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Abstract
Implementing a new programming language system is a daunting
task. A common trap is to punt on the design and engineering of
exact garbage collection and instead opt for reference counting or
conservative garbage collection (GC). For example, AppleScriptTM,
Perl, Python, and PHP implementers chose reference counting
(RC) and Ruby chose conservative GC. Although easier to get
working, reference counting has terrible performance and conser-
vative GC is inflexible and performs poorly when allocation rates
are high. However, high performance GC is central to performance
for managed languages and only becoming more critical due to
relatively lower memory bandwidth and higher memory latency of
modern architectures. Unfortunately, retrofitting support for high
performance collectors later is a formidable software engineering
task due to their exact nature. Whether they realize it or not, imple-
menters have three routes: (1) forge ahead with reference counting
or conservative GC, and worry about the consequences later; (2)
build the language on top of an existing managed runtime with ex-
act GC, and tune the GC to scripting language workloads; or (3)
engineer exact GC from the ground up and enjoy the correctness
and performance benefits sooner rather than later.

We explore this conundrum using PHP, the most popular server
side scripting language. PHP implements reference counting, mir-
roring scripting languages before it. Because reference counting is
incomplete, the implementors must (a) also implement tracing to
detect cyclic garbage, or (b) prohibit cyclic data structures, or (c)
never reclaim cyclic garbage. PHP chose (a), AppleScript chose
(b), and Perl chose (c). We characterize the memory behavior of
five typical PHP programs to determine whether their implementa-
tion choice was a good one in light of the growing demand for high
performance PHP. The memory behavior of these PHP programs is
similar to other managed languages, such as JavaTM —they allocate
many short lived objects, a large variety of object sizes, and the av-
erage allocated object size is small. These characteristics suggest
copying generational GC will attain high performance.
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Language implementers who are serious about correctness and
performance need to understand deferred gratification: paying the
software engineering cost of exact GC up front will deliver correct-
ness and memory system performance later.

Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection); Optimization

General Terms Design, Experimentation, Performance, Management, Measure-
ment, Languages

Keywords Heap, PHP, Scripting Languages, Garbage Collection

1. Introduction
Programmers are increasingly choosing managed languages, which
provide a high level of abstraction with automatic memory man-
agement, safe pointer disciplines, typing disciplines, and some-
times object-orientation. For example, PHP and JavaScriptTM are
the languages of choice for server and client-side web program-
ming. Scripting languages provide some of the highest levels of
abstraction and concision, which greatly improve programmer pro-
ductivity. While scripting languages typically emerge to assist with
specific tasks, over time programmers use them to perform more
complex and general tasks. For example, programmers are now
using some of today’s most popular scripting languages, such as
Python, Perl, JavaScript, Ruby, and PHP, for a large variety of
tasks—long and short, simple and complex. As the use of managed
scripting languages grows, so do the demands of their applications
and consequently demand for correctness and high performance.

Implementing a new scripting language is a daunting task and is
often initiated without anticipating that the language may explode
in popularity. Consequently, the complexity and sophistication of
the applications will grow and demand much from the implemen-
tation. Implementors choose to build from scratch or to target an
existing Virtual Machine (VM) language, such as Java or .NET. For
example, JVM languages now include JRuby, Jython, JTcl, as well
as JavaScript variants. These implementations enjoy the high per-
formance optimizing compilers and garbage collector of the host
JVM, since JVM technology is now mature. However, mismatches
between language features can introduce systemic inefficiencies
and restrict the programs in the guest language. Furthermore, as
far as we are aware, none of the existing VMs have tuned their col-
lectors for these scripting languages. Our results suggest that this is
a significant opportunity.

Memory management is central to the performance of script-
ing languages. JRuby core member, Charles Nutter states that
‘you simply can’t have a high-performance Ruby without a high-
performance GC’ [17]. We can expect the impact of memory man-
agement on performance to grow in the future because memory
bandwidth on future chip multiprocessors (CMPs) is struggling to
keep pace with the demands from large numbers of processes with



multiple threads of executions [11, 15, 21, 26]. Furthermore, Ruby
programs have a very high mortality rate of young objects, so the
language benefits from copying and generational collection. Copy-
ing bestows good locality and offers cheap en mass reclamation
while generational collection focuses effort on the easy-to-collect,
high mortality young objects [7, 8]. However, copying collection
requires exact GC and generational collection requires support for
barriers. Thus high performance for such languages is predicated
on strong support for GC from the runtime.

