler;
11 }
12 ... protocol = newProtocol; ...
13 }

Figure 4: A context-sensitive may policy. Note that deriving the
precise policy associated with the first entry point requires propa-
gating the null constant into the handler parameter.

Scalability. Making context-sensitive analysis efficient is diffi-
cult in general [18]. Our memoization is similar to Wilson and
Lam [38], who record context-sensitive alias sets to avoid redun-
dant analysis. As described above, we memoize context-sensitive
security policies and any relevant constant parameters. Unlike
context-sensitive, whole-program pointer analyses that must store
large sets, our analysis deals with a relatively small number of se-
curity checks which must or may precede security-sensitive events.

Even though our analysis essentially explores every call path,
it performs well in practice. Section 6 shows that reusing dataflow
analysis values for identical incoming flow values improves per-
formance significantly. Other properties of our analysis, such as
not analyzing recursive calls and ignoring method invocations that
Soot cannot resolve to a unique target, improve scalability as well.
We find that calls to a method in the same or other contexts often
have the same incoming flow values. Nonetheless, context sensitiv-
ity, which differentiates contexts that have different flow values, is
key to the precision of our approach.

5. Comparing Security Policies
Given two implementations of the same API entry point, we com-
pute the policies realized by each implementation using the analysis
described in the previous section. Our analysis combines distinct
occurrences of calls to the same JNI routine and API returns. For
example, if a method calls the same JNI routine three times with
different policies, we combine all three must and may policies. We
perform intersection to combine must policies and union to com-
bine may policies. Although this step causes a loss of precision for
must policies in particular and thus may lead to false positives, we
did not find it to be a problem in practice. This step does not in-
troduce false negatives when distinct instances of the same JNI call
use different must policies, but may introduce false negatives when
combining may policies. A more precise analysis could try to order
and align each instance of a security-sensitive event, but we did not
find this necessary.

After combining security-sensitive events in each API, the anal-
ysis then compares two policies as follows:

1. If neither implementation has any security policies, or both im-
plementations have identical security policies, the comparison
analysis reports no error.

2. If one implementation has no security policy, but the other im-
plementation has one or more security policies, the comparison
analysis reports an error.

3. Otherwise, the comparison analysis matches events that occur
in both implementations. We ignore events unique to one im-
plementation. Matched events are compared as follows:

(a) If the two implementations have different sets of security
checks for the same event, the comparison analysis reports
an error.

(b) If the two implementations have the same security checks,
but at least one check is may in one implementation and
must in the other, the comparison analysis reports an error.

Case 2 is responsible for most of the security vulnerabilities and in-
teroperability bugs we found. Case 3(a) produced one vulnerability,
one interoperability bug, and one false positive. Case 3(b) produced
one interoperability bug.

6. Evaluation
We evaluate our approach by applying it to recent versions of three
mature implementations of the standard Java Class Library. The li-
braries perform two critical functions in Java. First, they make Java
portable by providing an abstract interface to I/O, user interfaces,
file systems, the network, operating system, and all other machine-
dependent functionality. Second, they provide standard, optimized
implementations of widely used data structures and abstractions,
such as sets and queues. All Java programs rely on the security and
correctness of these libraries.

We analyze three implementations of the Java Class Library,
listed below. For each implementation, we analyze the main pack-
ages: java.io, java.lang, java.nio, java.security, java.text, java.util,
javax.crypto, javax.net, javax.security, and java.net.

1. JDK: Sun JDK, version 1.6.0 07, first released in 1996.

2. Classpath: GNU Classpath, version 0.97.2, started in 1998.

3. Harmony: Apache Harmony libraries, version 1.5.0, svn revi-
sion r761593, started in 2005.

Note that two of the implementations are well over 10 years old,
yet our approach still found security errors in them. Together, these
libraries total about 2.5M lines of code.

Table 1 summarizes the non-comment lines of code, API entry
points, and characteristics of security policies for each library. We
analyze all public and protected methods because applications can
invoke them either directly or via a derived class. Because of this,
the number of API entry points varies from implementation to
implementation.

