
Interactive Parallel Programming Usingthe ParaScope Editor �Ken Kennedy Kathryn McKinley Chau-Wen TsengDepartment of Computer Science, Rice University, Houston, TX 77251-1892May 24, 1994AbstractThe ParaScope project is developing an integrated collection of tools to help scienti�c pro-grammers implement correct and e�cient parallel programs. The centerpiece of this collectionis the ParaScope Editor, an intelligent interactive editor for parallel Fortran programs. TheParaScope Editor reveals to users potential hazards of a proposed parallelization in a pro-gram. It also provides a variety of powerful interactive program transformations that havebeen shown useful in converting programs to parallel form. In addition, the ParaScope Ed-itor supports general user editing through a hybrid text and structure editing facility thatincrementally analyzes the modi�ed program for potential hazards. The ParaScope Editor isa new kind of program construction tool { one that not only manages text, but also presentsthe user with information about the correctness of the parallel program under development.As such, it can support an exploratory programming style in which users get immediatefeedback on their various strategies for parallelization.Keywords: Parallel Programming, Parallelism Detection, Dependence Analysis, Trans-formations, Environments, Interactive, Editor�This research is supported by the National Science Foundation under grants CDA-8619893 and ASC-8518578,IBM, and the Cray Research Foundation. 1

1 IntroductionThe widespread availability of a�ordable parallel machines has increasingly challenged theabilities of programmers and compiler writers alike. Programmers, eager to use new machinesto speed up existing sequential scienti�c codes, want maximal performance with minimal ef-fort. The success of automatic vectorization has led users to seek a similarly elegant softwaresolution to the problem of programming parallel computers. A substantial amount of researchhas been conducted on whether sequential Fortran 77 programs can be automatically con-verted without user assistance to execute on shared-memory parallel machines [2, 3, 7, 8, 42,49]. The results of this research have been both promising and disappointing. Although suchsystems can successfully parallelize many interesting programs, they have not established alevel of success that will make it possible to avoid explicit parallel programming by the user.Hence, research has turned increasingly to the problem of supporting parallel programming.Systems for automatic detection of parallelism are based on the analysis of dependencesin a program, where two statements depend on each other if the execution of one a�ects theother. The process of calculating dependences for a program is known as dependence analysis.A dependence crossing between regions that are executed in parallel may correspond to adata race, indicating the existence of potential nondeterminism in the program. In general,an automatic parallelization system cannot be allowed to make any transformation whichintroduces a data race or changes the original semantics of the program.The systems for automatic detection of parallelism in Fortran su�er from one principaldrawback: the inaccuracy of their dependence analysis. The presence of complex control
ow,symbolic expressions, or procedure calls are all factors which limit the dependence analyzer'sability to prove or disprove the existence of dependences. If it cannot be proven that adependence does not exist, automatic tools must be conservative and assume a dependence,lest they enable transformations that will change the meaning of the program. In thesesituations, the user is often able to solve the problem immediately when presented with thespeci�c dependence in question. Unfortunately, in a completely automatic tool the user isnever given this opportunity1.1Several automatic parallelization systems (for example, see [45]) provide a directive that instructs the compilerto ignore all dependences. The use of broad directives like this is unsound because of the danger that the userwill discard real dependences with the false ones, leading to errors that are hard to detect.2

To address this problem, we developed Ptool, an interactive browser which displays thedependences present in a program [6]. Within Ptool, the user selects a speci�c loop and ispresented with what the analyzer believes are the dependences preventing the parallelizationof that loop. The user may then con�rm or delete these dependences based on their knowledgeof the underlying algorithms of the program. Although Ptool is e�ective at helping usersunderstand the parallelism available in a given Fortran program, it su�ers because it is abrowser rather than an editor [33]. When presented with dependences, the user frequentlysees a transformation that can eliminate a collection of dependences, only to be frustratedbecause performing that transformation requires moving to an editor, making the change,and resubmitting the program for dependence analysis. Furthermore, Ptool cannot helpthe user perform a transformation correctly.The ParaScope Editor, Ped, overcomes these disadvantages by permitting the program-mer and tool each to do what they do best: the tool builds dependences, provides expertadvice, and performs complex transformations, while the programmer determines which de-pendences are valid and selects transformations to be applied. When transformations areperformed, Ped updates both the source and the dependence information quickly and cor-rectly. This format avoids the possibility of the user accidentally introducing errors into theprogram. As its name implies, the ParaScope Editor is based upon a source editor, so it alsosupports arbitrary user edits. The current version reconstructs dependences incrementallyafter any of the structured transformations it provides and for simple edits, such as the dele-tion or addition of an assignment statement. For arbitrary unstructured edits with a broaderscope, batch analysis is used to reanalyze the entire program.The current prototype of Ped is a powerful tool for exploring parallel programs: itpresents the program's data and control relationships to the user and indicates the e�ective-ness of program transformations in eliminating impediments to parallelism. It also permitsarbitrary program changes through familiar editing operations. Ped supports several stylesof parallel programming. It can be used to develop new parallel codes, convert sequentialcodes into parallel form, or analyze existing parallel programs. In particular, Ped currentlyaccepts and generates Fortran 77, IBM parallel Fortran [36], and parallel Fortran for theSequent Symmetry [46]. The Parallel Computing Forum is developing PCF Fortran [44].PCF Fortran de�nes a set of parallel extensions that a large number of manufacturers are3

committed to accepting, obviating the current need to support numerous Fortran dialects.These extensions will be supported when they emerge.The remainder of this paper is organized as follows. Section 2 discusses the evolution ofthe ParaScope Parallel Programming Environment and in particular the ParaScope Editor.Section 3 outlines the program analysis capabilities of Ped, and Section 4 describes themanner in which dependence information is displayed and may be modi�ed. A survey of theprogram transformations provided by Ped appears in Section 5. Issues involving interactiveprogramming in Ped are discussed in Section 6. Section 7 summarizes related research, andSection 8 o�ers some conclusions.2 BackgroundPed is being developed in the context of the ParaScope project [17], a parallel programmingenvironment based on the con
uence of three major research e�orts at Rice University: IRn,the Rice Programming Environment [23]; PFC , a Parallel Fortran Converter [8]; and Ptool,a parallel programming assistant [6]. All of these are major contributors to the ideas behindthe ParaScope Editor, so we begin with a short description of each. Figure 1 illustrates theevolution of ParaScope.2.1 The IRn Programming EnvironmentPed enjoys many advantages because it is integrated into the IRn Programming Environment.Begun in 1982, the IRn Programming Environment project pioneered the use of interproce-dural analysis and optimization in a program compilation system. To accomplish this, it hasbuilt a collection of tools that collaborate to gather information needed to support interproce-dural analysis while preparing a program for execution. Included in this collection is a sourceeditor for Fortran that combines the features of text and structure editing, representing pro-grams internally as abstract syntax trees. Also available are a whole program manager, adebugger for sequential and parallel programs, interprocedural analysis and optimizations,and an excellent optimizing scalar compiler.IRn is written in C and runs under X Windows. It is a mature environment that hasbeen distributed in both source and executable form to many external sites. One of the4