Unfortunately support for copying and generational collection
requires pervasive predicates throughout the VM implementation.
The virtual machine must be able to: (1) precisely enumerate all
live pointers into the heap, (2) enumerate all pointers within each
live heap object, and (3) intercept with a write barrier every change
to a pointer field of a heap object. In principle, meeting these
requirements is not difficult, but in practice these requirements have
a significant impact on the JVM design. Requirement (1) is the
most pervasive—the VM must meticulously maintain information
that identifies all pointers into the heap: on the stack, in registers,
and within native code. These invariants about pointers and offsets
require a rigorous software engineering discipline in the runtime
(e.g. in the compiler). Because they are systemic, the predicates
must be understood by virtually all implementers of the VM, even
though most are not directly involved in developing the memory
manager. Mistakes almost always manifest as hard to diagnose
application crashes. It is easy to understand the cultural pressure
within a development team to leave the problem of exact GC for
another day.

On the other hand, it is enormously easier for programmers to
incrementally maintain and test such predicates than to attempt to
retrofit them to an existing design. Unfortunately, the worst of this
burden falls to the compiler, which as it happens, is also the source
of the most rewarding short term performance gains. Thus the de-
ferred gratification of designing for good memory management per-
formance is directly at odds with the tempting rewards of quickly
getting a JIT compiler working. It is easy to understand why mem-
ory management performance is often an afterthought.

Rather than face this software engineering challenge, scripting
language implementors have often chosen reference counting or
conservative garbage collection (GC). For example, AppleScript,
Perl, Python, and PHP all use reference counting and Ruby ini-
tially used conservative GC. Reference counting is appealing be-
cause it is relatively simple to engineer. However, because refer-
ence counting is incomplete, implementors must (a) also imple-
ment tracing to detect cyclic garbage, or (b) prohibit cyclic data
structures, or (c) never reclaim cyclic garbage. PHP chose (a), Ap-
pleScript chose (b), and Perl chose (c). Unfortunately, reference
counting has abysmal performance [6, 8, 16]. Conservative GC
performs better, but it cannot support copying which is critical to
high performance GC [7, 8]. If the language implementors decide
later to get serious about performance, they have a conundrum since
retrofitting support for high performance collectors is typically very
hard, if not impossible. If the compiler implementation does not
build on a foundation that uses the discipline of exact GC, fixing it
later is a nightmare.

When developers face enormous pressure to get a first im-
plementation working quickly, they could commit to an iterative
implementation strategy that starts with a throwaway prototype,
adding support for exact GC in a later design. Although this ap-
proach is sound in principle, in practice the temptation to hold on
to the prototype is too great for most development teams. This co-
nundrum is vivid in the example of Perl, which has been intending
to move to an entirely new engine (Perl 6) for over ten years now.
We argue that the software engineering discipline of exact GC is
not burdensome when followed from the beginning of VM devel-

opment and actually improves compiler correctness as well [2, 18].
The development history of scripting languages such as Ruby, Ap-
pleScript, and Perl make a compelling argument for early invest-
ment and deferred gratification.

In this paper, we perform a case study of PHP memory charac-
teristics to determine whether they warrant a high performance ex-
act collector. Perhaps some scripting languages have simple alloca-
tion patterns that will not benefit from generational and other high
performance collectors. The PHP scripting language was designed
for web programming and it is the most used server-side scripting
language for web development in use today. PHP programs create
dynamic web content in response to user requests. Nonetheless, no
study has examined the memory performance of the PHP language
in depth. We use five benchmarks obtained from the PHP Group as
a representative set of real workloads. We analyze the memory be-
havior of these benchmarks through heap composition graphs and
object size demographics. The results show that there are a variety
of object sizes, but most objects are small. Although the memory
footprint of the PHP programs is small, many objects are short lived
and there is a very high ratio of allocation to live objects. All of
these characteristics and the expected growth in size and complex-
ity of PHP programs suggest the need for some timely investment
in a high-performance garbage collector.

2. Background and Related Work
Of the three routes to memory management we describe, the vast
majority of scripting languages have taken routes (1) punting and
going with either reference counting or conservative GC, or (2),
using an existing managed runtime that supports exact garbage
collection.

Reference counting and conservative GC When Perl and Ap-
pleScript were initially implemented, reference counting was their
choice for GC. However, as mentioned above, reference counting
is incomplete. For AppleScript, the decision to forbid cyclic data
structures solved that issue. On the other hand, Perl still has an in-
complete GC solution as of today [1].