We analyze the entire call graph rooted at each of these API
entry points. The third row in Table 1 shows that only a small
subset of methods performs security checks. The analysis computes
between 4,208 and 9,580 must and may security policies for each
implementation. We only compare policies for the API entry points
that are identical in two implementations—over 4,100 entry points
for each pair—shown in the first row of Table 3. The sheer volume
of policies demonstrates that any approach that relies on developers
to manually examine inferred policies to detect errors is unlikely to
succeed.

Analysis time. Table 2 shows the time in minutes to compute must
and may policies for each of the three libraries. For both may
and must policies, the first row shows the analysis time without
memoization of method summaries (Section 4). The second and
third rows show time with memoization. In the second row, method
summaries are reused only within the same API entry point. In the
third row, they are reused across the entire library.

Reuse of summaries within the same entry point yields a factor
of 1.5 to 13 improvement and reuse across the entire library yields
an additional factor of 3 to 18, resulting in the overall factor of 15 to

JDK Harmony Classpath

Non-comment lines of code 632K 572K 563K
Entry points 6,008 5,835 4,563
Entry points w/ security checks 239 262 250
may security policies 9,580 7,126 4,652
must security policies 7,181 6,757 4,208

Table 1: Library characteristics

JDK Harmony Classpath

MAY No summaries 300 190 340
Summaries (per entry point) 180 130 190

Summaries (global) 10 13 20

MUST No summaries 560 290 650
Summaries (per entry point) 50 40 50

Summaries (global) 10 12 10

Table 2: Analysis time in minutes

Classpath v Harmony JDK v Harmony JDK v Classpath

Matching APIs 4,161 4,449 4,758
False positives eliminated by ICP 4 (63) 4 (35) 4 (74)
False positives 3 (3) 3 (3) 0 (0)
Root cause of policy difference

Intraprocedural 1 (1) 5 (6) 2 (3)
Interprocedural 14 (140) 13 (43) 16 (300)
MUST/MAY difference 0 (0) 1 (5) 0 (0)

Total differences 15 (142) 19 (54) 18 (303)
Total interoperability bugs 3 (115) 9 (39) 5 (222)

Classpath Harmony JDK Harmony JDK Classpath
Security vulnerabilities in 5 (12) 4 (11) 1 (2) 6 (10) 5 (21) 8 (60)

JDK Harmony Classpath
Total security vulnerabilities 6 (23) 6 (11) 8 (61)

The table reports distinct errors with manifestations in parentheses: distinct (manifestations).

Table 3: Security vulnerabilities and interoperability errors detected by security policy differencing analysis

65 improvement in performance due to memoization. Although our
analysis is still not blazingly fast, it is intended to be used relatively
infrequently, as part of correctness and interoperability testing.

6.1 Analysis results
We categorize the results of our analysis as follows:

Vulnerability: A semantic difference that can be exploited to per-
form some security-sensitive action without permission.

Interoperability bug: A semantic difference that causes interop-
erability problems. These differences do not, on the surface, en-
able applications to perform security-sensitive actions without
permission, but could be part of a multi-stage attack.

False positive: Policies are identical, but a difference is mistakenly
reported due to imprecision of our analysis.

False negative: A security vulnerability not reported by our anal-
ysis. False negatives may arise if identical may policies apply
under different conditions, or if two policies are identical but
incorrect. Although these cases seem unlikely, their frequency
is hard to quantify.

The remainder of this section surveys the results of security-policy
differencing and how different algorithmic features of our analysis
contribute to the results. Sections 6.2 and 6.3 discuss the security
vulnerabilities and interoperability errors in detail and include ex-
amples of each. Section 6.4 explains in more detail why our analy-
sis can have false positives and false negatives.

Table 3 shows the results of our analysis. We compare each
implementation to the other two. The analysis finds most errors in
both comparisons, but because some entry points differ between
implementations, each pairwise comparison finds a few unique
errors.