PFC (1979)Ptool (1985)dependence analysisinterprocedural analysisprogram transformationsuser interfacedependence �lters IRn (1982)PedParaScope (1987)text/structure editorinterprocedural analysisand optimizationFigure 1 Evolution of ParaScopegoals of IRn has been a consistent user interface that is easy to learn and use. As with anylarge system consisting of many independent and related portions, another goal has been tocreate a modular, easily modi�ed implementation. The resulting environment is well suitedfor integrating and extending our research in parallel programming. ParaScope includes andbuilds on all of the functionality of the IRn project.2.2 PFCThe PFC project was begun in 1979 with the goal of producing an automatic source tosource vectorizer for Fortran. It is written in PL/1 and runs on an IBM mainframe. In recentyears the project has focused on the more di�cult problem of automatically parallelizingsequential code. PFC performs data dependence analysis [9, 13, 14, 56], interproceduralside e�ect analysis [25] and interprocedural constant propagation [18]. More recently animplementation of regular section analysis [20, 32], which determines the subarrays a�ectedby procedure calls, has been completed. This analysis signi�cantly improves the precision ofPFC 's dependence graph, because arrays are no longer treated as single units across procedurecalls. PFC also performs control dependence analysis [28], which describes when the executionof one statement directly determines if another will execute.The analyses performed in PFC result in a statement dependence graph that speci�es a5

partial ordering on the statements in the program. This ordering must be maintained topreserve the semantics of the program after parallelization. The dependence graph is con-servative in that it may include dependences that do not exist, but cannot be eliminatedbecause of imprecise dependence analysis. In being conservative, PFC guarantees that onlysafe transformations are applied, but many opportunities for parallelism may be overlooked.A special version of PFC has been modi�ed to export the results of control and data depen-dence, data
ow, symbolic, and interprocedural analysis in the form of an ascii �le for use byPtool and Ped.PFC concentrates on discovering and enhancing loop level parallelism in the originalsequential program. Although loops do not contain all the possible parallelism in a program,there are several reasons for focusing on them. In scienti�c and numerical applications, mostcomputation occurs in loops. Also, separate iterations of a loop usually o�er portions ofcomputation that require similar execution times, and often provide enough computation tokeep numerous processors occupied.PFC has had many successes. It was in
uential in the design of several commercial vector-ization systems [47], and it has successfully found near-optimal parallelism for a selected setof test cases [19]. However, it has not been successful enough to obviate the need for explicitparallel programming. In large complex loops, it tends to �nd many spurious race conditions,any one of which is su�cient to inhibit parallelization. Therefore, we have also turned ourattention to the use of dependence information to support the parallel programming process.2.3 PTOOLPtool is a program browser that was developed to overcome some of the limitations ofautomatic parallelizing systems by displaying dependences in Fortran programs. It is in useas a debugging and analysis tool at various sites around the country, such as the CornellNational Supercomputing Facility. Ptool was developed at the request of researchers at LosAlamos National Laboratory who wanted to debug programs parallelized by hand. It usesa dependence graph generated by PFC to examine the dependences that prevent loops frombeing run in parallel. To assist users in determining if loops may be run in parallel, Ptoolalso classi�es variables as shared or private.When examining large scienti�c programs, users frequently found an overwhelming num-6

ber of dependences in large loops, including spurious dependences due to imprecise depen-dence analysis [33]. To ameliorate this problem, a number of improvements were made inPFC 's dependence analysis. In addition, a dependence �ltering mechanism was incorporatedin the Ptool browser which could answers complex queries about dependences based ontheir characteristics. The user could then use this mechanism to focus on speci�c classes ofdependences. Ped incorporates and extends these abilities (see Section 4).2.4 The ParaScope EditorThe ParaScope Editor is an interactive tool for the sophisticated user. Programmers at Rice,Los Alamos, and elsewhere have indicated that they want to be involved in the process ofparallel programming. They feel the output of automatic tools is confusing, because it doesnot easily map to their original code. Often sequential analysis may be invalidated by theparallel version or, even worse, be unavailable. This complicates the users' ability to improvethe modi�ed source. They want their program to be recognizable; they want to be in controlof its parallelization; and they want to be able to tailor codes for general usage as well as forspeci�c inputs. Ped is intended for users of this type.Ped is an interactive editor which provides users with all of the information availableto automatic tools. In addition, Ped understands the dependence graph and parallel con-structs, and can provide users with both expert advice and mechanical assistance in makingchanges and corrections to their programs. Ped will also update both the source and depen-dence graph incrementally after changes. In Ped, a group of speci�c transformations providethe format for modifying programs in a structured manner. When changes takes this struc-tured form, updates are incremental and immediate. Ped also supports general arbitraryedits. When program changes are unstructured, source updates are done immediately anddependence analysis of the program is performed upon demand.3 Program Analysis3.1 Control and Data DependencesIn sequential languages such as Fortran, the execution order of statements is well de�ned,making for an excellent program de�nition on which to build the dependence graph. The7

statement dependence graph describes a partial order between the statements that mustbe maintained in order to preserve the semantics of the original sequential program. Adependence between statement S1 and S2, denoted S1�S2, indicates that S2 depends on S1,and that the execution of S1 must precede S2.There are two types of dependence, control and data. A control dependence, S1�cS2,indicates that the execution of S1 directly determines if S2 will be executed at all. Thefollowing formal de�nitions of control dependence and the post-dominance relation are takenfrom the literature [27, 28].Def: x is post-dominated by y in Gf if every path from x to stop contains y,where stop is the exit node of Gf .Def: Given two statements x, y 2 Gf , y is control dependent on x if and only if:1. 9 a non-null path p, from x to y, such that y post-dominates every nodebetween x and y on p, and2. y does not post-dominate x.A data dependence, S1�S2, indicates that S1 and S2 use or modify a common variable ina way that requires their execution order to be preserved. There are three types of datadependence [40]:� True (
ow) dependence occurs when S1 stores a variable S2 later uses.� Anti dependence occurs when S1 uses a variable that S2 later stores.� Output dependence occurs when S1 stores a variable that S2 later stores.Dependences are also characterized by either being loop-carried or loop-independent [5, 9].Consider the following:DO I = 2, NS1 A(I) = ...S2 ... = A(I)S3 ... = A(I-1)ENDDOThe dependence, S1�S2, is a loop-independent true dependence, and it exists regardless ofthe loop constructs surrounding it. Loop-independent dependences, whether data or control,are dependences that occur in a single iteration of the loop and in themselves do not inhibit8