The native implementation of Python used reference counting;
only in 2000—about 10 years after it was developed—a cycle de-
tection algorithm was added to make the GC complete. Unfortu-
nately, if the developers of Python want to add a high-performing
GC, some serious rework of the implementation would need to be
done. For example, Python can never fully determine the root set
[22], thus cannot to perform exact GC.

Similarly, Lua is a scripting language with extensibility as its
main goal. Lua and classic Ruby originally implemented the con-
servative approach for GC—simple mark and sweep—in order to
avoid the pitfalls of reference counting. However, as the demands
on these languages have increased, the developers did attempt to
tune the GC. Regrettably, because of the lack of write barriers in
the original implementation, a change to a highly-tuned GC would
require a deep change in the design.

Building on top of a Virtual Machine The Java Virtual Machine
(JVM) and .NET’s Common Language Runtime (CLR) are increas-
ingly used as the implementation target for scripting languages.
Perhaps best known among these are JRuby, Jython, IronPython,
and IronRuby. The Parrot VM is designed specifically as a host for
scripting languages [14], and is best known as the target for the
long-awaited Perl 6. All three of these VMs support exact garbage
collection. Although the JVM and CLR offer exact garbage collec-
tion, as far as we know, their collectors have not been tuned to the
relatively short-lived use patterns of scripting languages.

PHP Memory Behavior Only Inoue et al. have studied PHP
memory behavior [15]. Their work replaces the free-list allocator



in the PHP runtime with a region-based allocator and a variation of
a region-based memory manager which they call defrag-dodging.
Their PHP workloads are well suited to region based allocation
because region memory management semantics map nicely to the
transactional nature of PHP activities. Region collectors, however,
are not general purpose, and as the demands and memory footprint
of PHP applications grow they cannot adapt and will needlessly
exhaust memory. Our results confirm Inoue et al.’s findings, but
characterize the benchmarks’ memory behavior rather than propose
and measure a particular collector.

A recent effort has been made to improve the performance of
PHP by retrofitting a well-optimized Just-In-Time (JIT) compiler
for a Java Virtual Machine to PHP. Tatsubori et al. evaluated this
JIT compiler-based implementation of a PHP runtime and showed
their JIT-based acceleration of PHP yields good performance im-
provements [23]. Whereas they show PHP benefits from modern
JIT technology, we show the performance of PHP programs will
likely also benefit from modern garbage collection technology.

Trent et al. presented performance experiments that compare
PHP and JSP, which is also a server-side scripting language [24].
Similar to Tatsubori et al., they show the code that these VMs pro-
duce impacts runtime, although often the web server performance
itself dominates. They do not examine memory behavior or garbage
collection performance.

3. Methodology
We use PHP as a case study for scripting language memory per-
formance. This section describes the current PHP ZendTM virtual
machine, the version we use, how we modify it to collect statistics,
and the PHP benchmarks.

3.1 PHP memory management
PHP is a general-purpose scripting language that is mostly used
for server-side web development to produce dynamic web content.
We use the Zend Engine 2, which is the ‘scripting engine’ (i.e., a
Virtual Machine) for the PHP 5 platform.

PHP is a garbage collected language. The Zend Engine 2 im-
plements garbage collection with reference counting [12] and a
general purpose memory allocator that supports single-object al-
location, and single-object and bulk deallocation. At the end of a
request, the collector performs bulk deallocation to clear the heap.
During a request, the garbage collector reclaims individual single-
object whenever it determines the object reference count is zero.

Every PHP variable is stored in a container called a zval. This
zval container typically includes four fields: type, value, isRef,
and refCount. The isRef field denotes whether the zval holds a
reference or a value. The refCount field counts the number of
incoming references to the zval. Whenever a refCount reaches zero,
the garbage collector reclaims the container and reuses the memory.

An important limitation of reference counting is that it cannot
reclaim objects that form a self-sustaining cycle of references, even
if that structure becomes unreachable. Because such structures can
be common, reference counting garbage collectors usually employ
a back-up strategy to collect cycles. The Zend Engine 2 collects
cycles using trial deletion, as specified by Bacon and Rajan [5].
Trial deletion adds possible roots of cycles to a buffer when a
reference count to an object is decremented, but does not reach
zero. Zend Engine 2 uses a fixed size buffer and when this buffer is
filled, it performs the trial deletion algorithm.