To reduce the number of reports the developer must read, our
analysis automatically combines reports when the error stems from
the same root cause, i.e., when the method containing the error is
called from multiple API entry points. The number of entry points
(manifestations) that can exploit the error is shown in parentheses.
We manually examined all root causes to determine the responsible
library implementation and classify the bug.

The ICP row shows that interprocedural constant propagation
eliminates 4 false positives that have over 70 manifestations, re-
sulting in the overall false-positive rate of less than 1%: 3 of 499
manifestations. The Intraprocedural, Interprocedural, and MUST/-
MAY rows show that every component of our analysis contributes
to finding errors. Intraprocedural analysis, which only computes
policies local to a method, would miss the majority of the errors.
Differences due to a must policy in one implementation and a may
policy in the other revealed one bug. Not shown in a dedicated row
in the table is the small number of vulnerabilities revealed by dif-
ferences between two may policies, including the one in Figure 1.
Finding most errors requires context-sensitive interprocedural anal-
ysis.

Overall, our analysis found 20 security vulnerabilities and 11
interoperability bugs across all three library implementations, not
just in the least mature one. These errors witness how difficult
it is for programmers to get access-rights policies correct. For
example, even though more than a hundred developers worked on
the JDK implementation for over 15 years, it is still not error-free.
We reported all vulnerabilities to the respective implementors, who
recognized all of them as bugs and fixed some of them [31–33].

6.2 Security vulnerabilities
This section explains a few of the security vulnerabilities uncov-
ered by our analysis. To demonstrate the power of implementation

1 // JDK
2 class Runtime {
3 public void loadLibrary(String libname) {
4 loadLibrary0(System.getCallerClass (),
5 libname);
6 return;
7 }
8 synchronized void loadLibrary0(
9 Class fromClass , String libname) {

10 ... securityManager.checkLink(libname); ...
11 ClassLoader.loadLibrary(fromClass , libname ,
12 false);
13 }
14 }
15

16 class ClassLoader {
17 static void loadLibrary(Class fromClass ,

String name , boolean isAbsolute) {
18 ... loadLibrary0(fromClass , libfile); ...
19 }
20 private static boolean loadLibrary0(
21 Class fromClass , final File file) {
22 ...
23 NativeLibrary lib =
24 new NativeLibrary(fromClass , name);
25 lib.load(name);
26 ...
27 }
28 }

(a) JDK implementation of Runtime.loadLibrary

1 // Classpath
2 class Runtime {
3 public void loadLibrary(String libname) {
4 loadLibrary(libname , VMStackWalker.

getCallingClassLoader ());
5 return;
6 }
7 void loadLibrary(String libname , ClassLoader

loader) {
8 ... securityManager.checkLink(libname); ...
9 ... loadLib(filename , loader); ...

10 }
11 private static int loadLib(String filename ,

ClassLoader loader) {
12 ...
13 securityManager.checkRead(filename);
14 ...
15 return VMRuntime.nativeLoad(filename ,

loader);
16 }
17 }

(b) Classpath implementation of Runtime.loadLibrary

Figure 5: Security vulnerability: JDK is missing checkRead that
Classpath performs before loading a library at run time.

differencing, each vulnerability is accompanied by a correct imple-
mentation from another library.

Figure 5 shows one of the six vulnerabilities in JDK. The
JDK code returns from Runtime.loadLibrary having called
only checkLink on a dynamically loaded library. By contrast, the
Classpath implementation calls both checkLink and checkRead.
Detecting this vulnerability requires interprocedural analysis.