a loop from running in parallel. For example, if S1�S2 were the only dependence in the loop,this loop could be run in parallel, because statements executed on each iteration a�ect onlyother statements in the same iteration, and not in any other iterations.In comparison, S1�S3 is a loop-carried true dependence. Loop-carried dependences aredependences that cross di�erent iterations of some loop, and they constrain the order inwhich iterations of that loop may execute. For this loop-carried dependence, S3 uses a valuethat was created by S1 on the previous iteration of the I loop. This prevents the loop frombeing run in parallel without explicit synchronization. When there are nested loops, the levelof any carried dependence is the outermost loop on which it �rst arises [5, 9].3.2 Dependence AnalysisA major strength of Ped is its ability to display dependence information and utilize it toguide structured transformations. Precise analysis of both control and data dependences inthe program is thus very important. Ped's dependence analyzer consists of four major com-ponents: the dependence driver, scalar data
ow analysis, symbolic analysis, and dependencetesting.The dependence driver coordinates other components of the dependence analyzer by han-dling queries, transformations, and edits. Scalar data
ow analysis constructs the control
owgraph and postdominator tree for both structured and unstructured programs. Dominancefrontiers are computed for each scalar variable and used to build the static single assignment(SSA) graph for each procedure [26]. A coarse dependence graph for arrays is constructed byconnecting fDefsg with fDefs [Usesg for array variables in each loop nest in the program.Symbolic analysis determines and compares the values of expressions in programs. Whenpossible, this component eliminates or characterizes symbolic expressions used to determineloop bounds, loop steps, array subscript expressions, array dimensions, and control
ow. Itsmain goal is to improve the precision of dependence testing. The SSA graph provides aframework for performing constant propagation [53], auxiliary induction variable detection,expression folding, and other symbolic analysis techniques.Detecting data dependences in a program is complicated by array references, since it isdi�cult to determine whether two array references may ever access the same memory location.A data dependence exists between these references only if the same location may be accessed9

by both references. Dependence testing is the process of discovering and characterizing datadependences between array references. It is a di�cult problem which has been the subjectof extensive research [9, 13, 14, 56]. Conservative data dependence analysis requires that ifa dependence cannot be disproven, it must be assumed to exist. False dependences resultwhen conservative dependences do not actually exist. The most important objective of thedependence analyzer is to minimize false dependences through precise analysis.Ped applies a dependence testing algorithm that classi�es array references according totheir complexity (number of loop index variables) and separability (no shared index variables).Fast yet exact tests are applied to simple separable subscripts. More powerful but expensivetests are held in reserve for the remaining subscripts. In most cases, results can be mergedfor an exact test [30].Ped also characterizes all dependences by the
ow of values with respect to the enclosingloops. This information is represented as a hybrid distance/direction vector, with one elementper enclosing loop. Each element in the vector represents the distance or direction of the
ow of values on that loop. The hybrid vector is used to calculate the level of all loop-carried dependences generated by an array reference pair. The dependence information isused to re�ne the coarse dependence graph (constructed during scalar data
ow analysis) intoa precise statement dependence graph.The statement dependence graph contains control and data dependences for the program.Since Ped focuses on loop-level parallelism, the dependence graph is designed so that depen-dences on a particular loop may be collected quickly and e�ciently. The dependences maythen be displayed to the user, or analyzed to provide expert advice with respect to sometransformation. The details of the dependence analysis techniques in Ped are describedelsewhere [38].3.3 Interprocedural AnalysisThe presence of procedure calls complicates the process of detecting data dependences. In-terprocedural analysis is required so that worst case assumptions need not be made whencalls are encountered. Interprocedural analysis provided in ParaScope discovers aliasing, sidee�ects such as variable de�nitions and uses, and interprocedural constants [18, 25]. Unfor-tunately, improvements to dependence analysis are limited because arrays are treated as10

monolithic objects, and it is not possible to determine whether two references to an arrayactually access the same memory location.To improve the precision of interprocedural analysis, array access patterns can be sum-marized in terms of regular sections or data access descriptors. These abstractions describesubsections of arrays such as rows, columns, and rectangles that can be quickly intersectedto determine whether dependences exist [12, 20, 32]. By distinguishing the portion of eacharray a�ected by a procedure, regular sections provide precise analysis of dependences forloops containing procedure calls.3.4 Synchronization AnalysisA dependence is preserved if synchronization guarantees that the endpoints of the dependenceare always executed in the correct order. Sophisticated users may wish to employ eventsynchronization to enforce an execution order when there are loop-carried dependences in aparallel loop. In these cases, it is important to determine if the synchronization preserves allof the dependences in the loop. Otherwise, there may exist race conditions.Establishing that the order speci�ed by certain dependences will always be maintainedhas been proven Co-NP-hard. However, e�cient techniques have been developed to identifydependences preserved in parallel loops by post and wait event synchronization [21, 22, 52].Ped utilizes these techniques in a transformation that determines whether a particular de-pendence is preserved by event synchronization in a loop. Other forms of synchronizationare not currently handled in Ped. We intend to expand our implementation and include arelated technique that automatically inserts synchronization to preserve dependences.3.5 Implementation StatusThough the implementation of dependence analysis in Ped has made much progress, sev-eral parts are still under construction. Underlying structures such as the control
ow graph,postdominator tree, and SSA graphs have been built, but are not yet fully utilized by thedependence analyzer. Ped propagates constants, but does not currently perform other formsof symbolic analysis. Most dependence tests have been implemented, but work remains forthe Banerjee-Wolfe and symbolic tests. Interprocedural analysis of aliases, side e�ects, andconstants is performed by the ParaScope environment, but is not integrated with Ped's11