3.2 Zend modifications for instrumentation
We modified the Zend Engine 2 to track allocation and object
liveness. We modified the allocator to track the number and size
of each object it allocates. To gather accurate lifetime statics, we

modified the memory manager to reclaim the memory promptly.
In the standard version, when the reference count decrements a
refCount value to zero, the collector pushes the deallocation in to a
buffer and later processes the buffer when it is full or the allocator
is out of memory. In our modified version, the system promptly
reclaims the memory after each reference count decrement.

Similarly, for cyclic data structures, instead of inserting all pos-
sible roots to cycles in a buffer, we perform trial deletion on each
pointer installation that could be eliminating a reference to a cycle.
We implemented this version by simply reducing the size of the trial
deletion buffer to one. This change forces the memory manager to
attempt to reclaim cyclic data structures as soon as possible.

Together, these modifications produce an accurate memory pro-
file. At any time in the trace, we know exactly how many objects
are allocated, when they were allocated, and whether they are live.

3.3 Configuration
We modified PHP 5.3.4, which is the latest stable branch of the PHP
development trunk. We used Apache 2.2.14 for the HTTP server,
and mysql 5.1.41-3 for the database server. We used http load, an
open source program by ACME labs, to fetch the URLs in order
to test the throughput of the web server. Any execution of each the
benchmarks will fetch more than a single URL.

3.4 Benchmarks
We use a set of benchmarks suggested to us by members of the
PHP Group as a suite of real workloads that are representative of
applications that run PHP to create dynamic web content. All of
these applications are widely used on the Internet. They all create
dynamic web pages on demand.

We use popular open-source content management systems:
DrupalTM [3], Typo3 [4], and Xoops [19]. They vary in complexity
and features, which differentiate their executions and memory char-
acteristics. We also use: Qdig [20] a PHP script that dynamically
presents digital image files as an online gallery or set of galleries,
and WordpressTM [25], a personal publishing platform.

4. Experimental Results
This section explores the memory behavior of the PHP bench-
marks through three characterizations—gross allocation behav-
ior, heap composition, and object size demographics. We use this
analysis to characterize the benchmarks and contrast them with
the demographics of SPECjvm98 benchmarks [8, 9]. We choose
SPECjvm98, as opposed to the real-world more sophisticated Java
DaCapo [10] benchmarks, because today’s PHP benchmarks and
VM technology are at a similar, early point in their development,
as were Java benchmarks and VM technology when SPECjvm98
was introduced.

4.1 Gross Allocation Characteristics
Table 1 shows the total allocation and maximum live object size,
expressed both in KB and number of objects. The table shows the
mean and median allocated object size. Compared to SPECjvm98,
these PHP benchmarks have substantially smaller total allocation
and maximum live heap size. Column four shows the ratio of total
allocation and maximum live size, also known as heap turnover.
These PHP benchmarks as a whole have a very high turnover that
ranges from 7:1 up to 54:1. This ratio is higher than SPECjvm98
benchmarks, which range from just 1:1 to 17:1. As the following
sections show, the PHP heap is entirely empty at the end of each
transaction. If we consider turnover ratios per transaction rather
than for the entire execution, the ratios are reduced by around a
factor of five, since most benchmarks run five transactions. These
findings are consistent with Inoue et al.’s finding that PHP is well
suited to region allocation [15].



Heap Volume (KB) Heap Objects Object Size (Bytes)
Benchmark Allocated Max Live Ratio Allocated Max Live Mean Median

drupal 2,740 366 7:1 27,506 2,935 101 24
wordpress 3,688 207 17:1 23,184 831 162 24
typo3 74,514 4,949 15:1 684,164 37,512 111 20
qdig 39,415 725 54:1 216,268 11,744 186 28
xoops 114,249 3,125 36:1 1,085,267 40,312 107 24

Table 1. Allocation and maximum live in KB and objects, ratio of allocation to maximum live, average and median object allocation size.

4.2 Heap Composition Graphs
Figures 1(b) through 5(b) each show the heap composition in lines
of allocation as a function of time which is measured in bytes of al-
location. These graphs illustrate object lifetime behaviors visually
with respect to allocation time. Each line in the heap composition
graph represents a cohort of contemporaneously allocated objects.
Cohort sizes vary depending on the program; we choose sizes as a
power of two (2n) bytes of allocation so that each graph contains
between 100 and 200 cohorts. The cohort with the oldest objects
allocated in the heap is represented by the top line. The size of the
cohorts in bytes of allocation corresponds to the area between each
of the lines. As objects in a cohort die, the area becomes smaller
and the lines move closer together, or if all objects in a cohort die,
the lines merge.