The other five JDK vulnerabilities are detected when our anal-
ysis compares JDK with Classpath. They arise because JDK per-
forms some security checks inside a privileged block. Security
checks inside a privileged block always succeed. Therefore, they

1 // Harmony
2 public URLConnection openConnection(
3 Proxy proxy) throws IOException {
4 ...
5 return
6 strmHandler.openConnection(this , proxy);
7 }

(a) Harmony implementation of URLConnection.openConnection

1 // JDK
2 public URLConnection openConnection(
3 Proxy proxy) {
4 ...
5 if (proxy.type() != Proxy.Type.DIRECT) {
6 InetSocketAddress epoint =
7 (InetSocketAddress) proxy.address ();
8 if (epoint.isUnresolved ()) {
9 securityManager.checkConnect(epoint.

getHostName (), epoint.getPort ());
10 } else {
11 securityManager.checkConnect(
12 epoint.getAddress ().getHostAddress (),
13 epoint.getPort ());
14 }
15 }
16 return handler.openConnection(this , proxy);
17 }

(b) JDK implementation of URLConnection.openConnection

Figure 6: Security vulnerability: Harmony is missing check-
Connect that JDK performs before opening a network connection.

are semantic no-ops and our analysis correctly ignores them. It
seems especially difficult for developers to detect this kind of error
through manual inspection because a call to the security-checking
method is actually present in the source code.

Figure 6 shows one of the six vulnerabilities in Harmony, de-
tected when our analysis compared it to JDK. Finding the vulnera-
bility in OpenConnection requires using API returns as security-
sensitive events because OpenConnection does not actually per-
form network reads and writes with JNI calls. The user must subse-
quently call getInputStream() or getOutputStream() to read
or write to the network. In Harmony, OpenConnection calls a
method on the private strmHandler variable and returns internal
API state to the application without any checks. By contrast, the
JDK implementation has a may policy that calls checkConnect
before returning internal API state to the application.

Figure 7 shows one of the eight vulnerabilities in Class-
path. Classpath omits all security checks in the Socket.connect
method, whereas JDK always calls checkConnect. This error
seems simple to spot, but the method is called in many contexts,
some of which do perform checks. Since this method is directly
accessible by an application, this vulnerability is easy to exploit
and has now been fixed.

6.3 Interoperability bugs
Some interoperability problems arise because Classpath performs
much more dynamic class loading than the other implementations.
For example, it dynamically loads the CharsetProvider class,
whereas JDK statically loads it at boot time. The reason may
be that Classpath is trying to reduce the size of its JVM when
running on an embedded platform. Because of this difference,
Classpath contains code that performs checkPermission(new
RuntimePermission("charsetProvider")), whereas JDK and
Harmony do not.

1 // JDK
2 class Socket {
3 public void connect(SocketAddress , int) {
4 ...
5 securityManager.checkConnect (...);
6 ...
7 impl.connect (...);
8 }
9 }

(a) JDK implementation of Socket.connect

1 // Classpath
2 class Socket {
3 public void connect(SocketAddress , int) {
4 ...
5 getImpl ().connect(endpoint , timeout);
6 }
7 }

(b) Classpath implementation of Socket.connect

Figure 7: Security vulnerability: Classpath is missing check-
Connect that JDK performs before opening a network connection.

1 // JDK
2 class String {
3 public byte[] getBytes () {
4 return
5 StringCoding.encode(value , offset , count);
6 }
7 }
8

9 class StringCoding {
10 static byte[] encode (...) {
11 try {
12 return encode("ISO -8859 -1", ca, off , len);
13 } catch (UnsupportedEncodingException x) {
14 System.exit (1);
15 return null;
16 }
17 }
18 }

(a) JDK implementation of String.getBytes

1 // Harmony
2 class String {
3 public byte[] getBytes () {
4 ByteBuffer buffer =
5 defaultCharset ().encode (...);
6 ...
7 }
8 private Charset defaultCharset () {
9 if (DefaultCharset == null) {

10 DefaultCharset =
11 Charset.forName("ISO -8859 -1");
12 }
13 ...
14 }
15 }

(b) Harmony implementation of String.getBytes

Figure 8: Interoperability bug: JDK requires checkExit permis-
sion to call System.exit(), whereas Harmony throws an excep-
tion.

Interoperability problems also arise due to additional function-
ality in one of the implementations. Figure 8 shows an exam-
ple from String.getBytes. If the default “ISO-8859-1” char-
acter set decoder is not present, JDK terminates the application
by calling System.exit(), whereas forName in Harmony throws
UnsupportedEncodingException. To perform System.exit(),
the application needs checkExit permission which is not needed
in the Harmony implementation.