dependence analysis. This integration is underway as part of a larger implementation encom-passing both interprocedural symbolic and regular section analysis.To overcome these gaps in the current implementation of dependence analysis, Ped canimport on demand dependence information from PFC . When invoked with a special option,PFC utilizes its more mature dependence analyzer to produce a �le of dependence information.Ped then converts the dependence �le into its own internal representation. This process is atemporary expedient which will be unnecessary when dependence analysis in Ped is complete.4 The Dependence DisplayThis section describes how Ped's interface allows users to view and modify the results ofprogram analysis. The persistent view provided by Ped appears in Figure 2. The Pedwindow is divided into two panes, the text pane and the dependence pane. The text pane ison top and consists of two parts; a row of buttons under the title bar, and a large area whereFortran source code is displayed.2 The buttons in the text pane provide access to functionssuch as editing, saving, searching, syntax checking, and program transformations.Directly below the text pane is the dependence pane in which dependences are displayed.It also has two parts: buttons for perusing loops and dependences, and a larger pane fordetailed dependence descriptions. The dependence pane shows the results of program anal-ysis to users. Since Ped focuses on loop level parallelism, the user �rst selects a loop forconsideration. Regardless of whether the loop is parallel or sequential, the analysis assumessequential semantics and the dependences for that loop are displayed.The current loop can be set by using the next loop and previous loop buttons in thedependence pane, or by using the mouse to select the loop header in the text pane. Theloop's header and footer are then displayed in italics for the user. Ped will display allthe dependences for the current loop, or one or more of the loop-carried, loop-independent,control, or private variable3 dependences. The type of dependences to be displayed can beselected using the view button. The default view displays just the loop-carried dependences,2The code displayed is a portion of the subroutine newque from the code simple, a two dimensional Lagrangianhydrodynamics program with heat di�usion, produced by Lawrence Livermore National Laboratory.3Private variables are discussed in Section 4.2. 12

Figure 2 Ped Dependence Display and Filter13

because only they represent race conditions that may lead to errors in a parallel loop.Although many dependences may be displayed, only one dependence is considered to bethe current dependence. The current dependence can be set in the dependence pane by usingthe next dependence and previous dependence buttons, or by direct selection with the mouse.For the convenience of the user the current dependence is indicated in both panes. In thedependence pane, the current dependence is underlined; in the text pane, the source referenceis underlined and the sink reference is emboldened.For each dependence the following information is displayed in the dependence pane: thedependence type (control, true, anti, or output), the source and sink variable names involvedin the dependence (if any), a hybrid dependence vector containing direction and/or distanceinformation (an exclamation point indicates that this information is exact), the loop level onwhich the dependence �rst occurs, and the common block containing the array references.As we will show in the next section, dependences that are of interest can be further classi�edand organized to assist users in concentrating on some important group of dependences.4.1 The Dependence Filter FacilityPed has a facility for further �ltering classes of dependences out of the display or restrictingthe display to certain classes. This feature is needed because there are often too many depen-dences for the user to e�ectively comprehend. For example, the �ltering mechanism permitsthe user to hide any dependences that have already been examined, or to show only the classof dependences that the user wishes to deal with at the moment. When an edge is hidden, itis still in the dependence graph, and all of the transformation algorithms still consider it; itis simply not visible in the dependence display. Users can also delete dependences that theyfeel are false dependences inserted as the result of imprecise dependence analysis. When anedge is deleted, it is removed from the dependence graph and is no longer considered by thetransformation algorithms.The dependence �lter facility is shown in Figure 2. A class of dependences is speci�edby a query. Queries can be used to select sets of dependences according to speci�c criteria.Valid query criteria are the names of variables involved in dependences, the names of commonblocks containing variables of interest, source and sink variable references, dependence type,and the number of array dimensions. All of the queries, except for the source and sink variable14

references, require the user to type a string into the appropriate query �eld. The variablereference criteria are set when the user selects the variable reference of interest in the textpane, and then selects the sink reference or source reference buttons, or both.Once one or more of the query criteria have been speci�ed, the user can choose to show orhide the matching dependences. With the show option all of the dependences in the currentdependence list whose attributes match the query become the new dependence list. In Figure2, we have selected show with the single query criterion: the variable name, drk. With thehide option all of the dependences in the current list whose characteristics match the queryare hidden from the current list, and the remaining dependences become the new list. All ofthe criteria can be set to empty by using the clear button.The user can also push sets of dependences onto a stack. A push makes the set of depen-dences matching the current query become the current database for all subsequent queries. Apop returns to the dependence database that was active at the time of the last push. Multiplepushes and corresponding pops are supported. A show all presents all the dependences thatare part of the current database.The dependence list can be sorted by source reference, sink reference, dependence type,or common block. Any group of dependences can be selected and deleted from the databaseby using the delete button. Delete is destructive, and a removed dependence will no longerbe considered in the transformation algorithms nor appear in the dependence display. InSection 6, we discuss the implications of dependence deletion.4.2 Variable Classi�cationOne of the most important parts of determining whether a loop can be run in parallel isthe identi�cation of variables that can be made private to the loop body. This is importantbecause private variables do not inhibit parallelism. Hence, the more variables that canlegally be made private, the more likely it is that the loop may be safely parallelized.The variable classi�cation dialog, illustrated in Figure 3, is used to show the classi�cationof variables referenced in the loop as shared or private. Initially, this classi�cation is basedupon data
ow analysis of the program. Any variable that is:� de�ned before the loop and used inside the loop,� de�ned inside the loop and used after the loop, or15

Figure 3 Ped Variable Classi�cation16

� de�ned on one iteration of the loop and used on anotheris assumed to be shared. In each of these cases, the variable must be accessible to more thanone iteration. All other variables are assumed to be private. To be accessible by all iterations,shared variables must be allocated to global storage. Private variables must be allocated forevery iteration of a parallel loop, and may be put in a processor's local storage. Notice inFigure 3, the �rst loop is parallel. The induction variable, i, is declared as private, becauseeach iteration needs to have its own copy.Consider the second loop in Figure 3, but assume n is not live after the loop. Then thevalues of n are only needed for a single iteration of the loop. They are not needed by anyother iteration, or after the execution of the loop. Each iteration of the loop must have itsown copy of n, if the results of executing the loop in parallel are to be the same as sequentialexecution. Otherwise, if n were shared, the problem would be that one iteration might usea value of n that was stored by some other iteration. This problem inhibits parallelism, if ncannot be determined to be private.In Figure 3, the variable classi�cation dialog displays the shared variables in the leftlist, and the private variables in the right list for the current loop. If the current loop weretransformed into a parallel loop, variables in the shared list would be implicitly speci�ed to bein global storage, and the variables in the private list would be explicitly included in a privatestatement. The user can select variables from either list with the mouse. Once a variable isselected the reason for its classi�cation will be displayed. Notice in Figure 3, the variable ais underlined, indicating that it is selected, and the reason it must be in shared-memory isdisplayed at the bottom of the pane.Users need not accept the classi�cation provided byPed. They can transfer variables fromone list to the other by selecting a variable and then selecting the arrow button that pointsto the other list. When users transfer variables from one list to another, they are making anassertion that overrides the results of dependence analysis, and there is no guarantee thatthe semantics of the sequential loop will be the same as its parallel counterpart.Usually programmers will try to move variables from shared to private storage to increaseparallelism and to reduce memory contention and latency. To assist users in this task, theclassify vars button supports further classi�cation of the variable lists. This mechanism helpsusers to identify shared variables that may be moved to private storage by using transforma-17