From these heap composition graphs, the first observation is
that they all exhibit the expected transactional nature of PHP ap-
plications. This behavior stems from their on-demand creation of
dynamic web pages. The sharp drop-offs following the peaks in all
of the heap composition graphs are indicative that most objects do
not live past each web page request. We did observe however that
drupal and wordpress allocate longer lived data at the beginning of
their execution. The graphs indicate this behavior with the cohorts
at the top of the graph that have a thicker band. It is also impor-
tant to note that there are thick and thin bands present for the entire
duration of each of the phases, which indicate varying lifetimes
within a transaction. For example, a long running transaction has
some objects that do not adhere to a region lifetime model within
the transaction, but at the end of each transaction, most objects are
dead.

Although Java benchmarks represent a much wider class of ap-
plications, a few workloads in SPECjvm98 and the DaCapo Java
benchmarks have very similar behavior. For example, Blackburn
et al. show the heap composition graphs for the SPECjvm98 javac
benchmark exhibits the same behavior [9]. Moreover, more sophis-
ticated benchmarks, such as antlr from the DaCapo Java bench-
mark suite, have a very similar behavior as well [10].

4.3 Object Size Demographics
Figures 1(c) through 5(c) each show allocation histograms of ob-
ject size demographics of each benchmark. The histograms are ex-
pressed as the percentage of total objects allocated (y-axis) by each
workload for the object size classes (x-axis) through its entire ex-
ecution. These histograms show a wide range of object sizes allo-
cated by all workloads. The highest percentage of object sizes are
between the sizes of 16 and 64 bytes. These numbers are very sim-
ilar to those of Java programs [9, 10, 13]

Figures 1(c) through 5(c) present a different view on object size
data. Rather than aggregating over the entire execution, the graphs
present the object size demographics as a time series. We create
this graph by frequently measuring the object size demographics
of the program (just as in Figures 1(c) through 5(c)). We take a
large number of samples throughout the execution of the program,
rather than just measuring this data at the end of the execution. Each
size class is represented by a line stacked upon the next smallest

size class. The smallest size classes are at the bottom. The distance
between the lines indicate the number of live objects allocated of
the corresponding size as a function of time in bytes of allocation.

Together, the histogram and time series graphs indicate the
predominance of the small object size classes, both as a function
of allocated objects and as a function of the number of live objects
in the heap at any given time.

In summary, these object size and lifetime demographics are
similar to other managed languages and are therefore very likely to
benefit from high performance memory management approaches,
such as region and generational collection.

5. Discussion and Conclusions
Efficient memory management is crucial to high performance lan-
guages. Moreover, current trends in hardware and software indi-
cate that memory management will further increase in importance
over time. Meanwhile as scripting languages such as Ruby, Python,
JavaScript, and PHP take on more critical roles, performance is be-
coming increasingly important. We argue that if scripting language
developers have aspirations of high performance, they must opt for
deferred gratification and take memory performance seriously, en-
gineering it in from the get-go. This discipline is not burdensome
for developers and will yield a better engineered and flexible sys-
tem. The alternative is a well worn path that starts down the easy
road of reference counting or conservative GC and ends with a sys-
tem that has a good compiler but is hamstrung by poor memory
performance.

We examine this problem through a case study using PHP. We
present a thorough evaluation of the memory profiles of a number
of popular PHP applications. These applications have modest total
memory allocation but higher turnover rates compared to the early
SPECjvm98 benchmarks. The average object size and heap pro-
files, however, have many similarities to those of Java applications.
These characteristics indicate that PHP will benefit significantly
from modern garbage collection techniques, including copying and
generational collection.

We argue that implementers with an interest in performance
should, but generally do not, take memory management very se-
riously when they start building a new language implementation.
We recommend designing for exact GC from the get-go or target-
ing an existing VM. The former enforces a software engineering
discipline on language implementers that is exacting, but not oner-
ous, while the later suggests an opportunity to tune VM memory
management to scripting language workloads.
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D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications, pages 169–190, Oct. 2006.
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Figure 1. Benchmark Characteristics: drupal.

(a) Benchmark Characteristics (b) Heap Composition Graph

(e) Object Size Demographics

Figure 2. Benchmark Characteristics: qdig.



(a) Benchmark Characteristics (b) Heap Composition Graph

(e) Object Size Demographics

Figure 3. Benchmark Characteristics: typo3.
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Figure 4. Benchmark Characteristics: wordpress.
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Figure 5. Benchmark Characteristics: xoops.