6.4 False positives and negatives
The main reason for false positives is inherent to any static anal-
ysis—it is conservative because it includes all possible program
paths and not just the actual paths taken during code execution.
In practice, our analysis produced only three false positives when
analyzing the three implementations of the Java Class Library,
all of them due to questionable coding practices in the Harmony
implementation. For example, in java.security.Security.
getProperty(String), JDK uses checkPermission(), where-
as Harmony uses checkSecurityAccess(). There is a mis-
match between required permissions, but both checks achieve the
same goal. In this example, both implementations should have
used checkPropertyAccess(). Similarly, Harmony unnecessar-
ily uses checkConnect() to check address reachability inside the
getInetAddresses() method, whereas JDK simply returns the
result of InetAddrImpl.isReachable().

There are two causes of false negatives. First, two libraries may
both implement the security policy incorrectly and in the same way.
The second cause is imprecision of our analysis. For example, our
analysis is not field or variable sensitive. If the library sends the
wrong parameter to the security-checking method, or if it checks
one variable and then makes a JNI call on another, our analysis will
not report an error. Furthermore, our analysis does not determine
the potential targets of unresolved method invocations for incom-
plete call graphs. Since 97% of method invocations were resolved,
we did not perform additional analysis, and this inaccuracy may
result in false negatives. Finally, our comparison of may policies
does not consider the conditions under which the checks are ex-
ecuted. Changing our analysis to report these conditions is easy,
but would result in an overwhelming number of reports. Verifying
whether the conditions for two may policies are equivalent is diffi-
cult. We examined some of the reports by hand and did not find any
false negatives. A quantitative evaluation of false negatives would
require an enormous amount of time and expertise from the devel-
opers.

7. Related Work
This section describes the closest related work on static analysis for
finding security errors and other bugs, as well as program differenc-
ing. None of the prior work exploits multiple API implementations
to automatically derive correctness criteria for security policies.

7.1 Static analysis and model checking
The closest related static analysis techniques for verifying security
mediation in Java code are by Koved et al. [22, 28] and Sistla et
al. [30]. Koved et al. take security checks as inputs and use a flow-
and context-sensitive interprocedural must analysis to compute, for
each point in the program, the set of checks performed prior to
reaching it. The programmer must manually identify all security-
sensitive operations and verify whether the computed checks are
sufficient. Our must polices are similar, but our policy differencing
eliminates the error-prone, manual verification.

Sistla et al. take as input a manual policy specified as pairs of
security checks (calls to the security manager) and security events
(only JNI calls in their model). They use flow- and context-sensitive

interprocedural must analysis to find “bad” paths that reach a secu-
rity event without performing the corresponding check. The MOPS
project [7] applied a similar, but flow-insensitive, approach to C
programs.

As our analysis shows, correct security enforcement sometimes
requires multiple checks. Furthermore, the check(s) may not dom-
inate the event (e.g., see Figure 1), necessitating may analysis. In
addition to native calls, the set of security events should also in-
clude at least API returns. The final and most significant deficiency
of these prior approaches is that they provide no mechanism for
determining whether the policy used for verification is correct and
complete.

These deficiencies are significant in practice. Sistla et al. ana-
lyzed the JDK and Harmony libraries, while Koved et al. analyzed
JDK—but neither paper reports any actual bugs. By using differ-
ences between API implementations as an oracle for detecting in-
correct policies, we found multiple, confirmed security vulnerabil-
ities in JDK, Harmony, and Classpath, many of which were missed
by prior analyses. Furthermore, our analysis produces precise se-
curity policies specific to concrete security-sensitive events.

There is an enormous amount of research on model checking
that aims to prove programs correct using precise specifications [4–
6, 8, 13]. In general, model checking does not yet scale to inter-
procedural security analysis of large programs, and rigorous spec-
ification of security policies and vulnerability patterns has proven
elusive so far.