tions, or by correcting conservative dependences.5 Structured Program TransformationsPed provides a variety of interactive structured transformations that can be applied to pro-grams to enhance or expose parallelism. In Ped transformations are applied according to apower steering paradigm: the user speci�es the transformation to be made, and the systemprovides advice and carries out the mechanical details. A single transformation may result inmany changes to the source, which if done one at a time may leave the intermediate programeither semantically incorrect, syntactically incorrect, or both. Power steering avoids incorrectintermediate stages that may result if the user were required to do code restructuring withoutassistance. Also, because the side e�ects of a transformation on the dependence graph areknown, the graph can be updated directly, avoiding any unnecessary dependence analysis.In order to provide its users with
exibility, Ped di�erentiates between safe, unsafe, andinapplicable transformations. An inapplicable transformation cannot be performed becauseit is not mechanically possible. For example, loop interchange is inapplicable when there isonly a single loop. Transformations are safe when they preserve the sequential semantics ofthe program. Some transformations always preserve the dependence pattern of the programand therefore can always be safely applied if mechanically possible. Others are only safe whenthe dependence pattern of the program is of a speci�c form.An unsafe transformation does not maintain the original program's semantics, but ismechanically possible. When a transformation is unsafe, users are often given the option tooverride the system advice and apply it anyway. For example, if a user selects the parallelbutton on a sequential loop with loop-carried dependences, Ped reminds the user of thedependences. If the user wishes to ignore them, the loop can still be made parallel. Thisoverride ability is extremely important in an interactive tool, where the user is being givenan opportunity to apply additional knowledge that is unavailable to the tool.To perform a transformation, the user selects a sequential loop and chooses a transforma-tion from the menu. Only transformations that are enabledmay be selected. Transformationsare enabled based on the control
ow contained in the selected loop. All the transformationsare enabled when a loop and any loops nested within it contain no other control
ow; most18

of the transformations are enabled when they contain structured control
ow; and only a feware enabled when there is arbitrary control
ow.Once a transformation is selected, Ped responds with a diagnostic. If the transformationis safe, a pro�tability estimate is given on the e�ectiveness of the transformation. Additionaladvice, such as a suggested number of iterations to skew, may be o�ered as well. If thetransformation is unsafe, a warning explains what makes the transformation unsafe. If thetransformation is inapplicable, a diagnostic describes why the transformation cannot be per-formed. If the transformation is applicable, and the user decides to execute it, the user selectsthe do <transformation name> button. The Fortran source and the dependence graph arethen automatically updated to re
ect the transformed code.The transformations are divided into four categories: reordering transformations, depen-dence breaking transformations, memory optimizing transformations, and a few miscella-neous transformations. Each category and the transformations that Ped currently supportsare brie
y described below.45.1 Reordering TransformationsReordering transformations change the order in which statements are executed, either withinor across loop iterations, without violating any dependence relationships. These transforma-tions are used to expose or enhance loop level parallelism in the program. They are oftenperformed in concert with other transformations to structure computations in a way thatallows useful parallelism to be introduced.� Loop distribution partitions independent statements inside a loop into multiple loopswith identical headers. It is used to separate statements which may be parallelized fromthose that must be executed sequentially [37, 38, 40]. The partitioning of the statementsis tuned for vector or parallel hardware as speci�ed by the user.� Loop interchange interchanges the headers of two perfectly nested loops, changingthe order in which the iteration space is traversed. When loop interchange is safe, itcan be used to adjust the granularity of parallel loops [9, 38, 56].4The details of Ped's implementation of several of these transformations appear in [38].19

� Loop skewing adjusts the iteration space of two perfectly nested loops by shifting thework per iteration in order to expose parallelism. When possible, Ped computes andsuggests the optimal skew degree. Loop skewing may be used with loop interchange inPed to perform the wavefront method [38, 54].� Loop reversal reverses the order of execution of loop iterations.� Loop adjusting adjusts the upper and lower bounds of a loop by a constant. It isused in preparation for loop fusion.� Loop fusion can increase the granularity of parallel regions by fusing two contiguousloops when dependences are not violated [4, 43].� Statement interchange interchanges two adjacent independent statements.5.2 Dependence Breaking TransformationsThe following transformations can be used to break speci�c dependences that inhibit par-allelism. Often if a particular dependence can be eliminated, the safe application of othertransformations is enabled. Of course, if all the dependences carried on a loop are eliminated,the loop may then be run in parallel.� Scalar expansion makes a scalar variable into a one-dimensional array. It breaksoutput and anti dependences which may be inhibiting parallelism [41].� Array renaming, also known as node splitting [41], is used to break anti dependencesby copying the source of an anti dependence into a newly introduced temporary arrayand renaming the sink to the new array [9]. Loop distribution may then be usedto separate the copying statement into a separate loop, allowing both loops to beparallelized.� Loop peeling peels o� the �rst or last k iterations of a loop as speci�ed by the user.It is useful for breaking dependences which arise on the �rst or last k iterations of theloop [4].� Loop splitting, or index set splitting, separates the iteration space of one loop intotwo loops, where the user speci�es at which iteration to split. For example, if do i =20