Whaley et al. extract finite-state models of the interface of a
class and its accesses to common data structures [37]. Security
policies do not always follow their model. For instance, consider
the following simple example:

1 securityManager.checkPermission ();
2 doSensitiveOperation ();

Their analysis cannot detect that doSensitiveOperation()
should be dominated by checkPermission() because there is
no data structure shared between the two methods. Furthermore,
their analysis is not context sensitive. Our approach could be con-
figured to use arbitrary data structure accesses as security-sensitive
events, but we did not find it necessary.

Ganapathy et al. use concept analysis to extract security-
sensitive events [15]. Their approach is complementary to ours,
since our analysis could take as input the security-sensitive events
they generate.

7.2 “Bugs as inconsistencies”
Mining programs for static and dynamic models of correct behavior
has become a popular approach for finding bugs [2, 10, 14, 35]. In
general, this approach finds bugs that reveal themselves as anoma-
lies in common patterns of correct behavior. The fundamental as-
sumption is that correct patterns occur many times in the program
and are thus easy to recognize. Mining algorithms must be tuned to
ignore unique or rarely observed behavior, or else they produce an
overwhelming number of false positives. Because security policies
are often unique to a particular API, the “bugs as inconsistencies”
approach is likely to miss many vulnerabilities (e.g., see Section 2).

AutoISES statically mines security patterns in C code and flags
deviations from frequent patterns as vulnerabilities [35]. Its anal-
ysis targets security checks performed prior to security-sensitive
operations in SELinux kernel routines. The AutoISES paper claims
that the analysis is context sensitive and flow insensitive, but does
not describe the actual algorithm or convergence criteria. It does
mention that the analysis partitions the call graph into modules for
scalability, thus missing security patterns and bugs on cross-module
call paths, although the authors argue that maintainable security
policies should not cross modules—at least in C programs. In our

experience with the Java libraries, both flow and context sensitivity
are essential for precision.

Engler et al. statically extract intraprocedural patterns of correct
behavior, including some security policies, and use them to detect
anomalies [14]. Their policy descriptions include “a call to A al-
ways or sometimes dominates a call to B” and are thus similar to
ours. However, these local patterns are not interprocedural—they
do not include flow- and context-sensitive policies in which the
security check occurs in a different method than the operation it
protects. Furthermore, the approach of Engler et al. ignores rare
patterns. Dillig et al. find bugs by detecting static inconsistencies
in the program [10]. For example, they detect if the program con-
tains both “if (x==NULL) foo.m();” and “*x=y;” which in-
dicate both that x may be null and that x is definitely non-null.
This analysis finds local contradictions rather than semantic differ-
ences. It captures neither rare events, nor interprocedural patterns.
Both approaches will miss many vulnerabilities in Java code, where
security-sensitive events and the corresponding checks often occur
in different methods.

Another approach to mining specification is to observe policies
at run time. For example, Ammons et al. observe dynamic traces of
method call sequences and use machine learning to create API us-
age specifications in the form of finite-state machines [2]. Dynamic
mining approaches are at a disadvantage when policies are unique
and/or rarely or never exercised by the test inputs.

Kim et al. use a database of previously fixed bugs to find their re-
currences in new code [21]. Hovemeyer and Pugh use programmer-
defined bug patterns to find their occurrences [19]. To avoid false
positives, these tools require well-defined bug patterns that apply
to all contexts. These types of patterns are useful for describing
coding conventions, but generally do not capture context-specific
semantics. Because many security policies are context dependent
and unique, these techniques cannot classify them as correct or in-
correct.

Our work is also distantly related to program differencing. We
find inconsistencies between implementations of the same API us-
ing identical API entry points, but do not assume that the imple-
mentations are identical or even very similar. In our experience, dif-
ferent implementations often choose different algorithms and data
structures. Techniques for finding method clones—methods that
implement semantically similar functionality within the same pro-
gram [3, 12, 23, 24]—are thus unlikely to classify two methods that
implement the same API as clones. However, it might be possible
to leverage clone detection by first finding clones, then extracting
and comparing their security policies. We leave this exploration to
future work.

In summary, our interprocedural, flow-sensitive and context-
sensitive analysis is more precise than prior approaches. It does
not require multiple instances of correct behavior within the same
program and can thus find bugs in very rare patterns, such as
the missing checkAccept in the example of Section 2. It does,
however, require at least two independent implementations of the
same API.

8. Discussion and Conclusions
This paper shows how to use precise, flow- and context-sensitive
security policy analysis to infer thousands of relationships between
security checks and security-sensitive events in Java code, and how
to use this information to compare implementations of the same li-
brary API. The number of check-event relationships in these imple-
mentations is so large that it is clearly impractical for developers to
analyze them manually. In fact, prior techniques that produced sim-
ilar policies for each implementation in isolation did not find any
errors. By comparing precise policies from multiple implementa-
tions, we create a security policy oracle: any policy difference be-

tween two implementations of the same functionality indicates an
error! Our approach uncovered many security vulnerabilities and
interoperability bugs in three large, mature, widely used implemen-
tations of the Java Class Library.

Of course, security-policy differencing requires multiple, inde-
pendent implementations and thus limits the applicability of our
approach. However, many critical APIs, such as the Java, C#, and C
libraries, have multiple implementations. Furthermore, they are an
essential component of virtually every substantial application writ-
ten in these languages. At least one open-source version of widely
used APIs is often available and can be used as a reference. In this
use case, programmers of proprietary versions may not even need
to read the open-source code, but only study any reported differ-
ences in security policies. If all API implementations are propri-
etary, developers could use this approach to make their respective
implementations more secure if one or more of them are willing to
share extracted policies.

Security vulnerabilities and other semantic errors in popular li-
braries open the door to attacks that can compromise many systems,
not just a single application. With the advent of cloud computing
and increasing demand for portability and architecture-specific op-
timizations, the prevalence of multiple implementations of the same
API is likely to grow. This work shows for the first time how to
leverage multiple implementations to improve the interoperability
and security of each.

Our approach may be applicable to other types of interoperabil-
ity bugs. As Figure 8 shows, semantic differences sometimes ac-
cidentally show up as security-policy differences. A generalization
of our analysis that extracts and compares more general semantics
of API implementations seems promising. For example, differences
in how implementations access parameters, private variables, return
values, and flow values from parameters to private variables and re-
turn values may reveal interoperability bugs. Similar analysis could
detect differences in exceptions that may get thrown by each imple-
mentation and in the semantic information carried by return values.

Acknowledgments
Thanks to Andrew John Hughes for his generous help with verify-
ing Classpath bugs and for feedback on the paper text; Sam Guyer
for useful discussions about static analysis; and the anonymous re-
viewers for helpful feedback on the text.

The research described in this paper was partially supported
by the NSF grants CNS-0746888, CCF-0811523, CNS-0905602,
SHF-0910818, and CCF-1018721, Google research award, and the
MURI program under AFOSR Grant No. FA9550-08-1-0352.

References
[1] Amazon. Amazon Web Services. http://aws.amazon.com/.
[2] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In ACM

Symposium on the Principles of Programming Languages, pages 4–16,
2002.

[3] B. S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In IEEE Working Conference on Reverse Engineering,
pages 86–95, 1995.

[4] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In ACM Symposium on the Principles of
Programming Languages, pages 1–3, 2002.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. In ACM European Conference on Com-
puter Systems, pages 73–85, 2006.

[6] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST. International Journal on Software Tools for
Technology Transfer, 9(5-6):505–525, 2007.

[7] H. Chen and D. Wagner. MOPS: An infrastructure for examining
security properties of software. In ACM Conference on Computer and
Communications Security, pages 235–244, 2002.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):
244–263, 1986.

[9] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer over-
flows: Attacks and defenses for the vulnerability of the decade. In
DARPA Information Survivability Conference and Exposition, pages
119–129, 2000.

[10] I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic
inconsistency inference. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 435–445, 2007.