1, 100 is split at 50, the following two loops result: do i = 1, 50 and do i = 51,100. Loop splitting is useful in breaking crossing dependences, dependences that crossa speci�c iteration [9].5.3 Memory Optimizing TransformationsThe following transformations adjust a program's balance between computations and mem-ory accesses to make better use of the memory hierarchy and functional pipelines. Thesetransformations are useful for scalar and parallel machines.� Strip mining takes a loop with step size of 1, and changes the step size to a new userspeci�ed step size greater than 1. A new inner loop is inserted which iterates over thenew step size. If the minimum distance of the dependences in the loop is less thanthe step size, the resultant inner loop may be parallelized. Used alone the order of theiterations is unchanged, but used in concert with loop interchange the iteration spacemay be tiled [55] to utilize memory bandwidth and cache more e�ectively [24].� Scalar replacement takes array references with consistent dependences and replacesthem with scalar temporaries that may be allocated into registers [15]. It improves theperformance of the program by reducing the number of memory accesses required.� Unrolling decreases loop overhead and increases potential candidates for scalar re-placement by unrolling the body of a loop [4, 38].� Unroll and Jam increases the potential candidates for scalar replacement and pipelin-ing by unrolling the body of an outer loop in a loop nest and fusing the resulting innerloops [15, 16, 38].5.4 Miscellaneous TransformationsFinally Ped has a few miscellaneous transformations.� Sequential $ Parallel converts a sequential DO loop into a parallel loop, and viceversa.� Statement addition adds an assignment statement.� Statement deletion deletes an assignment statement.21

� Preserved dependence? indicates whether the current selected dependence is pre-served by any post and wait event synchronization in the loop.� Constant replacement performs global constant propagation for each procedure inthe program, using the sparse conditional constant algorithm [53]. Any variable found tohave a constant value is replaced with that value, increasing the precision of subsequentdependence analysis.5.5 ExampleThe following example is intended to give the reader the
avor of this type of transformationalsystem. Consider the �rst group of nested loops in Figure 4. Let S1 be the �rst assignmentstatement involving the array D, and S2 be the second assignment statement involving thearray E. There are two loop-carried dependences, S1�S1 and S2�S2. The �rst is a truedependence on D carried by the I loop in the �rst subscript position, and the second is a truedependence on E carried by the J loop in the second subscript position. We notice that bothloops are inhibited from running in parallel by di�erent dependences which are not involvedwith each other. To separate these independent statements, we consider distributing theloops. Distribution on the inner loop results in the message shown in Figure 4. The messageindicates what the results of performing distribution on this loop would be. The executionof distribution results in the following code.DO I = 2, 100DO J = 2, 100S1 D(I, J) = D(I - 1, J) - 4ENDDODO J = 2, 100S2 E(I, J) = E(I, J - 1) + 9ENDDOS3 C(I) = E(I, 2) - 8ENDDOUnfortunately, the dependence on S1 carried by the I loop still inhibits the I loop parallelismfor S2. We perform distribution once again, this time on the outer loop.DO I = 2, 100DO J = 2, 100 22

Figure 4 Loop Distribution
23

S1 D(I, J) = D(I - 1, J) - 4ENDDOENDDODO I = 2, 100DO J = 2, 100S2 E(I, J) = E(I, J - 1) + 9ENDDOS3 C(I) = E(I, 2) - 8ENDDOWe have decided to distribute for parallelism in this example. So even though S2 and S3are independent, the algorithm leaves them together to increase the amount of computationin the parallel loop. If we had selected vectorization they would have been placed in separateloops.Continuing our example, notice the second I loop can now be run in parallel, and the innerJ loop in the �rst nest can be run in parallel. To achieve a higher granularity of parallelismon the �rst loop nest, the user can interchange the loops, safely moving the parallelism tothe outer loop. As can be seen in the second loop nest of Figure 4, we have safely separatedthe two independent statements and their dependences, achieving two parallel loops.6 Relating User Changes to AnalysisIn previous sections we discussed how users may direct the parallelization process by makingassertions about dependences and variables, as well as by applying structured transforma-tions. This section �rst brie
y describes editing in Ped. Then, the interaction betweenprogram changes and analysis is examined.Editing is fundamental for any program development tool because it is the most
exiblemeans of making program changes. Therefore, the ParaScope Editor integrates advancedediting features along with its other capabilities. Ped supplies simple text entry and template-based editing with its underlying hybrid text and structure editor. It also provides searchand replace functions, intelligent and customizable view �lters, and automatic syntax andtype checking.Unlike transformations or assertions, editing causes existing dependence information to beunreliable. As a result, the transformations and the dependence display are disabled during24

editing because they rely on dependence information which may be out of date. After users�nish editing, they can request the program be reanalyzed by selecting the analysis button.Syntax and type checking are performed �rst, and any errors are reported. If there are noerrors, dependence analysis is performed. Ped's analysis may be incremental when the scopeof an edit is contained within a loop nest or is an insertion or deletion of a simple assignmentstatement. The details of incremental analysis after edits and transformations are discussedelsewhere [38].The purpose of an edit may be error correction, new code development, or just to rear-range existing code. Unlike with transformations, where the correctness of pre-existing sourceis assumed, Ped does not know the intent of an edit. Consequently, the user is not advisedas to the correctness of the edit. Instead, the \new" program becomes the basis for depen-dence analysis and any subsequent changes. No editing history is maintained. Similarly, anytransformations the user performs before an edit, whether safe or unsafe, are included in thenew basis. However, if prior to editing the user made any assertions, analysis causes them tobe lost.For example, suppose the user knows the value of a symbolic. Based on this knowledge, theuser deletes several overly conservative dependences in a loop and transforms it into a parallelloop. Later, the user discovers an error somewhere else in the program and corrects it witha substantial edit. The user then reanalyzes the program. In the current implementation,the parallel loop will remain parallel, but any deleted dependences will reappear and, asexperience has shown, annoy users.As a result, a more sophisticated mechanism is planned [29]. In the future, edges thatare deleted by users will be marked, rather than removed from the dependence graph. Ad-ditionally, the time, date, user, and an optional user-supplied explanation will be recordedwith any assertions. This mechanism will also support more general types of assertions, suchas variable ranges and values which may a�ect many dependence edges. These records willbe used during analysis to keep deleted dependences from reappearing. However, to preventerrors when edits con
ict with assertions, users will be given an opportunity to reconsiderany assertions which may have been a�ected by the edit. Users may delay or ignore thisopportunity. With this mechanism, the assertions will also be available during execution anddebugging. There, if an assertion is found to be erroneous, users can be presented with any25

anomalies which may have been ignored, overlooked, or introduced.7 Related WorkSeveral other research groups are also developing advanced interactive parallel programmingtools. Ped is distinguished by its large collection of transformations, the expert guidanceprovided for each transformation, and the quality of its program analysis and user interface.Below we brie
y describe Sigmacs [48], Pat [50], MIMDizer [1], and Superb [57], placingemphasis on their unique features.Sigmacs is an interactive emacs-based programmable parallelizer in the Faust program-ming environment. It utilizes dependence information fetched from a project database main-tained by the database server. Sigmacs displays dependences and provides some interactiveprogram transformations. Work is in progress to support automatic updating of dependenceinformation after statement insertion and deletion. Faust can compute and display call andprocess graphs that may be animated dynamically at run-time [31]. Each node in a processgraph represents a task or a process, which is a separate entity running in parallel. Faustalso provides performance analysis and prediction tools for parallel programs.Pat can analyze programs containing general parallel constructs. It builds and displaysa statement dependence graph over the entire program. In Pat the program text that cor-responds with a selected portion of the graph can be perused. The user may also view thelist of dependences for a given loop. However, Pat can only analyze programs where onlyone write occurs to each variable in a loop. Like Ped, incremental dependence analysis isused to update the dependence graph after structured transformations [51]. Rather thananalyzing the e�ects of existing synchronization, Pat can instead insert synchronization topreserve speci�c dependences. Since Pat does not compute distance or direction vectors,loop reordering transformations such as loop interchange and skewing are not supported.MIMDizer is an interactive parallelization system for both shared and distributed-memorymachines. Based on Forge, MIMDizer performs data
ow and dependence analysis to supportinteractive loop transformations. Cray microtasking directives may be output for successfullyparallelized loops. Associated tools graphically display control
ow, dependence, pro�ling,and call graph information. A history of the transformations performed on a program is26

saved for the user. MIMDizer can also generate communication for programs to be executedon distributed-memory machines.Though designed to support parallelization for distributed-memory multiprocessors, Su-perb provides dependence analysis and display capabilities similar to that of Ped. Superbalso possesses a set of interactive program transformations designed to exploit data paral-lelism for distributed-memory machines. Algorithms are described for the incremental updateof use-def and def-use chains following structured program transformations [39].8 ConclusionsProgramming for explicitly parallel machines is much more di�cult than sequential program-ming. If we are to encourage scientists to use these machines, we will need to provide newtools that have a level of sophistication commensurate with the di�culty of the task. Webelieve that the ParaScope Editor is such a tool: it permits the user to develop programswith the full knowledge of the data relationships in the program; it answers complex questionsabout potential sources of error; and it correctly carries out complicated transformations toenhance parallelism.Ped is an improvement over completely automatic systems because it overcomes both theimprecision of dependence analysis and the in
exibility of automatic parallel code generationtechniques by permitting the user to control the parallelization process. It is an improvementover dependence browsers because it supports incremental change while the user is reviewingpotential problems with the proposed parallelization. Ped has also proven to be a usefulbasis for the development of several other advanced tools, including a compiler [34] and datadecomposition tool [10, 11] for distributed-memory machines, as well an on-the-
y accessanomaly detection system for shared-memory machines [35].We believe that Ped is representative of a new generation of intelligent, interactive pro-gramming tools that are needed to facilitate the task of parallel programming.
27

AcknowledgmentsWe would like to thank Donald Baker, Vasanth Balasundaram, Paul Havlak, Marina Kalem,Ulrich Kremer, Rhonda Reese, Jaspal Subhlok, Scott Warren, and the PFC research group fortheir many contributions to this work. Their e�orts have made Ped the useful research toolit is today. In addition, we gratefully acknowledge the contribution of the IRn and ParaScoperesearch groups, who have provided the software infrastructure upon which Ped is built.

28

References[1] The MIMDizer: A new parallelization tool. The Spang Robinson Report on Supercom-puting and Parallel Processing, 4(1):2{6, January 1990.[2] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRANanalysis system for multiprocessing. In Proceedings of the First International Conferenceon Supercomputing. Springer-Verlag, Athens, Greece, June 1987.[3] F. Allen, M. Burke, P. Charles, J. Ferrante, W. Hsieh, and V. Sarkar. A framework fordetecting useful parallelism. In Proceedings of the Second International Conference onSupercomputing, St. Malo, France, July 1988.[4] F. Allen and J. Cocke. A catalogue of optimizing transformations. In J. Rustin, editor,Design and Optimization of Compilers. Prentice-Hall, 1972.[5] J. R. Allen. Dependence Analysis for Subscripted Variables and Its Application to Pro-gram Transformations. PhD thesis, Dept. of Computer Science, Rice University, April1983.[6] J. R. Allen, D. B�aumgartner, K. Kennedy, and A. Porter�eld. PTOOL: A semi-automaticparallel programming assistant. In Proceedings of the 1986 International Conference onParallel Processing, St. Charles, IL, August 1986. IEEE Computer Society Press.[7] J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scienti�c pro-grams for parallel execution. In Proceedings of the Fourteenth Annual ACM Symposiumon the Principles of Programming Languages, Munich, Germany, January 1987.[8] J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form.In K. Hwang, editor, Supercomputers: Design and Applications, pages 186{203. IEEEComputer Society Press, Silver Spring, MD, 1984.[9] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vectorform. ACM Transactions on Programming Languages and Systems, 9(4):491{542, Octo-ber 1987.[10] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environmentfor data partitioning and distribution. In Proceedings of the 5th Distributed MemoryComputing Conference, Charleston, SC, April 1990.[11] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimatorto guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN Sym-posium on Principles and Practice of Parallel Programming, Williamsburg, VA, April1991.[12] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its usein parallelism enhancing transformations. In Proceedings of the SIGPLAN '89 Conferenceon Program Language Design and Implementation, Portland, OR, June 1989.[13] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,Boston, MA, 1988. 29