[11] A. Diwan, K. S. McKinley, and J. E. B. Moss. Using types to
analyze and optimize object-oriented programs. ACM Transactions
on Programming Languages and Systems, 23(1):30–72, 2001.

[12] S. Ducasse, M. Rieger, and S. Demeyer. A language independent ap-
proach for detecting duplicated code. In IEEE International Confer-
ence on Software Maintenance, pages 109–118, 1999.

[13] E. A. Emerson and E. M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In Colloquium on Automata,
Languages and Programming, pages 169–181, 1980.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. In ACM Symposium on Operating Systems Principles, pages
57–72, 2001.

[15] V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining security-
sensitive operations in legacy code using concept analysis. In ACM
International Conference on Software Engineering, pages 458–467,
2007.

[16] Google. Google Apps. http://www.google.com/apps/.
[17] D. Grove and L. Torczon. Interprocedural constant propagation: A

study of jump function implementations. In ACM Conference on
Programming Language Design and Implementation, pages 90–99,
1993.

[18] S. Z. Guyer and C. Lin. Error checking with client-driven pointer
analysis. Science of Computer Programming, 58(1-2):83–114, 2005.

[19] D. Hovemeyer and W. Pugh. Finding bugs is easy. In ACM OOPSLA
Onward!, pages 92–106, 2004.

[20] IBM. Cloud Computing. http://ibm.com/developerworks/
cloud/.

[21] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes. In
ACM Symposium on the Foundations of Software Engineering, pages
35–45, 2006.

[22] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analysis for
Java. In ACM Conference on Object–Oriented Programming, Systems,
Languages, and Applications, pages 359–372, 2002.

[23] J. Krinke. Identifying similar code with program dependence graphs.
In IEEE Working Conference on Reverse Engineering, pages 301–309,
2001.

[24] A. M. Leitao. Detection of redundant code using R2D2. Software
Quality Control, 12(4):361–382, 2004.

[25] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: Is
it worth it? In International Conference on Compiler Construction,
pages 47–64, 2006.

[26] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
changed now? An empirical study of bug characteristics in modern
open source software. In Workshop on Architectural and System
Support for Improving Software Dependability (ASID), pages 25–33,
2006.

[27] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks.
Acta Informatics (ACTA), 28(2):121–163, 1990.

[28] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. Interproce-
dural analysis for privileged code placement and tainted variable de-
tection. In European Conference on Object-Oriented Programming,
pages 362–386, 2005.

[29] Salesforce. Salesforce Platform. http://www.salesforce.com/
platform/.

[30] A. P. Sistla, V. N. Venkatakrishnan, M. Zhou, and H. Branske. CMV:
Automatic verification of complete mediation for Java Virtual Ma-
chines. In ACM Symposium on Information, Computer and Commu-
nications Security, pages 100–111, 2008.

[31] V. Srivastava. Vulnerabilities submitted to Classpath, Dec 2009–
Jan 2010. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=
42390.

[32] V. Srivastava. Vulnerabilities submitted to Harmony, Nov 2009.
https://issues.apache.org/jira/browse/HARMONY-6367.

[33] V. Srivastava. Vulnerabilities submitted to Sun JDK, Jan–
Oct 2010. http://bugs.sun.com/bugdatabase/view_bug.do?
bug_id=6914460.

[34] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
Java. In ACM Conference on Object–Oriented Programming, Systems,

Languages, and Applications, pages 264–280, 2000.
[35] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: Auto-

matically inferring security specifications and detecting violations. In
USENIX Security Symposium, pages 379–394, 2008.

[36] M. N. Wegman and F. K. Zadeck. Constant propagation with condi-
tional branches. ACM Transactions on Programming Languages and
Systems, 13(2):181–210, 1991.

[37] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of
object-oriented component interfaces. In ACM International Sympo-
sium on Software Testing and Analysis, pages 218–228, July 2002.

[38] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer anal-
ysis for C programs. In ACM Conference on Programming Language
Design and Implementation, pages 1–12, 1995.

[39] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A sandbox
for portable, untrusted x86 native code. Communications of the ACM,
53(1):91–99, 2010.