[14] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. InProceedings of the SIGPLAN '86 Symposium on Compiler Construction, Palo Alto, CA,June 1986.[15] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscriptedvariables. In Proceedings of the SIGPLAN '90 Conference on Program Language Designand Implementation, White Plains, NY, June 1990.[16] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balancefor pipelined machines. Journal of Parallel and Distributed Computing, 5(4):334{358,August 1988.[17] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon. ParaScope: A par-allel programming environment. International Journal of Supercomputing Applications,2(4):84{99, Winter 1988.[18] D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant propa-gation. In Proceedings of the SIGPLAN '86 Symposium on Compiler Construction, PaloAlto, CA, June 1986.[19] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and results.In Proceedings of Supercomputing '88, Orlando, FL, November 1988.[20] D. Callahan and K. Kennedy. Analysis of interprocedural side e�ects in a parallel pro-gramming environment. In Proceedings of the First International Conference on Super-computing. Springer-Verlag, Athens, Greece, June 1987.[21] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a par-allel programming tool. In Proceedings of the Second ACM SIGPLAN Symposium onPrinciples and Practice of Parallel Programming, Seattle, WA, March 1990.[22] D. Callahan and J. Subhlok. Static analysis of low-level synchronization. In Proceedingsof the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging,Madison, WI, May 1988.[23] A. Carle, K. Cooper, R. Hood, L. Torczon K. Kennedy, and S. Warren. A practicalenvironment for scienti�c programming. Computer, 20(11):75{89, November 1987.[24] S. Carr and K. Kennedy. Blocking linear algebra codes for memory hierarchies. In Pro-ceedings of the Fourth SIAM Conference on Parallel Processing for Scienti�c Computing,Chicago, IL, December 1989.[25] K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis andoptimization in the IRn programming environment. ACM Transactions on ProgrammingLanguages and Systems, 8(4):491{523, October 1986.[26] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An e�cient method ofcomputing static single assignment form. In Proceedings of the Sixteenth Annual ACMSymposium on the Principles of Programming Languages, Austin, TX, January 1989.30

[27] R. Cytron, J. Ferrante, and V. Sarkar. Experiences using control dependence in PTRAN.In D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for ParallelComputing. The MIT Press, 1990.[28] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its usein optimization. ACM Transactions on Programming Languages and Systems, 9(3):319{349, July 1987.[29] K. Fletcher, K. Kennedy, K. S. McKinley, and S. Warren. The ParaScope Editor: Userinterface goals. Technical Report TR90-113, Dept. of Computer Science, Rice University,May 1990.[30] G. Go�, K. Kennedy, and C. Tseng. Practical dependence testing. In Proceedings of theSIGPLAN '91 Conference on Program Language Design and Implementation, Toronto,Canada, June 1991.[31] V. Guarna, D. Gannon, D. Jablonowski, A. Malony, and Y. Gaur. Faust: An integratedenvironment for parallel programming. IEEE Software, 6(4):20{27, July 1989.[32] P. Havlak and K. Kennedy. Experience with interprocedural analysis of array side e�ects.In Proceedings of Supercomputing '90, New York, NY, November 1990.[33] L. Henderson, R. Hiromoto, O. Lubeck, and M. Simmons. On the use of diagnosticdependency-analysis tools in parallel programming: Experiences using PTOOL. TheJournal of Supercomputing, 4:83{96, 1990.[34] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independentparallel programming in Fortran D. In J. Saltz and P. Mehrotra, editors, Languages,Compilers, and Run-Time Environments for Distributed Memory Machines. North-Holland, Amsterdam, The Netherlands, 1992.[35] R. Hood, K. Kennedy, and J. Mellor-Crummey. Parallel program debugging with on-the-
y anomaly detection. In Proceedings of Supercomputing '90, New York, NY, November1990.[36] IBM. Parallel Fortran Language and Library Reference, �rst edition, February 1988.Document Number SC23-0431-0.[37] K. Kennedy and K. S. McKinley. Loop distribution with arbitrary control
ow. InProceedings of Supercomputing '90, New York, NY, November 1990.[38] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and transformation in the ParaS-cope Editor. In Proceedings of the 1991 ACM International Conference on Supercom-puting, Cologne, Germany, June 1991.[39] U. Kremer, H. Zima, H.-J. Bast, and M. Gerndt. Advanced tools and techniques forautomatic parallelization. Parallel Computing, 7:387{393, 1988.[40] D. Kuck. The Structure of Computers and Computations, Volume 1. John Wiley andSons, New York, NY, 1978. 31

[41] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. Analysis and transformation of pro-grams for parallel computation. In Proceedings of COMPSAC 80, the 4th InternationalComputer Software and Applications Conference, pages 709{715, Chicago, IL, October1980.[42] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. The structure of an advanced retar-getable vectorizer. In Supercomputers: Design and Applications, pages 163{178. IEEEComputer Society Press, Silver Spring, MD, 1984.[43] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs andcompiler optimizations. In Conference Record of the Eighth Annual ACM Symposiumon the Principles of Programming Languages, Williamsburg, VA, January 1981.[44] B. Leasure, editor. PCF Fortran: Language De�nition, version 3.1. The Parallel Com-puting Forum, Champaign, IL, August 1990.[45] H. Levesque and J. Williamson. A Guidebook to Fortran on Supercomputers. HarcourtBrace Jovanovich, San Diego, CA, 1989.[46] A. Osterhaug, editor. Guide to Parallel Programming on Sequent Computer Systems.Sequent Technical Publications, San Diego, CA, 1989.[47] R. G. Scarborough and H. G. Kolsky. A vectorizing Fortran compiler. IBM Journal ofResearch and Development, 30(2):163{171, March 1986.[48] B. Shei and D. Gannon. SIGMACS: A programmable programming environment. InAdvances in Languages and Compilers for Parallel Computing, Irvine, CA, August 1990.The MIT Press.[49] J. Singh and J. Hennessy. An empirical investigation of the e�ectiveness of and limi-tations of automatic parallelization. In Proceedings of the International Symposium onShared Memory Multiprocessors, Tokyo, Japan, April 1991.[50] K. Smith and W. Appelbe. PAT - an interactive Fortran parallelizing assistant tool. InProceedings of the 1988 International Conference on Parallel Processing, St. Charles, IL,August 1988.[51] K. Smith, W. Appelbe, and K. Stirewalt. Incremental dependence analysis for inter-active parallelization. In Proceedings of the 1990 ACM International Conference onSupercomputing, Amsterdam, The Netherlands, June 1990.[52] J. Subhlok. Analysis of Synchronization in a Parallel Programming Environment. PhDthesis, Dept. of Computer Science, Rice University, August 1990.[53] M. Wegman and K. Zadeck. Constant propagation with conditional branches. TechnicalReport CS-89-36, Dept. of Computer Science, Brown University, May 1989.[54] M. J. Wolfe. Loop skewing: The wavefront method revisited. International Journal ofParallel Programming, 15(4):279{293, August 1986.32

[55] M. J. Wolfe. More iteration space tiling. In Proceedings of Supercomputing '89, Reno,NV, November 1989.[56] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,MA, 1989.[57] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMDparallelization. Parallel Computing, 6:1{18, 1988.

33

